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Abstract

In this paper, we compare the score functions
for edge orientation problem in estimation of ge-
netic network from DNA microarray data. We fo-
cused four score functions, Standard Bayesian Met-
ric(SBM), Bayesian Dirichlet Metric(BDM), K2
Metric and PageRank Orientation Metric(PROM).
To compare and evaluate the performance of each
score function in various situations, we utilized the
generation method of artificial genetic networks
and DNA microarray data and used those artifi-
cial data. To generate the networks that have cer-
tain network property, such as scale-free property,
we used certain network generation models such as
Barabasi-Albert Model. In the experiments, the
number of edges such that orientated incorrectly
was used to evaluate the performance of the score
function.

1 Introduction

Inside life-form cells, many genes interact each
other to utilize biological functions. The network
that represents these interactions among genes is
called as genetic network. Construction of genetic
networks from DNA microarray data is an challeng-
ing topic in bioinformatics area[1].

Several methods to estimate a genetic network
from DNA microarray data have been proposed,
such as Boolean networks[2], differential equa-
tion model[3], Petri-net[4] and Bayesian network.
The approach based on Bayesian network espe-
cially have been studied and shown successful re-
sults. However, traditional Bayesian network ap-
proach cannot handle the network that contains
cyclic structures. Then we can say that traditional

Bayesian network approach has difficulty to be ap-
plied to actual expression data from DNA microar-
ray experiments. To address this problem, Afuso et
al[5] proposed the estimation method that is con-
structed from two phases, Directly Related Path
Detection Phase and Edge Orientation Phase[5].
In this method, interactions among genes are de-
tected as undirected path in the graph where each
node and path represent a gene and a interac-
tion, respectively. As next step, searching the their
orentation that maximize certain score function is
done. Then, we can obtatin the genetic network
from DNA microarray data. However, there are
several score function for edge orientation phase,
Standard Bayesian Metric(SBM), Bayesian Dirich-
let Metric(BDM), K2 Metric, PageRank Orienta-
tion Metric that proposed in Afuso[5] and so on,
although, in actual case, we cannot say that which
score function is more effective for each target ge-
netic network in Edge Orientation Phase.

In this paper, we compared the score functions
for edge orientaion to determine which score func-
tion can lead more accurate edge orientation for
each target genetic network.

To compare those score functions in various situ-
ation of target genetic network, we need the varied
patterns of DNA microarray data and target ge-
netic networks. But it is difficult to collect such
data of actual . To this end, the artificial genetic
network and artificial DNA microarray data were
generated. To generate the networks that have cer-
tain property that corresponding to actual genetic
network[6], we utilized network generation methods
such as Barabasi-Albert model[7].

To evaluate the effectiveness of the score func-
tion, the number of the edges that oriented incor-
rectly was used. After the comparison, we made
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some discussion about the performance of each
score function.

2 Edge Orientation Problem

In this paper, we focused the problem that cor-
responds to Edge Orientation Phase in Afuso[5].
The problem is called as Edge Orientation Prob-
lem. Edge orientation problem is to give the orien-
tatin to each edge in given undirected graph such
the orientation maximize certain score function.

The problem is formulated as follows.

INPUT:

1. Undirected graph G that represents di-
rectly related interaction among genes.

2. DNA microarray data matrix Dt.

Dt ∈ {log(
R

G
)}(m,n)

where m represent the sampling number,
such as knock-out genes. And n is the
number of vertices in given graph. R
and G are color strength that observed in
DNA microarray experiments, Red and
Green.

3. Score function score from directed graph
G′ to real value v that denotes fitness be-
tween G′ and given DNA microarray data
Dt.

OUTPUT:

Directed graph G′
max that maximize

score function score.

Focusing this problem, we compare the perfor-
mance of score functions for edge orientation.

3 Score Functions for Edge
Orientation

In Edge Orientation Phase, there are four alterna-
tive score functions.

Standard Bayesian Metric(SBM) is most popular
one of Bayesian approach. In this score function,
all variables in the network are assumed that they

are multinomial distributed. This score function is
based on the maximization of posterier probability.
The SBM scoreSBM(S) of candidate network S
can be calculated by following formula.

