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Regular Paper

ε-Ranking for Effective Many Objective

Optimization on MNK-Landscapes

Hernán Aguirre†1,†2 and Kiyoshi Tanaka†2

This work proposes a method to enhance selection of multiobjective evo-
lutionary algorithms aiming to improve their performance on many objective
optimization problems. The proposed method uses a randomized sampling pro-
cedure combined with ε-dominance to fine grain the ranking of solutions after
they have been ranked by Pareto dominance. The sampling procedure chooses
a subset of initially equal ranked solutions to give them selective advantage,
favoring a good distribution of the sample based on dominance regions wider
than conventional Pareto dominance. We enhance NSGA-II with the proposed
method and analyze its performance on a wide range of non-linear problems us-
ing MNK-Landscapes with up to M = 10 objectives. Experimental results show
that convergence and diversity of the solutions found can improve remarkably
on 3 ≤ M ≤ 10 objective problems.

1. Introduction

Multiobjective evolutionary algorithms (MOEAs) 1),2) optimize simultaneously
two or more objective functions, aiming to find a set of compromised Pareto
optimal solutions in a single run of the algorithm. Most state of the art MOEAs
use Pareto dominance within the selection procedure of the algorithm to rank
solutions. Selection based on Pareto dominance is thought to be effective for
problems with convex and non-convex fronts and has been successfully applied
in two and three objectives problems.

Recently, there is a growing interest on applying MOEAs to solve many ob-
jectives optimization problems 3)–9), where the number of objectives to optimize
is more than three. However, MOEAs that use selection based on Pareto dom-
inance do not scale-up well on many objective problems. It is known that the
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number of Pareto non-dominated solutions increase substantially as we increase
the number of objectives of the problem 3). Consequently, ranking by Pareto
dominance becomes coarser and too many solutions are assigned highest rank.
This affects the effectiveness of selection, severely deteriorating the performance
of MOEAs 4)–7).

In this work, we propose a method to enhance selection of MOEAs aiming to
improve their performance on many objective optimization problems. The pro-
posed method uses a randomized sampling procedure combined with ε-dominance
to fine grain the ranking of solutions after they have been ranked by Pareto dom-
inance. The sampling procedure chooses a subset of initially equal ranked solu-
tions to give them selective advantage, favoring a good distribution of the sample
based on dominance regions wider than conventional Pareto dominance. Basi-
cally, sampled solutions keep their initial rank and solutions located within the
virtually expanded dominance region of the sampled solutions are demoted to an
inferior rank. Thus, the proposed ranking method increases selection probabili-
ties of some of the solutions, while trying to keep a uniform search effort towards
the different zones of objective space represented in the actual population.

We verify the effectiveness of the proposed method using NSGA-II’s framework.
NSGA-II 10) is a widely referenced algorithm that has been shown to perform rel-
atively well on two and three objective problems, but known not to scale-up
well on many objective problems. We enhance NSGA-II with ε-ranking and
analyze its performance on a wide range of combinatorial non-linear problems
using MNK-Landscapes 3),5). An MNK-Landscape is a scalable model of epistatic
interactions for multiobjective combinatorial problems and it is useful to under-
stand the fundamental search mechanisms of the algorithms and their scalability
by varying the non-linear complexity K, number of objectives M , and size of
the search space 2N of the problem. In our experiments we use problems with
2 ≤ M ≤ 10 objectives, N = 100 bits, and 0 ≤ K ≤ 50 epistatic, non-linear,
interactions per bit. In addition, we compare results and computational time
by the proposed method, conventional NSGA-II, Subvector Dominance Assign-
ment (SVDOM), and Epsilon Dominance Assignment (EPSDOM). SVDOM and
EPSDOM are methods recently proposed to enhance NSGA-II for many-objective
optimization 8).
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40 ε-Ranking for Effective Many Objective Optimization on MNK-Landscapes

2. Multiobjective Optimization Concepts and Definitions

Let us consider, without loss of generality, a maximization multiobjective prob-
lem with M objectives:

maximize f(x) = (f1(x), f2(x), · · · , fM (x)) (1)
where x ∈ S is a solution vector in the feasible solution space S, and f1(·), f2(·),
· · ·, fM (·) the M objectives to be maximized.

In decision making, one dimensional comparison and Pareto optimality are two
popular methods used to choose a solution once a set of Pareto optimal solutions
has been found. Yu 11) showed that these two methods are two extreme cases
in the entire domain of domination structures and that there are infinity valid
methods lying between them, which suitability depends on how much information
is known on the decision maker’s preferences. Within the EMO community, these
other domination structures are also known as relaxed forms of Pareto dominance
and one method to implement them is ε-dominance 12). In the following we define
Pareto dominance and ε-dominance, two concepts that are of special relevance
to this work.

Pareto dominance. A solution x Pareto dominates other solution y, denoted
by f(x) � f(y), if the following conditions are satisfied:

∀m ∈ {1, · · · ,M} fm(x) ≥ fm(y) ∧
∃m ∈ {1, · · · ,M} fm(x) > fm(y).

