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Theory of Minimizing Linear Separation Automata
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In this paper, we theoretically analyze a certain extension of a finite automa-
ton, called a linear separation automaton (LSA). An LSA receives a sequence
of real vectors, and has a linear function and a threshold sequence at every
state, which determine the transition from some state to another at each step.
Transitions of LSAs are just corresponding to the behavior of perceptrons.

We develop the theory of minimizing LSAs by using Myhill-Nerode theorem
for LSAs. Its proof is performed as in the proof of the theorem for finite au-
tomata. Therefore we find that the extension to an LSA from the original finite
automaton is theoretically natural.
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1. Introduction

The computational model, finite automata, is an inevitably important concept in
computer science. Recent advances in information technology and its related fields re-
veal the importance of computational models which can deal with time series of real
valued data. Many researchers utilize computational tools based on these models to
solve various problems including weather forecastingl), motion recognition2>’3>, and
time-sequential image analysis4>.

There are several works proposing an extension of an automaton which can deal with

):6) and timed

real values in some sense. Models in these works include hybrid automata®
automata” . Hybrid automata is a mathematical model for describing systems in which
computational processes interact with physical processes. More formally speaking, hy-
brid automata is a finite state machine augmented with differential equations at each
state. It is used for modelling various control systems and for verifying various theoret-
ical properties of them. Timed automata is a labeled transition system for modelling
real-time systems. It has time-passage action in addition to ordinary inputs, outputs,
and internal actions. It was developed as providing a formal framework for simulation

proof techniques of such real-time systems.

In this paper, we will theoretically analyze a certain extension of a finite automaton,
which has a linear function and a threshold sequence at every state, and receives a
sequence of real vectors. We call this automaton a linear separation automaton
(LSA).

Let us consider how an LSA works. Transitions of LSAs are just corresponding to the
behavior of perceptrons®®. Figure 1 shows an example M; of an LSA. An LSA has
a weight vector w(g;) of a linear function and a threshold sequence h(g;) at each state
¢i. If a vector z € R? is input to the current state ¢;, then the next state is determined
by comparing the inner product = ® w(q;) with each element of h(g;). If a threshold
sequence h(g;) has n elements, then there can be n + 1 transitions from a state ¢;. In

an LSA My, the transition §(¢1,x) from ¢1 with z is the following;:
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Fig.1 LSA M;

@ if z®@w(q) <0
g,z) =9 ¢ if 0<z@w(q)<5h
g3 if 5<z®w(q) .

We will develop the theory of minimizing LSAs by using Myhill-Nerode theorem
for LSAs. Its proof is performed as in the proof of the theorem for the original finite

automaton'®1 .

Therefore we find that the extension to an LSA from the original
finite automaton is theoretically natural.

LSA-like computational models have been already utilized in some application prob-
lems. For instance, Matsunaga and Oshita proposed to use a state transition system
for recognizing a specified motion. Their system receives at each state feature vector
values acquired from a camera or a motion capture, and determines its transition from
the current state by using Support Vector Machines.

In order to develop a theory of learning such computational models, we need compu-
tational analysis on the proposed models themselves. For instance, the uniqueness of
the minimum state finite automaton for a given one is crucially important in the theory
of learning finite automata, because almost all of the learning algorithms try to identify

12),13)

the minimum state automaton of a target language Therefore we will develop

the theory of minimizing LSAs in this paper.
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In section 2, we will give necessary definitions and notation needed in the sequel of
this paper. Section 3 introduces a linear separation automaton (LSA). We show that
Myhill-Nerode theorem for LSAs is established as in the original finite automata in
section 4. The uniqueness of the minimum state LSA is shown in section 5. In section
6, we will characterize the minimum state LSA for a given one by using Myhill-Nerode

theorem for LSAs. Section 7 includes concluding remarks and future works.
2. Preliminaries

We introduce basic definitions and notation needed later in this paper.

By R, we denote the set of real numbers. For a positive integer d, by R% we denote
d-dimensional vector space over R. For z,y € R?, z ® y denotes the inner product
of z and y. We define (R?)* as the set of all finite sequences of vectors in R?. For a
sequence o = {(x1,...,%,) € (R?)*, we denote the length of a by |al, that is, |a| = n.
An element in (RY)* of length 0 is called an empty sequence, and is denoted by .
For sequences a, 3 € (R?)*, we denote the concatenation of a and 3 by af. For
a = {(z1,...,z,) € (RY*, the sequence « is said to be increasing if the inequality
z; < xiy1 holds for every 1.

A partition 7 = {S1,..., Sk} of R (ie., S1,..., Sk are mutually disjoint non-empty
subsets of R such that U;—1._xS; = R? ) is said to be linearly separable iff there
exists w € R? and an increasing h = (h1,...,hx_1) € (R')* such that

hioi<w®z<h < z€8; (i=1,...,k),
where hg = —oo and hr = co.
Consider equivalence relations =, =1, and =2 over (Rd)*. An equivalence relation =;

is finer than an equivalence relation =2 (or =2 is coarser than =;) iff x =; y implies

x =2 y for any x and y. An equivalence relation = is right invariant iff « = 8 implies
ay = B for any o, 3 and . Consider partitions m; and w2 of R%. A partition m; is
finer than a partition w2 (or m2 is coarser than 1) iff for any block B € w1, there exists
a block B’ € 7y such that B C B’.
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3. Linear Separation Automata

This section introduces an extension of a finite automaton, called a linear sepa-
ration automaton (LSA). This automaton has a linear function and a threshold
sequence at every state, and receives a sequence of real vectors. The transition from
the current state to another is determined by the linear function and the threshold

sequence associated with the current state.