SBM(S) =
n∑

i=1

qi∑
j=1

ri∑
k=1

(Nijk + αijk − 1)

× log
Nijk + αijk − 1
Nij + αij − ri

−Dim(S)log(N)

where n, qi and ri denote the number of the vari-
ables, the number of value configuration of parents’
of variable i and the number of value configuration
of variable i, respectively. In this formula, Nijk

corresponds to the frequency of the cases that the
variable i’s value is in the k-th configuration and
i’s parents’ configuration is in the j-th configura-
tion. α represents the prior information. The term
Dim(S)log(N) is corresponding to penalty for net-
work conplexity. From these terms, this score func-
tion can lead more simpler network.

Bayesian Dirichlet Metric(BDM) is another type
of Baysian scor function. In this score function, all
variables in the network are assumed that Dirichlet
distributed. The Dirichlet distribution is obtained
by extention of multi binomial distribution. The
BDM score BDM(S) is obtained by calculation of
following formula.

BDM(S) =
n∑

i=1

{
qi∑

j=1

{log
Γ(αij)

αij + Nij

+
ri∑

k=1

log
Γ(αijk + Nijk)

Γ(αijk)
}}

where α and Γ represent Dirichlet prior parameters
and gamma function.

As special case of BDM, there is another score
function, that called K2 Metric(K2). In the K2
metric, all variables are also assumed those are
Dirichlet distributed. However, in this score func-
tion, each prior parameter α are treated as they
have same constant value. The value of K2 metric
K2(S) can be obtained from following formula.

K2(S) =
q∏

j=1

(r − 1)!
(Nj + r − 1)!

r∏
i=1

Nij !

Previous three score functions are based on prob-
ablistic approach. On the other hand, in Afuso[5],
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the score function is based on network structural
approach had been proposed. This score function
is called as PageRank[8] Orientation Metric(PDM).
To calculate this score function, at first, we esti-
mate the PageRank of the target genetic network.
Next, the PageRank value of candidate genetic net-
work is also calculated. And finally, these two
PageRank values are compared and if these values
are similar, then candidate genetic network and tar-
get genetic network are also similar. To estimate
the PageRank value from DNA microarray data,
the sum of the values for each DNA microarray ex-
periments are calculated and normalized by num-
ber of experiments.

p̂ri =
∑

i expij

N

The PageRank value is relative value, so the
POM(S) of the network S is calculated by follow-
ing formula.

POM(S) = Cor(epr, cpr)

In this formula, Cor denotes Spearman’s correla-
tion function. And epr and cpr represent estimated
PageRank and calculated PageRank, respectively.

4 Artificial DNA Microarray
Data Generation

To compare the score functions in varied situations,
we need various type of genetic networks that are
known whole structure in advance and DNA mi-
croarray data corresponding those networks. How-
ever, it is difficult to collect such actual data. Then,
the artificial genetic networks and DNA microarray
data were substituted. In the generation of those,
to produce the networks that have certain prop-
erty such that actual genetic networks have[6], we
utilized four network generation models, Barabasi-
Albert model(BA), modified BA model(BA∗), YB
model(YB)[9] and modified YB model(YB∗).

As network generation model to construct the
networks that have scale-free property, Barabasi-
Albert(BA) model was utilized. This network gen-
eration model is based on two aspects, preferential
selection and network evolution. As another pos-
sible network property, we can see the small-world
property. BA model cannot generate the networks

Figure 1: Basic Steps of Artificial Genetic Network
Generation

that have small-world property, so we used another
network generation model, that called YB model[9].
By using YB model, we can generate the networks
that have both scale-free and small-world property.
These BA and YB model can’t produce the network
that contain cyclic structure inside network. How-
ever, inside life form cells, it can be considered that
genetic network contains cyclic structure, such as
metabolic system for glucose. To evaluate the in-
fluence of cyclic structure to performance of edge
orientation, we modified these BA and YB model
to be able to generate cyclic network.

After generation of artificial genetic network, ar-
tificial DNA microarray data was generated. In
Bayesian approach, continuous DNA microarray
data was discritized by utilizing certain threshold-
ing. In this paper, we generated already discritized
artificial DNA microarray data into 0 and 1. To
generate artificial DNA microarray data, at first,
binary initial expression vector vinitial was gener-
ated randomly.

vinitial ∈ {0, 1}n

The value of the elementss of vector vinitial is set
to 1 if corresponding genes were expressed, and to
0 else. Next, by multiplying transition matrix T
that is obtained by transposing the adjacency ma-
trix A corresponding to target genetic network, we
obtained one experiment data sample expi.