(2)

ε-dominance. A solution x ε-dominates other solution y, denoted by f(x) �ε

f(y), if the following conditions are satisfied:

∀m ∈ {1, · · · ,M} (1 + ε)fm(x) ≥ fm(y) ∧
∃m ∈ {1, · · · ,M} (1 + ε)fm(x) > fm(y),

(3)

where ε > 0.0.
Figure 1 illustrates for one solution its Pareto dominance region and its ε-

dominance region.

3. Method

The core of the proposed method is a randomized ε-sampling procedure that

Fig. 1 Pareto dominance and ε-dominance.

favors a good distribution of solutions based on dominance regions wider than
conventional Pareto dominance. In the following, we first explain ε-sampling and
then ε-ranking to fine grain ranking of solutions. Finally, we explain the enhanced
NSGA-II 10).

3.1 ε-Sampling
ε-Sampling assumes that there is a set of equally ranked solutions from which

a subset of them should be chosen to be given selective advantage in order to
proceed further with the evolutionary search. That is, ε-sampling acts as a de-
cision making procedure, not to find a final solution, but to help selection of
the evolutionary algorithm. Hence, the sampling heuristic must reflect criteria
that favor an effective search. Here, the sample of solutions to be given selective
advantage are obtained with the following criteria,
• Extreme solutions are always part of the sample.
• Each (not extreme) sampled solution is the sole sampled representative of its

area of influence. The area of influence of the sampled solutions is determined
by a domination region wider than Pareto dominance, i.e., ε-dominance.

• Sampling of (not extreme) solutions follows a random schedule.
The first criterion tries to push the search towards the optimum values of each

fitness function, aiming to find non-dominated solutions in a wide area of objec-
tive space. The second criterion assures that only one solution in a given zone of
objective space is given higher rank, trying to distribute the search effort more
or less uniformly among the different zones represented in the actual population.
The third criterion dynamically establishes the zones that are represented in the
sample. Also, in the case that there are several solutions within each zone, it
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increases the likelihood that the sampled solutions that will be given higher rank
are different from one generation to the next, increasing the possibility of ex-
ploring wider areas of objective and variable space. This is an important issue
in elitist algorithms, like most state of the art MOEAs. Summarizing, the pro-
posed sampling method is a decision making procedure used by the algorithm in
order to increase selection probabilities of some of the solutions, trying to keep
a uniform search effort towards the different zones of objective space.

Procedure 1 illustrates the algorithm of the proposed ε-sampling method. Let
us denote A the set of solutions that have been assigned the same rank based on
conventional Pareto dominance, for example by applying non-domination sort-
ing 10). ε-Sampling returns the sampled solutions S ⊂ A that will be given
selective advantage as well as the set of solutions Dε to be demoted. See that
extreme solutions are the first to be assigned to the sample S (lines 1, 2). Then,
one by one, solutions are randomly chosen and included in S (lines 6–8), whereas

Procedure 1 ε-sampling (ε, A, S, Dε)
Input: ε-dominance factor ε and a set of equal ranked solutions A
Output: S and Dε (S ∪ Dε = A). S contains extreme and ε-non-dominated

solutions, whereas Dε contains ε-dominated solutions

1: X ← {x ∈ A | fm(x) = max(fm(·)), m = 1, 2, · · · ,M}
2: S ← X
3: A ← A \ X
4: Dε ← ∅
5: while A 
= ∅ do
6: r ← rand(), 1 ≤ r ≤ |A|
7: z ← r-th solution ∈ A
8: S ← S ∪ {z}
9: Y ← {y ∈ A | z �ε y, z 
= y}
10: Dε ← Dε ∪ Y
11: A ← A \ {{z} ∪ Y}

12: end while
13: return

solutions that lie in the wider domination region of the randomly picked solution
are assigned to Dε (lines 9, 10).

3.2 ε-Ranking
The ε-sampling procedure works on a set of equally ranked solutions, however

within a population there could be several sets of such solutions (each set with
a different rank). Here, we explain ε-ranking for NSGA-II to re-rank all possible
sets of equally ranked solutions using the ε-sampling method.

In NSGA-II, a non-domination sorting procedure is applied to the joined pop-
ulation of parents and offspring to classify solutions in fronts of non-dominated
solutions. Let us denote Z the set of solution we want to classify. The first
front F1 is obtained from Z and corresponds to the set of Pareto optimal solu-
tions in Z. Let us denote this set as POS1. The subsequent fronts Fi, i > 1,
contain lower level non-dominated solutions and are obtained by disregarding
solutions corresponding to the previously classified fronts, i.e., Fi, i > 1, is ob-
tained from the set Z − ⋃i−1

k=1 POSk. Solutions in each front are assigned the
same non-domination rank, equal to the front number they belong to.

ε-Ranking in NSGA-II is applied at each generation after non-domination sort-
ing to reclassify the fronts Fi (i = 1, · · · , NF ) found by NSGA-II. Procedure 2
describes the ε-ranking method for NSGA-II. See that the reclassified front Fε

j

(j = 1, · · · , N ε
F ) now contains only the sample of solutions S ⊂ Fi found by

ε-sampling (lines 9, 10). Also, see that solutions Dε, which are not part of the
sample (line 9) are demoted by joining them with solutions of an inferior front in
the next iteration of the loop (line 4). Thus, Fε

1 contains some of the solutions
initially ranked first, but Fε

j , j > 1, can contain solutions that initially were
ranked in different fronts. This gives chance to lateral diversity present in the
initial ranking of solutions and can punish highly crowded solutions even if they
are initially ranked first by conventional Pareto dominance. Figure 2 illustrates
the application of ε-sampling on the first front F1 and on the second front F2

joined with the demoted solutions Dε from F1. A number close to the solutions
represents the random schedule in which solutions are sampled (0 means extreme
solutions, which are all selected at once).

