IPSJ Transactions on Programming Vol. 2 No. 5 46 (Nov. 2009)

Abstract

Decidability and Undecidability Results of Modal μ -calculi with N $_{\infty}$ Semantics

Alexis Goyet,^{†1} Masami Hagiya^{†2} and Yoshinori Tanabe^{†2}

In our previous study, we defined the semantics of modal μ -calculus on minplus algebra N_{∞} and developed a model-checking algorithm. N_{∞} is the set of all natural numbers and infinity (∞) , and has two operations min and plus. In the semantics, disjunctions are interpreted by min and conjunctions by plus. This semantics allows interesting properties of a Kripke structure, such as the shortest path to some state or the number of states that satisfy a specified condition, to be expressed using simple formulae. In this study, we investigate the satisfiability problem in N_{∞} semantics and prove decidability and undecidability results. First, the problem is decidable if the logic does not contain the implication operator. We prove this result by defining a translation $tr(\varphi)$ of formula φ such that the satisfiability of φ in N_{∞} semantics is equivalent to that of $tr(\varphi)$ in ordinary semantics. Second, the satisfiability problem becomes undecidable if the logic contains the implication operator.

(Presented June 8, 2009)

†1 Ecole Normale Supérieure†2 The University of Tokyo