A ∈ {0, 1}(n,n)
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T = tA

The value of each element(i, j) in matrix A is set
to 1 if there is connection between gene i and j,
and to 0 else. Representing generation of artificial
DNA microarray data mathematically, we can lead
following formula.

expi = vinitial + Tvinitial + · · · + T lvinitial

where l denotes depth that gene expression reach-
ing. Repeating these process, we generated the ar-
tificial DNA microarray data Dt∗ from artificial ge-
netic network.

Dt∗ =


exp1

exp2

...
expn

 (1)

In Formula.(1), n denotes the number of artificial
DNA microarray experiments.

The example of generation of artificial DNA mi-
croarray data is shown in Fig.4.

5 Experiments and Results

In comparative experiments, to evaluate the per-
formance of score functions, we need enough num-
ber of network types that cover the almost actual
cases of genetic network. In this paper, probablistic
artificial genetic network generation methods were
used. So, it is difficult to control network type of
generated artificial genetic network. Then, we cal-
culated network characters for each generated net-
work to confirm the type of network.

However, in the generated artificial genetic net-
works, there might be some equivalent network
structure or property. So, we devided these gener-
ated genetic networks into some categories consid-
ering the value of network characters. After that,
we executed the searching of maximal orientaion
using four score functions for each network type,
although these results might contain some statis-
tically unsignificant results. To prevent these re-
sults, we applied multiple comparison method to
obtained results.

In artificial DNA microarray data generation, we
fixed the number of vertices in artificial genetic net-
work. The number of vertices in the generated ge-
netic network was 20. 120 artificial genetic net-
works were generated for each network generation
model.

Next, to categorize generated genetic network,
the values of network characters were calculated.
As network character, we used the mean and vari-
ance of path legth, in-degree of each node, the num-
ber of cycles and the length of each cycles, respec-
tively. Mean and variance of path length are cor-
responding the unevenness of connectivity among
genes. The mean and variance of in-degree of each
node denotes density of genetic network. After
that, based on the miximization of BIC[10], we cat-
egorized the value of each network character into
some levels.

After the categorization, we obtained 217 unique
combination of value. We regarded these unique
combination as network type. To cut-back the
number of unique network types more, hierarchial
clustering was utilized by representing each gener-
ated artificial genetic network as 8 dimensional vec-
tor. We used normalized manhattan distance as
distance function and Ward method as clustering
method. After the clustering, 38 unique network
types without cyclic structure and 39 with cyclic
structure were obtained. From generated 78 artifi-
cial genetic network types, we selected typical net-
work by focusing similarity and drawing network
graphically.

For each artificial genetic network we selected, we
generated 30 artificial DNA microarray data. Us-
ing that artificial DNA microarray data, the trials
of searching the optimal orientation were executed
with genetic algorithm(GA). In GA searching, the
number of chrosomes was 100 and the number of
generations was 500. we represented direction of
each edge as binomial value in corresponding digit
in chrosome. Chrosome selection method was com-
bination of 10% elite and roulette. Selected chro-
somes were mixed by uniformed cross-over method.
To mutate chrosomes, we selected 10 chrosomes
randomly and changed one digit.

After searching optimal, we determined the cor-
rectness of each direction of the edge and counted
the number of miss directions(MD). In the experi-
ments, selected unique genetic networks had differ-
ent number of edges. Then, we normalized the MD
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Figure 2: The Example of Generation of Artificial DNA Microarray Data+Artificial genetic network Adjacency MatrixTransition Matrix Initial expressionvector Experimentssample Artificial DNAmicroarray data
value with the number of edges. For each artificial
genetic network, the mean, best, worst and vari-
ance of MD value among 30 trials were calculated.
The mean of MD for 38 network types that contain
no cyclic structure are shown in Table.2.

To obtaine the statistically significant results,
the multiple comparison method, Tukey-Welsch’s
method[11], was applied to the results. In the mul-
tiple comparison, each null-hypothesis was set to
that comparing score functions are all same. The
results of multiple comparison are shown in Table.1.

6 Discussion

For the almost network types, PROM led more ac-
curate edge orientation. BDM can obtain the accu-
rate orientation next to PROM, although, PROM’s
variance of results were high. This result shows
that the PROM has less confidence of its results
than another Bayesian approach score functions.
The results of from type01 to type04 shows that
Bayesian approaches are more effective in those net-
work types. Those networks are very simpler and
very sparse. The results can be led by complex
network structure.