Truncation to obtain the new parent population is applied after re-classifying
fronts with ε-ranking. Many demoted solutions would still be part of the new
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42 ε-Ranking for Effective Many Objective Optimization on MNK-Landscapes

Procedure 2 ε-ranking (ε, F , Fε)
Input: ε-dominance factor ε and solutions F classified in fronts Fi (i =

1, · · · , NF ) by non-domination sorting
Output: Fε, solutions re-classified in fronts Fε

j (j = 1, · · · , N ε
F ) after ε-sampling

1: Dε ← ∅, i← 1, j ← 1
2: repeat
3: if i ≤ NF then
4: A ← Fi ∪ Dε

5: i← i + 1
6: else
7: A ← Dε

8: end if
9: ε-sampling(ε, A, S, Dε)
10: Fε

j ← S
11: j ← j + 1

12: until Dε = ∅
13: return

parent population, though their probability to reproduce has been reduced in-
stantaneously by assigning them an inferior rank. Demoted solutions, which are
not dominated by offspring, could be part of the highest ranked sample in the
next generation, because ε-sampling would be applied again in a randomized
manner.

3.3 ε-Ranking in NSGA-II Framework
In this work, we enhance NSGA-II 10) with the proposed ε-ranking method

as illustrated in Procedure 3. Note that solutions are firstly ranked based
on Pareto dominance and its crowding estimated using non-domination sorting
and crowding distance procedures 10), respectively (lines 4, 5). After this initial
ranking, solutions are classified in sets of non-dominated solutions F = {Fi}
(i = 1, 2, · · · , NF ). However, in many objective problems a large number of
solutions are expected to be given the highest rank. Thus, a finer grained ranking
of solutions (line 6) is created by using a ε-ranking procedure, i.e., ε-ranking

(a) F1 (b) F2 ∪ Dε
F1

Fig. 2 ε-sampling on (a) the first front and (b) second front joined with solutions demoted
from the first.

Procedure 3 NSGA-II with ε-ranking
Input: ε-dominance factor ε > 0.0
Output: F1, set of Pareto non-dominated solutions

1: P ← ∅, Q ← random // initialize parents P and offspring Q
2: repeat
3: evaluation(Q)
4: F ← non-domination-sorting(P ∪Q) // F = {Fi} (i = 1, 2, · · · , NF )
5: crowding-distance(F)
6: Fε ← ε-ranking(ε, F) // Fε = {Fε

j } (j = 1, 2, · · · , N ε
F )

7: P ← truncation(Fε) // |P| = |Q|
8: Q ← recombination and mutation(P)

9: until termination criterion is met
10: return F1

reclassifies F into Fε = {Fε
j } (i = 1, 2, · · · , N ε

F ), where N ε
F ≥ NF . ε-ranking

uses parameter ε > 0.0 to virtually extend the dominance area of the sampled
solutions in order not to include closely located solutions in the sample.
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The new ranking of solutions is reflected in the selection procedure of the algo-
rithm, both during population truncation and during mating for recombination.
That is, the parent population P is obtained by truncating Fε (line 7). Namely,
groups of solutions Fε

j are assigned iteratively to P, starting with Fε
1 . If Fε

j over-
fills P, crowding distance calculated in Fi is used to choose the required number
of solutions. Also, mating for recombination is carried out by binary tournaments
using the new rank of solutions (Fε

j ) to determine the winners, breaking ties by
crowding distance calculated in Fi.

4. Test Problems, Performance Measures and Parameters

4.1 Multiobjective MNK-Landscapes
In this work we test the performance of the algorithms on multiobjective MNK-

Landscapes. A multiobjective MNK-Landscape 3),5) is defined as a vector function
mapping binary strings into real numbers f(·) = (f1(·), f2(·), · · ·, fM (·)) : BN →
�M , where M is the number of objectives, fi(·) is the i-th objective function,
B = {0, 1}, and N is the bit string length. K = {K1, · · · , KM} is a set of integers
where Ki (i = 1, 2, · · ·, M) is the number of bits in the string that epistatically
interact with each bit in the i-th landscape. Each fi(·) can be expressed as an
average of N functions as follows

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (4)

where fi,j : BKi+1 → � gives the fitness contribution of bit xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are the Ki bits interacting with bit xj in the string x. The

fitness contribution fi,j of bit xj is a number between [0.0, 1.0] drawn from a
uniform distribution. Thus, each fi(·) is a non-linear function of x expressed by
a Kauffman’s NK-Landscape model of epistatic interactions 13). Figure 3 shows
an example of the two fitness functions, based on different epistatic models,
associated to the same bit in a two objective landscape.

