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In the EMIME project, we are developing a mobile device that performs per-
sonalized speech-to-speech translation such that a user’s spoken input in one
language is used to produce spoken output in another language, while contin-
uing to sound like the user’s voice. We integrate two techniques, unsupervised
adaptation for HMM-based TTS using a word-based large-vocabulary contin-
uous speech recognizer and cross-lingual speaker adaptation for HMM-based
TTS, into a single architecture. Thus, an unsupervised cross-lingual speaker
adaptation system can be developed. Listening tests show very promising re-
sults, demonstrating that adapted voices sound similar to the target speaker
and that differences between supervised and unsupervised cross-lingual speaker
adaptation are small.

1. Introduction

The goal of Speech-to-Speech Translation (S2ST) research is to “enable real-
time, interpersonal communication via natural spoken language for people who
do not share a common language”1) and many large-scale projects (Verbmobil,
Babylon, TC/LC-STAR, EU-Trans, ATR, etc.) have focused on this topic. In
our EU FP7 project EMIME2), we are developing a mobile device that performs
personalized S2ST, such that a user’s spoken input in one language is used to
produce spoken output in another language, while continuing to sound like the
user’s voice.

Contrary to previous ‘pipeline’ S2ST systems that combined isolated automatic
speech recognition (ASR), machine translation (MT), and text-to-speech (TTS)
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systems, or systems that coupled ASR with MT3),4), EMIME places the main
emphasis on coupling ASR with TTS, specifically to enable cross-lingual speaker
adaptation for HMM-based ASR and TTS5),6). The principal modeling frame-
work of speaker-adaptive HMM-based speech synthesis6) is conceptually similar
to conventional ASR systems (although without discriminative training) and it is
therefore possible to share Gaussians, decision trees or linear transforms between
the two7).

In the EMIME project, we have conducted extensive experiments exploring
the possibilities for combining ASR and TTS models. We have also devel-
oped unsupervised adaptation techniques for HMM-based TTS using either a
phoneme recognizer8) or a word-based large-vocabulary continuous speech rec-
ognizer (LVCSR)9), and cross-lingual adaptation techniques for HMM-based
TTS10).

In this paper, we integrate these developments into a single architecture which
achieves unsupervised cross-lingual speaker adaptation for HMM-based speech
synthesis. We demonstrate an initial S2ST system built for four languages –
American English, Mandarin, Japanese, and Finnish. Although all language
pairs and directions are possible in our framework, only the English-to-Japanese
adaptation was evaluated in the perceptual experiments presented here; these
experiments focus on measuring the similarity between the output Japanese syn-
thetic speech to the speech of the original English speaker. The following sections
give an overview of the system built, the unsupervised cross-lingual speaker adap-
tation method and the TTS evaluation results.

2. Overview of the S2ST system using HMM-based ASR and TTS

All acoustic models, for both ASR and TTS, are trained on large conven-
tional speech databases, comprising speech from hundreds of speakers, which
were originally intended for ASR: WSJ0/1 (for English), Speecon Mandarin,
JNAS (Japanese), and Speecon Finnish databases. Details of the front-end text
processing used to derive phonetic-prosodic labels from the word transcriptions
can be found in11).

For each language, state-tied context-dependent speaker-independent HMMs
(or multi-space distribution hidden semi-Markov models – MSD-HSMMs) are
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trained using speaker-adaptive training (SAT)12). For the state tying, minimum
description length (MDL) automatic decision tree clustering is used5). The acous-
tic features for ASR are either the same as those for TTS or more typical ASR
features such as MFCCs or PLPs. TTS acoustic features comprise the spectral
and excitation features required for the STRAIGHT mel-cepstral vocoder with
mixed excitation6). For unsupervised cross-lingual speaker adaptation and de-
coding, a multi-pass framework is used: in the first pass, initial transcriptions
are obtained from speaker independent (SI) HMMs, and then CSMAPLR adap-
tation13) is applied to SAT-HMMs (ASR) using these obtained transcriptions.
In the second pass, using these adapted models, the transcriptions are refined.
In the final pass, CSMAPLR transforms are estimated for SAT-HSMMs (TTS)
with the refined transcriptions. These transforms can then be applied to the SAT-
HSMMs for the output language, by employing a state-level mapping that has
been constructed based on the Kullback-Leibler divergence (KLD) between pairs
of states from the input and output TTS HMMs10). The ASR language models
used for English, Mandarin and Japanese each contain about 20k bi-grams; the
language model for Finnish is a word 10-gram plus a morph bi-gram14). For
MT we simply used Google’s AJAX language API?1. In future work, this will be
replaced by our own MT system based on one being developed for the AGILE
project?2. In the TTS module, acoustic features are generated from the adapted
HSMMs in the output language6) and an MLSA filter is used to generate the
speech waveform.