In artificial DNA microarray data generation
method, the value was already discritized 0 and

1. Using generation method for artificial DNA mi-
croarray data in this paper, if generated artificial
genetic network contains such structure, then al-
most variables in target genetic network may have
same reaction. In other words, almost rows in arti-
ficial DNA microarray data may have similar pat-
tern. By the similarity of rows, it can be blured
whether focusing variables have some connection
or not. However, actual DNA microarray data con-
tains continuous values and they are descritized by
using certain threshold. For more detailed discus-
sion, another method for artificial DNA microar-
ray data generation considering such threshold is
required.
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Table 1: The Results of Multiple Comparison

BEST WORST
Type02 BDM, PROM BIC, K2
Type03 BDM
Type04 PROM
Type05 PROM K2
Type06 PROM K2
Type07 K2
Type08 PROM K2
Type09 BIC, PROM BDM,K2
Type10 PROM K2
Type11 PROM
Type12 PROM K2
Type13 PROM K2
Type14 PROM K2
Type15 PROM
Type16 PROM K2
Type17 BIC, PROM
Type19 PROM
Type20 PROM BDM, K2
Type21 PROM
Type22 PROM
Type23 PROM
Type24 PROM
Type25 PROM
Type26 PROM
Type27 PROM
Type28 PROM BDM, K2
Type29 PROM
Type30 PROM
Type31 PROM
Type32 PROM
Type33 PROM
Type34 PROM
Type35 PROM
Type36 PROM BDM, K2
Type37 PROM
Type39 PROM
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Table 2: Mean of Each Score Functions against Network Types
type01 type02 type03 type04 type05 type06 type07

SBM 0.1122807 0.2614035 0.1894737 0.2105263 0.2421053 0.2859649 0.2052632
BDM 0.0964912 0.1859649 0.1491228 0.2070175 0.2982456 0.2929824 0.1824561
K2 0.1210526 0.2789474 0.2157895 0.2175439 0.3736842 0.3631579 0.2649123

PROM 0.1210526 0.2000000 0.2157895 0.1842105 0.1315789 0.1771930 0.1912281
type08 type09 type10 type11 type12 type13 type14

SBM 0.2701754 0.2400000 0.2900000 0.2983333 0.2158730 0.3111111 0.3476190
BDM 0.2403509 0.2916667 0.3400000 0.2783333 0.2301587 0.3428571 0.3777778
K2 0.3684211 0.3200000 0.4500000 0.3383333 0.3126984 0.4365079 0.4793651

PROM 0.1245614 0.2000000 0.1500000 0.2033333 0.1380952 0.1015873 0.1190476
type15 type16 type17 type18 type19 type20 type21

SBM 0.2927536 0.3507246 0.1768116 0.4173913 0.6490741 0.6943089 0.7201754
BDM 0.3000000 0.3724638 0.2376812 0.4434783 0.6740741 0.7536585 0.7114035
K2 0.3289855 0.3956522 0.3028986 0.4855072 0.6833333 0.7601626 0.7535088

PROM 0.2101449 0.1434783 0.1666667 0.1449275 0.3796296 0.2861789 0.2956140
type22 type23 type24 type25 type26 type27 type28

SBM 0.7270270 0.6638095 0.7558333 0.4784946 0.4218750 0.5645833 0.5322222
BDM 0.7000000 0.6600000 0.7616667 0.4989247 0.4364583 0.5437500 0.5722222
K2 0.7081081 0.6542857 0.7500000 0.5161290 0.4718750 0.5812500 0.5811111

PROM 0.4054054 0.2476190 0.3725000 0.1763441 0.2447917 0.1604167 0.2411111
type29 type30 type31 type32 type33 type34 type35

SBM 0.4989899 0.5382353 0.4737374 0.4448276 0.4379310 0.4525253 0.5000000
BDM 0.5030303 0.5656863 0.5020202 0.4574713 0.4781609 0.4464646 0.5303922
K2 0.5424242 0.5794118 0.5232323 0.5218391 0.5206897 0.4848485 0.4921569

PROM 0.1808081 0.2382353 0.2555556 0.2264368 0.1436782 0.2292929 0.2500000
type36 type37 type38

SBM 0.3623656 0.4533333 0.4468750
BDM 0.4000000 0.4522222 0.4906250
K2 0.4333333 0.4844444 0.4843750

PROM 0.2000000 0.1533333 0.2489583

IPSJ SIG Technical Report

7 ⓒ2009 Information Processing Society of Japan

Vol.2009-MPS-76 No.20
Vol.2009-BIO-19 No.20

2009/12/17