For a given N , we can tune the ruggedness of the fitness function fi(·) of the
i-th objective by varying Ki. In the limits, Ki = 0 corresponds to a model
in which there are no epistatic interactions and the fitness contribution from
each bit value is simply additive, which yields a single peaked smooth i-th fitness

Fig. 3 An example of the fitness functions f1,3(x3, z
(1,3)
1 , z

(1,3)
2 ) and f2,3(x3, z

(2,3)
1 , z

(2,3)
2 )

associated to bit x3 contributing to the first objective function f1(·) and second one
f2(·), respectively. In f1,3 x3 epistatically interacts with its left and right neighboring

bits, z
(1,3)
1 = x2 and z

(1,3)
2 = x4. On the other hand, in f2,3 x3 epistatically interacts

with its second bit to the left and with its third bit to the right, z
(2,3)
1 = x1 and

z
(2,3)
2 = x6. (N = 8, K1 = K2 = 2).

landscape. On the opposite extreme, Ki = N−1 corresponds to a model in which
each bit value is epistatically affected by all the remaining bit values yielding a
maximally rugged fully random i-th fitness landscape. Varying Ki from 0 to
N − 1 gives a family of increasingly rugged multi-peaked landscapes.

In addition to M , N , and K, it is also possible to specify the epistatic pat-
tern between bit xj and the Ki other interacting bits. That is, the distri-
bution Di = {random,nearest neighbor} of Ki bits among N . Thus, M , N ,
K = {K1,K2, · · · ,KM}, and D = {D1,D2, · · · ,DM}, completely specify a mul-
tiobjective MNK-Landscape.

From a multiobjective random test problem generator standpoint 14), desirable
features of MNK-Landscapes are that the problems are easy to construct and can
scale to any number of objectives M , number of bits N , and number of epistatic
interactions Ki, allowing the creation of sub-classes of combinatorial non-linear
problems for discrete search spaces. By varying these parameters we can analyze
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the properties of the multiobjective landscapes and study the effects of the num-
ber of objectives, size of the search space, intensity of epistatic interactions, and
epistatic pattern on the performance of multiobjective optimization algorithms
on combinatorial discrete search spaces.

4.2 Performance Measures
In this work, we use the hypervolumeH and coverage C measures 15) to evaluate

and compare the performance of the algorithms. The measure H calculates the
volume of the M -dimensional region in objective space enclosed by a set of non-
dominated solutions and a dominated reference point. Let A be a set of non-
dominated solutions. The hypervolume of A can be expressed as

H(A) = ∪|A|
i=1(Vi − ∩i−1

j=1ViVj) (5)

where Vi is the hypervolume rendered by the point xi ∈ A and the reference
point. In this work, the reference point is set to [0.0, · · · , 0.0]. Given two sets of
non-dominated solutions A and B, if H(A) > H(B) then set A can be considered
better on convergence and/or diversity of solutions. To calculate H, we use
Fonseca, et al. 16) algorithm, which significantly reduces computational time.

The coverage C measure 15) provides complementary information on conver-
gence. Let us denote A and B the sets of non-dominated solutions found by two
algorithms. C(A,B) gives the fraction of solutions in B that are dominated at
least by one solution in A. More formally,

C(A,B) =
| {b ∈ B|∃a ∈ A : f(a) � f(b)} |

| B | . (6)

C(A,B) = 1.0 indicates that all solutions in B are dominated by solutions in A,
whereas C(A,B) = 0.0 indicates that no solution in B is dominated by solutions in
A. Since usually C(A,B)+C(B,A) 
= 1.0, both C(A,B) and C(B,A) are required
to understand the degree to which solutions of one set dominate solutions of the
other set.

4.3 Parameters
In this work, we test the performance of the algorithm using MNK-Landscapes

with 2 ≤ M ≤ 10 objectives, N = 100 bits, number of epistatic interactions
K = {0, 1, 3, 5, 10, 15, 25, 35, 50} (K1, · · · ,KM = K), and random epistatic pat-
terns among bits for all objectives (D1, · · ·, DM = random). Results presented

below show the average performance of the algorithms on 50 different problems
randomly generated for each combination of M , N and K. That is, 4,500 dif-
ferent problems are used in total. In the plots, error bars show 95% confidence
intervals on the mean.

In the following sections we analyze results by NSGA-II enhanced with the
proposed method (referred as ε-ranking for short) comparing them with results
by conventional NSGA-II. ε-ranking and conventional NSGA-II use parent and
offspring populations of size 100, two point crossover for recombination with rate
pc = 0.6, and bit flipping mutation with rate pm = 1/N per bit. The number of
evaluations is set to 3 × 105. To have a broad picture of the effect of the wider
dominations regions used within ε-sampling, in our study we conduct experiments
varying ε on the range [0.5, 10.0] (%) in intervals of 0.5 for 2 ≤M ≤ 6 objectives
problems; whereas for 7 ≤ M ≤ 10 objectives we vary ε on the ranges [1.0, 10.0]
(%) in intervals of 0.5 and [12.5, 22.5] (%) in intervals of 2.5.