3. Unsupervised cross-lingual adaptation based on a state-level
mapping learned using minimum KLD

A cross-lingual adaptation method based on a state-level mapping, learned
using the KLD between pairs of states, was proposed by Wu et al.10) and is
summarized here. We call this approach “state-level transform mapping”.

3.1 Learning the mapping between states

For each state ∀j ∈ [1, J ] in the output language HMM λoutput, we search for

?1 http://code.google.com/intl/ja/apis/ajaxlanguage/
?2 http://svr-www.eng.cam.ac.uk/research/projects/AGILE/

Fig. 1 The state-mapping is learned by searching for pairs of states that have minimum KLD
between input and output language HMMs. Linear transforms estimated with respect
to the input language HMMs are applied to the output language HMMs, using the
mapping to determine which transform to apply to which state in the output language
HMMs.

the state î in the input language HMM λinput with the minimum symmetrized
KLD to state j in λoutput:

î = argmin
1≤i≤I

DKL(j, i), (1)

where λoutput has J states and DKL(j, i) represents the KLD between state i in
λinput and state j in λoutput (Fig. 1). DKL(j, i) is calculated as15):

DKL(j, i) ≈ DKL(j || i) + DKL(i || j), (2)
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where µi and Σi represent the mean vector and covariance matrix of the Gaussian
pdf associated with state i.
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3.2 Estimating the transforms for the input language HMM

Next, we estimate a set of state-dependent linear transforms Λ̂ for the input
language HMM λinput in the usual way:

Λ̂ =
(
Ŵ1, · · · , ŴI

)
= argmax

Λ
P (O|λinput, Λ)P (Λ), (4)

where Wi represents a linear transform for state i, I is the number of states in
λinput, and O represents the adaptation data. P (Λ) represents the prior distribu-
tion of the linear transforms, which is a uniform distribution for MLLR and CM-
LLR and a matrix variate normal distribution for SMAPLR and CSMAPLR13).
Note that the linear transforms will usually be tied (shared) between groups of
states known as regression classes, to avoid over-fitting and to enable adaptation
of all states, including those with no adaptation data.

3.3 Applying the transforms to the output language HMM

Finally, these transforms are mapped to the output language HMM. The Gaus-
sian pdf in state j of λoutput is transformed using the linear transform for state
î, which is transform Ŵ

î
. By transforming all Gaussian pdfs in λoutput in this

way, cross-lingual speaker adaptation is achieved.

3.4 Unsupervised cross-lingual adaptation

We can extend this method to unsupervised adaptation simply by automati-
cally transcribing the input data using ASR-HMMs. For supervised adaptation,
λinput and λoutput are both TTS-HMMs (for the input and output languages, re-
spectively). For unsupervised adaptation of HMM-based speech synthesis, λinput

may be either a TTS-HMM, or an ASR-HMM that utilizes the same acoustic
features as TTS. No other constraints need to be placed on the ASR-HMM. In
particular, it does not need to use prosodic-context-dependent-quinphones (which
would be necessary for TTS models).

4. Experiments

4.1 Experimental conditions

We performed experiments on unsupervised English-to-Japanese speaker adap-
tation for HMM-based speech synthesis. An English speaker-independent model
for ASR and average voice model for TTS were trained on the pre-defined train-
ing set “SI-84” comprising 7.2k sentences uttered by 84 speakers included in the
“short term” subset of the WSJ0 database (15 hours of speech). A Japanese av-
erage voice model for TTS was trained on 10k sentences uttered by 86 speakers
from the JNAS database (19 hours of speech). One male and one female Ameri-
can English speaker, not included in the training set, were chosen from the “long
term” subset of the WSJ0 database as target speakers. The adaptation data
comprised 5, 50, or 2000 sentences selected arbitrarily from the 2.3k sentences
available for each of the target speakers.