5. Experimental Results and Discussion

5.1 Performance by ε-Ranking and Conventional NSGA-II
In this section, we first discuss the relative gains on performance by ε-ranking

set with ε∗ that achieves maximum hypervolume H. Figure 4 shows the average
ratio H(E)

H(N) , where E and N denote the set of solutions found by ε-ranking and
conventional NSGA-II, respectively. Thus, a ratio greater than 1.0 indicates
better H by ε-ranking than conventional NSGA-II. As a reference, we include a
horizontal line to represent the H(N) values normalized to 1.0. From this figure,
we can see that ε-ranking can slightly improve H on problems with M = 2
and M = 3 objectives for some values of K (4% improvement or less). On the
other hand, for 4 ≤ M ≤ 10 objectives, the improvement on H is remarkable
for most values of K (up to 27% improvement). Note that improvements on H
become larger as we increase the number of objectives M from 2 to 6, whereas
improvements on H are similar for 7 ≤M ≤ 10.

Improvements on H can be due to solutions with better convergence, better
diversity, or both. To complement the analyzes of results on H we also present
results using the C measure. Figure 5 shows the average C values between
conventional NSGA-II and ε-ranking set with ε∗. From this figure, we can see that
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(a) H, M = {2, 3} (b) H, M = {4, 5, 6} (c) H, M = {7, 8, 9, 10}
Fig. 4 Normalized H, ε-ranking set with ε∗ that achieves maximum H(E).

(a) C, M = {2, 3} (b) C, M = {4, 5, 6} (c) C, M = {7, 8, 9, 10}
Fig. 5 C between NSGA-II and ε-ranking set with ε∗ that achieves maximum H(E).

C(E,N) is slightly smaller than C(N,E) for M = 2 and K ≤ 10, which means
that convergence is somewhat worse by ε-ranking than conventional NSGA-II.
Thus, the slight improvement on H by ε-ranking, observed in the same region
M = 2 and 0 ≤ K ≤ 10 as shown in Fig. 4 (a), is at the expense of a slight
deterioration on convergence.

In the case of M = 3 objectives, we can see that C(E,N) is considerably
greater than C(N,E) for 0 ≤ K ≤ 25, which means that convergence is better
by ε-ranking than conventional NSGA-II. Thus, we can conclude that a better
convergence of solutions contributes to the improvement on H by ε-ranking, as
shown in Fig. 4 (a) for 0 ≤ K ≤ 25.
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(a) M = 6, K = {0, 1, 3, 5, 7} (b) M = 6, K = {10, 15, 25, 35, 50}
Fig. 6 Normalized H varying ε, M = 6, K = {0, 1, 3, 5, 7, 10, 15, 25, 35, 50}.

For 4 ≤ M ≤ 10 a clear trend can be seen. C(N,E) is close to 0.0 for most
K and M . This indicates that there are almost no solutions by conventional
NSGA-II that dominate solutions by ε-ranking. On the other hand, the values
of C(E,N) are very high for 4 objectives (in the range 0.55–0.85) and reduce
gradually as we increase M up to 10 objectives (in the range 0.01–0.08). This
suggests that a better convergence of solutions contributes to the increases of
H by ε-ranking on M = 4 problems. As we increase M , gains on diversity
gradually become more significant than gains on convergence as the reason for
the remarkable improvement of H on 5 ≤M ≤ 10.

5.2 Effect of ε

Next, we discuss the effects on performance of parameter ε. Figures 6 and 7
show, for M = 6 objectives and various K, the ratio H(E)

H(N) and the C measure
between NSGA-II and ε-ranking varying ε. Similarly, Figs. 8 and 9 show results
for K = 7 and various M . From Fig. 6, we can see that H improves as we increase
ε, eventually reaching maximum H∗ at ε∗. Increasing ε above ε∗ has the effect to
gradually reduce H, specially on 1 ≤ K ≤ 25 landscapes (skewed bell-like curves
with larger tail for ε > ε∗). However, ε > ε∗ on K = {0, 35, 50} seems not to
affect H (ramp-like curves). Thus, the region where ε∗ lies in parameter space
could be narrow or broad and depends on K. Note that for most bell-like curves,

(a) M = 6, K = {0, 1, 3, 5, 7} (b) M = 6, K = {10, 15, 25, 35, 50}
Fig. 7 C between NSGA-II and ε-ranking varying ε, M = 6,

K = {0, 1, 3, 5, 7, 10, 15, 25, 35, 50}.

(a) M = {3, 4, 5, 6}, K = 7 (b) M = {7, 8, 9, 10}, K = 7

Fig. 8 Normalized H varying ε, M = {3, 4, 5, 6, 7, 8, 9, 10}, K = 7.

ε∗ for different K (or an ε that leads to high H) are clustered at close range. For
example, ε∗ for most K are in the range [2.5, 4.5] on M = 6 objectives. Looking
at Figs. 8 and 9, note that ε∗ also depends on M .

Looking at C plots in Fig. 7, it is interesting to notice that most C(E,N) curves
are bell-like. This suggests that, although there could be a broad range of values
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(a) M = {3, 4, 5, 6}, K = 7 (b) M = {7, 8, 9, 10}, K = 7

Fig. 9 C between NSGA-II and ε-ranking varying ε, M = {3, 4, 5, 6, 7, 8, 9, 10}, K = 7.

for parameter ε that leads to high H, the choice of ε would allow to focus on
higher convergence or higher diversity compared to NSGA-II. Note that C(N,E)
are close to 0.0 for most K (specially for large M). So, the choice of ε would not
worsen convergence compared to NSGA-II (an exception could be M = 2, K ≤ 1
and M = 3, K = 0 if ε is too large). Also, it is important to note that the value
of ε that maximizes H is similar to the value of ε that maximizes C(E,N) for
most K (and M). Figure 10 shows the number of solutions |Fε

1 | in the first front
after applying ε-ranking for some values of ε on M = 6 objectives and K = 10
epistatic patterns per bit. The horizontal dashed line at 100 indicates the size
of the parent population |P|. From this figure, see that by increasing ε we can
progressively reduce |Fε

1 |, i.e., the number of individuals assigned highest rank.
It is interesting to notice that the steep performance improvement observed in
Figs. 6 and 7 (see left side of the skewed bell-like curves for K = 10) correspond
to values of ε that induce a better approximation of |Fε

1 | to |P|. See that, for
M = 6 and K = 10, setting ε in the range [0.03, 0.04] leads to a |Fε

1 | that is close
to the population size |P|. Also, in Figs. 6 and 7 see that H and C are maximized
in the same range of ε. A similar trend is observed for other values of K and M ,
suggesting that a good setting for ε is a value that induces |Fε

1 | to be close to
|P|.

Fig. 10 Number of individuals |Fε
1 | (over the generations) in the first front after ε-ranking,

for several values of ε. M = 6, K = 10.

Fig. 11 Number of individuals |F1| and |Fε
1 | (over the generations) in the first front before

and after ε-ranking, for values of ε in the range that maximize H and C. M = 6,
K = 10.

Figure 11 shows the number of individuals |F1| and |Fε
1 | that belong to the

first front before and after ε-ranking, respectively, for values of ε in the range
[0.03, 0.04] where H and C are maximized on problems with M = 6 objectives
and K = 10 epistatic interactions. Note that the number of individuals with
highest rank |F1| by conventional Pareto dominance is higher than |P| since
the start of the run. Also, see that fixed values of ε induce larger differences
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between |F1| and |Fε
1 | during the initial stages of the run. This is because the

instantaneous population will cover wider areas of objective space as evolution
proceeds.

The patterns we observe here are useful to understand better the optimization
of problems with many objectives and for setting ε with an appropriate fixed
value. However, it would be interesting in the future to study the effects of
dynamically adjusting ε and to investigate adaptive methods to control it.

5.3 Absolute Values of H and Performance Scalability on K

In previous sections we focused on the ratio H(E)
H(N) to discuss the relative gains

on performance produced by the improved selection mechanism. In this section
we analyze the absolute values of H to discuss the performance scalability of
the algorithms as we increase the number of epistatic interactions. Figure 12
illustrates the absolute values of H(N) and H(E) (set with ε = ε∗) over the
number of epistatic interactions K on M = 6 objectives problems.

To understand these results, we first recall an important property of MNK-
landscapes. Analysis by enumeration on N = 20 bits MNK-landscapes have
shown that the trend of the hypervolume of the true Pareto front is to rapidly
increase with K, from K = 0 to small values of K, remaining high for medium
and large K 3),5). The hypervolume trend is expected to be similar on landscapes
with a larger number of bits. This is a property directly related to the maximum

Fig. 12 Absolute values of H(N) and H(E) by NSGA-II and ε-ranking set with ε∗ that
achieves maximum H, respectively.

achievable optima of single objective NK-landscapes 13). The achievable optima
in NK-landscapes is lowest for K = 0 epistatic interactions (around 0.66 given
by the central limit theorem). Increasing K to small values gradually bends
the single objective landscapes and the achievable optima gets higher. Further
increasing K to medium and large values bends no more the landscapes (though
the number of local optima increase) and the achievable optima remains high.

From Fig. 12, see that hypervolume increases for K ≤ 5, which is in accordance
with the expected trend of the hypervolume. However, for K ≥ 7 see that
the value of the hypervolume decreases monotonically. These decreasing values
are against the expected trend of the hypervolume and indicate that the search
performance of the algorithms is worsening significantly as K increases. By
including ε-ranking we have been able to improve significantly the performance
of the evolutionary optimizer on M ≥ 3 objectives for all 0 ≤ K ≤ 50. However,
Fig. 12 shows us that there is still work to be done to improve the performance
of the algorithm on landscapes with medium and large K.

6. Comparison with Other Approaches

Recently, few methods have been proposed for many-objective optimiza-
tion 7)–9). In the following we compare the performance of ε-ranking with two
other methods that enhance selection in NSGA-II, namely Subvector Dominance
Assignment (SVDOM) and Epsilon Dominance Assignment (EPSDOM) 8). Since
ε-ranking also enhances selection and it is implemented in this work using the
framework of NSGA-II, the comparison among ε-ranking, SVDOM, and EPS-
DOM would allow a clear understanding on the effects on performance of differ-
ent strategies that enhance selection while keeping intact other components of
the evolutionary algorithm.