Speech signals were sampled at a rate of 16 kHz and windowed by a 25ms Ham-
ming window with a 10 ms shift for ASR and by an F0-adaptive Gaussian win-
dow with a 5 ms shift for TTS. ASR feature vectors consisted of 39-dimensions:
13 PLP features and their dynamic and acceleration coefficients. TTS feature
vectors comprised 138-dimensions: 39-dimension STRAIGHT mel-cepstral coef-
ficients (plus the zeroth coefficient), log F0, 5 band-filtered aperiodicity measures,
and their dynamic and acceleration coefficients. We used 3-state left-to-right tri-
phone HMMs for ASR and 5-state left-to-right context-dependent multi-stream
MSD-HSMMs for TTS. Each state had 16 Gaussian mixture components for ASR
and a single Gaussian for TTS. For speaker adaptation, the linear transforms Wi

had a tri-block diagonal structure, corresponding to the static, dynamic, and
acceleration coefficients. Since automatically transcribed labels for unsupervised
adaptation contain errors, we adjusted a hyperparameter (τb in13)) of CSMAPLR
to higher-than-usual value of 10000 in order to place more importance on the prior
(which is a global transform that is less sensitive to transcription errors).

4.2 Listening tests

Synthetic stimuli were generated from 7 models: the average voice model and
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Fig. 2 Experimental results: comparison of
supervised and unsupervised speaker
adaptation. “0 sentences” means the
unadapted average voice model for the
output language.
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Fig. 3 Experimental results: comparison of
Japanese news texts chosen from the
corpus and English news texts which
were recognized by ASR then trans-
lated into Japanese by MT. “0 sen-
tences” means the unadapted average
voice model for the output language.

supervised or unsupervised adapted models each with 5, 50, or 2k sentences of
adaptation data. 10 Japanese native listeners participated in the listening test.
Each listener was presented with 12 pairs of synthetic Japanese speech samples
in random order: the first sample in each pair was a reference original utterance
from the database and the second was a synthetic speech utterance generated
from one of the 7 models. For each pair, listeners were asked to give an opinion
score for the second sample relative to the first (DMOS), expressing how similar
the speaker identity was. Since there were no Japanese speech data available
for the target English speakers, the reference utterances were English. The text
for the 12 sentences in the listening test comprised 6 written Japanese news
sentences randomly chosen from the Mainichi corpus and 6 spoken English news
sentences from the English adaptation data that had been recognized using ASR
then translated into Japanese text using MT.

Figure 2 shows the average DMOS and their 95% confidence intervals. First
of all, we can see that the adapted voices are judged to sound more similar to
target speaker than the average voice. Next, we can see that the differences
between supervised and unsupervised adaptation are very small. This is a very
pleasing result. However, the effect of the amount of adaptation data is also
small, contrary to our expectations. This requires further investigation in future

work.
Figure 3 shows the average scores using Japanese news texts from the corpus

and English news texts recognized by ASR and translated by MT. It appears
that the speaker similarity scores are affected by the text of the sentences. Inter-
estingly the gap becomes larger as the number of adaptation sentences increases;
this also deserves further investigation in future work.

5. Conclusions

In this paper, we described the integration of several techniques we have devel-
oped for model adaptation into a single architecture which achieves unsupervised
cross-lingual speaker adaptation for HMM-based speech synthesis. The listening
tests show very promising results: it has been demonstrated that the adapted
voices sound more similar to the target speaker than the average voice and that
differences between supervised and unsupervised cross-lingual speaker adapta-
tion are small. It appears that the speaker similarity scores are affected by the
text of the sentences, which needs further investigation.

Although all language pairs and directions are possible in our system, only
English-to-Japanese adaptation has been evaluated in the perceptual experiments
presented here. Evaluation of other language pairs and directions is ongoing.
Other future work includes unsupervised cross-lingual speaker adaptation using
linear transform estimated directly by ASR-HMMs, which must then use the
same acoustic features as TTS-HSMM.
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