Before we analyze results by these algorithms, let us briefly highlight their
main differences. NSGA-II uses two procedures to rank solutions 10). A primary
ranking in NSGA-II is given by non-domination sorting and a secondary ranking
by crowding distance of solutions. The secondary ranking is used when selection
cannot discriminate based on the primary ranking of solutions. ε-ranking focuses
on the primary ranking procedure, i.e., re-ranking of solutions after they have
been initially ranked with non-domination sorting, and keeps crowding distance
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as the secondary ranking procedure. On the other hand, SVDOM and EPSDOM
modify NSGA-II’s secondary ranking of solutions by using a substitute distance
instead of crowding distance and keep the initial primary ranking given by non-
domination sorting.

The substitute distance that determines the secondary ranking of solutions in
SVDOM and EPSDOM are based on measurement procedures that calculate
the highest degree to which a solution is nearly Pareto dominated by any other
solution. SVDOM compares a solution x with other non-dominated solution y,
counting the number of objectives of y that are better than the corresponding
objectives of x, i.e., cy = count{fm(y) > fm(x), m = 1, 2, · · · ,M}. Note that we
maximize all objectives. The secondary ranking dS

x of x is given by dS
x = max{cy}

after comparing x with all other non-dominated solutions y. A smaller dS
x means

a better rank. On the other hand, EPSDOM takes into account the magnitude of
all objectives of y that are worse than the corresponding objectives of x. That is,
the magnitude that solution y needs to improve in order to dominate x is given
by ey = max{fm(y) − fm(x) | fm(y) < fm(x), m = 1, 2, · · · ,M}. Now, the
secondary ranking dP

x of x is given by dP
x = min{ey} after comparing x with all

other non-dominated solutions y. A larger dP
x means a better rank. The reader

is referred to Ref. 8) for further details on SVDOM and EPSDOM.
Figure 13 shows for M = {3, 4, 5, 6, 7, 8, 9, 10} objectives the differential hy-

pervolume ΔH between ε-ranking (E) set with ε∗ and SVDOM (S) normalized
with respect to NSGA-II’s hypervolume, ΔH = H(E)−H(S)

H(N) × 100. Note that
ΔH > 0 indicates better hypervolume by ε-ranking, whereas a ΔH < 0 indi-
cates better hypervolume by SVDOM. Figure 14 shows the C values between
ε-ranking (E) set with ε∗ and SVDOM (S). For the sake of clarity, C values are
included only for M = {3, 5, 7, 9} objectives. Likewise, Figs. 15 and 16 show
results for ε-ranking (E) and EPSDOM (P ).

From Fig. 13, note that ε-ranking achieves overall better hypervolume than
SVDOM for M ≤ 7, whereas for 8 ≤ M ≤ 10 SVDOM achieves overall better
hypervolume than ε-ranking (except for K ≥ 35). Looking at Fig. 14, note that
ε-ranking achieves better C values on M ≤ 5 for some values of K. However,
better C values are achieved by SVDOM for M ≥ 6. Looking at Figs. 15 and 16,
we can see that EPSDOM overall achieves better hypervolume and C values

(a) M = {3, 4, 5, 6} (b) M = {7, 8, 9, 10}
Fig. 13 Differential hypervolume between ε-ranking (E) set with ε∗ and SVDOM (S)

normalized to NSGA-II’s hypervolume.

(a) M = {3, 5} (b) M = {7, 9}
Fig. 14 C between ε-ranking (E) set with ε∗ and SVDOM (S).

than SVDOM. Comparing ε-ranking and EPSDOM, note that ε-ranking achieves
similar or better hypervolume on M ≤ 5 objectives, whereas EPSDOM obtains
better hypervolume on M ≥ 6. Also note that EPSDOM achieves better C even
on small M , where ε-ranking achieves better hypervolume.

From these results, at first glance it could seem that SVDOM and EPSDOM
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(a) M = {3, 4, 5, 6} (b) M = {7, 8, 9, 10}
Fig. 15 Differential hypervolume between ε-ranking (E) set with ε∗ and EPSDOM (P )

normalized to NSGA-II’s hypervolume.

(a) M = {3, 5} (b) M = {7, 9}
Fig. 16 C between ε-ranking (E) set with ε∗ and EPSDOM (P ).

are a better optimizer than ε-ranking for larger M . However, the good values of
hypervolume by SVDOM and EPSDOM are exclusively due to a better conver-
gence of some solutions in a narrow region of objective space at the expense of
diversity. To illustrate this important point, Fig. 17 plots the maximum attained
fitness values in each objective function by conventional NSGA-II, ε-ranking, SV-

(a) M = 3, K = 7 (b) M = 5, K = 7

(c) M = 7, K = 7 (d) M = 9, K = 7

Fig. 17 Max. fitness in each objective by NSGA-II, ε-ranking, SVDOM, and EPSDOM.
M = {3, 5, 7, 9}, K = 7.

DOM, and EPSDOM for M = {3, 5, 7, 9} objectives and K = 7 epistatic inter-
actions. Note that SVDOM and EPSDOM attain the highest values of H and
C at K = 7 for most M . From Fig. 17, we can see that conventional NSGA-II
achieves in all objectives better maximum-fitness values than SVDOM and EPS-
DOM. Note also that the gap between NSGA-II and SVDOM (or EPSDOM)
increases with the number of objectives M of the problem. These results suggest
that solutions found by SVDOM and EPSDOM tend to concentrate within an
increasingly reduced space of objective space as the number of objectives of the
problem increase. On the other hand, note that ε-ranking obtains similar or bet-
ter maximum-fitness than conventional NSGA-II, with an increased gap in favor
of ε-ranking as the number of objectives of the problem increase.

Summarizing, SVDOM and EPSDOM especially are good methods to focus the
search in an increasingly narrower part of the objective space as the number of
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objectives of the problem increase. As a consequence, these methods can improve
convergence of solutions, but at the expense of diversity. In fact, diversity by
these methods is even worse than conventional NSGA-II for M ≥ 3. On the
other hand, ε-ranking can achieve better convergence and better diversity than
NSGA-II for M ≥ 3. Comparing SVDOM and EPSDOM, EPSDOM performs
better both on convergence and diversity. Between ε-dominance and EPSDOM,
there is not a clear winner. On the one hand, EPSDOM can find solutions with
better convergence than ε-ranking within a narrower region of objective space.
On the other hand, ε-ranking can find non-dominated solutions that EPSDOM
cannot in a broader region of objective space. In both methods there is a trade-
off on convergence and diversity, and their use should be decided depending on
the kind of solutions we want the optimizer to find.

7. Computational Cost

In the previous sections we have compared the performance in terms of solution
quality of NSGA-II, ε-ranking, SVDOM, and EPSDOM. In the following, we
compare their computational cost. As mentioned above, ε-ranking, SVDOM,
and EPSDOM are implemented within the framework of NSGA-II to enhance its
selection procedure. From a computational stand point, the difference between
NSGA-II and ε-ranking is the additional re-ranking procedure in the latter. Thus,
a computational cost higher than NSGA-II’s is expected in ε-ranking. However, it
can be shown that the computational order of the additional re-ranking procedure
is of order � O(MN2). Note in Procedure 1 that at each iteration of the
loop in ε-sampling the number of comparisons is performed in an increasingly
smaller set of non-dominated solutions, because sampled solutions as well as ε-
dominated solutions are removed from the initial set of non-dominated solutions
A and assigned to the sets S and Dε, respectively.

SVDOM and EPSDOM modify NSGA-II’s secondary ranking of solutions by
using a substitute distance instead of crowding distance. In other words, any
difference in computational cost between NSGA-II and SVDOM/EPSDOM is
given by the differential computational order between crowding distance and the
corresponding substitute distance. The computational order of applying crowd-
ing distance 10) to a set of non-dominated solutions is O(MN + MN log N),

Fig. 18 Average run time in seconds by NSGA-II, ε-ranking, SVDOM, and EPSDOM.
M = {2, 3, 4, 5, 6, 7, 8, 9, 10} and K = 5.

where N is number of solutions and M is the number of objectives. On
the other hand, the computational order of the substitute distances in SV-
DOM and EPSDOM 8) are O(MN2). Since MN2 > MN + MN log N , SV-
DOM and EPSDOM have an computational cost higher than NSGA-II of order
O(MN2−MN −MN log N) = O(MN(N −1− log N)) ∼ O(MN2) for large N .

Figure 18 shows the average number of seconds per run by NSGA-II, ε-
ranking, SVDOM, and EPSDOM for M = {2, 3, 4, 5, 6, 7, 8, 9, 10} and K = 5
epistatic interactions. From this figure, note that NSGA-II requires lower com-
putational time among all algorithms. Also see that the computational time of
the algorithms increases with the number of objectives of the problem, which
is expected for algorithms that use Pareto dominance. Between ε-ranking and
SVDOM/EPSDOM, note that overall ε-ranking is faster than SVDOM and EPS-
DOM.

8. Conclusions

In this work, we have proposed a method to fine grain the ranking of solutions
in Pareto dominance MOEAs aiming to improve their performance on many ob-
jectives problems. The re-ranking method uses a randomized sampling procedure
to increase selection probabilities of some of the solutions, while trying to keep a
uniform search effort towards the different zones of objective space represented in
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the instantaneous population. We enhanced NSGA-II with the proposed method
and tested its performance on MNK-Landscapes with 2 ≤ M ≤ 10 objectives,
N = 100 bits and 0 ≤ K ≤ 50 epistatic interactions. We showed that both
convergence and diversity of the obtained solutions can improve remarkably on
problems with 3 ≤M ≤ 10 objectives for any level of epistatic interactions.

We also compared results by the proposed method with Subvector Dominance
Assignment (SVDOM) and Epsilon Dominance Assignment (EPSDOM), showing
that SVDOM and EPSDOM can improve convergence of some solutions but
at the expense of diversity, whereas ε-ranking can find solutions in a broader
region of objective space but at the expense of convergence of some solutions.
Furthermore, we discussed the computational time of the algorithms, showing
that ε-ranking is overall faster than SVDOM and EPSDOM.

As future works, we would like to pursue adaptive methods to control the
expanded dominance region of the sampled solutions and investigate ways to
further improve convergence, especially on M ≥ 7 objective problems. Also, we
would like to compare the proposed method with other approaches that are being
developed for many objective optimization.
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