An LSA M is defined as a 7-tuple
M = (d,Q,q0, F,w,h,s) ,
where

d is a positive integer specifying the dimension of input vectors to M,

@ is a finite set of states,

qo is an initial state (qo € Q),

F is a finite set of final states (F C Q),

w is a weight function from @ to R such that w(q) is a unit vector for any ¢ € Q,

h is a threshold function from @ to (R')* such that h(q) is increasing for every q € Q,

and s is a sub-transition function from @ to Q*.

If |s(g)| > 1, then the equality |h(q)| = |s(g)| — 1 holds for every ¢ € Q.

Let us define the transition function dar of M from @ X ¥ to Q. First, in case of
|s(¢)| = 0, the transition function das is undefined. Secondly, suppose that |s(g)| > 1.
Consider any state ¢ € Q. In order to improve the readability, we define iq = |h(q)| for
any q € Q. Let s(q) = (p1,...,pi,+1) and h(q) = (h1,...,hi,). The value (g, x) for

a given = € R? is defined as follows:

p1 if z@w(q) < h

D2 if hi<z®w(q) <h
dm(q, ) =

Di, if hi,1 <2z®w(q) < hy

Pig+1  if  hi, <z ®@w(q) .

We sometimes write 6 for das.
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In the state transition diagrams of LSAs as in Figure 1, we illustrate the condition
of the transition from a state p to a state ¢ by using an interval I C R. Suppose that
0(p,z) = g holds if h; < x ® w(p) < h;. In the diagram, the transition from p to ¢ is
associated with an interval (hq, h;].

For a = (z1,...,7) € (RY)*, we write d(p,a) = q if there exists a sequence
pi(= p),p2,...
We define the set of sequences accepted by an LSA M, denoted by L(M), as

L(M)={aec RY" | §(go,) € F} .
A subset L of (R%)* is said to be regular if there exists an LSA M such that L = L(M).
We define the size of M as size(M) = |Q)|.
A state ¢ € Q is said to be reachable if there exists a € (R%)* such that §(go, a) = q.

,pi+1(= ¢q) of states such that §(p;,z;) = pi+1 holds for ¢ = 1,...,1.

A state is said to be unreachable if it is not reachable.
Let M = (d,Q, qo, F,w, h,s) be an LSA. We define an equivalence relation = over
(R%)* as follows:
a=uB E g, a)=08,0) .
Example 1. Consider an LSA M) = (d =2,Q = {q1,¢2,¢3},q1, F = {q1},w, h,s) in
Figure 1. Let § be the transition function of M1, and let a = (x1, x2, x3) be a sequence
of vectors in R? with 21 = (1,1),22 = (2,2), and 23 = (10,10). The inner product
1 @ w(q1) = 3/4/5 is in the interval (0,5], which implies that (g1, 21) = q2. We see
in the same way that §(g2,22) = g3 and d(gs,z3) = ¢1 € F. Hence the sequence « is
accepted by M;.
a

4. Myhill-Nerode Theorem for LSAs

In the sequel of this paper, we will develop the theory of minimizing LSAs by using
Myhill-Nerode theorem for LSAs. Its proof is performed as in the proof of the theorem
for the original finite automaton.

In this section, we will show that Myhill-Nerode theorem for LSAs is established as

in the original finite automata.
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Myhill-Nerode theorem is originally proved by Myhill'® and Nerode!V). This theorem
characterizes the class of languages accepted by a finite automaton. We modify this
theorem in order to develop the theory of minimizing linear separation automata.

Let = be a right invariant equivalence relation over (Rd)* and consider an equivalence
class [a]= containing o € (R%)*. An equivalence relation R([a]=) over R? induced by
[a]= is defined as follows:

z R([a]=) y g oz
For any o and 8 with o = 3, the equality R([a]=) = R([8]=) holds, because = is

right invariant.

<

«

We say that a right invariant equivalence relation = over (R%)* is right linearly
separable iff for any equivalence class [a]=, there exists a finite linearly separable

partition of R? that is finer than the equivalence classes of R([a]=) .

Lemma 1. Consider two right invariant equivalence relations =; and =» over (R%)*
such that =; is finer than =,. If =; is right linearly separable, then = is right linearly

separable.

Proof. Let a € (R%)*. We have

8
=
)
i
<

0%

ar =1 ay , and

8
=
)
i
<

3oy

ar =2 oy .

Since =; is finer than =3, we have axr =1 ay implies ax =2 ay. Hence we obtain

v Ral=) y = o R(la]=y) y -
Thus, R([a]=,) is finer than R([a]=,) . Since =; is right linearly separable, there
exists a finite linearly separable partition P of R? that is finer than the equivalence
classes of R([a]=,) . Then, P is finer than the equivalence classes of R([a]=,) , because
R(Ja]=,) is finer than R([a]=,) . We have finally proven the claim. O

We modify a Myhill-Nerode relation for finite automata as follows.

Vol.2009-MPS-76 No.1
Vol.2009-BIO-19 No.1
2009/12/17

Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S C (R%)*
be a set of sequences. The equivalence relation = over (R%)* satisfying the following
conditions is called a modified Myhill-Nerode relation with respect to S.

(1) The equivalence relation = is right invariant.

) The equivalence relation = is of finite index.

) The equivalence relation = is right linearly separable.

) The set S is a union of some equivalence classes of =.

d

For any subset S of (R?)*, we define an equivalence relation ~s over (R%)* as follows:
amsp & vy e (RY* (aye S iff gyes) .

We can demonstrate the following, which is the most important theorem in this paper.

Theorem 1 (Myhill Nerode Theorem for LSAs). Let S C (R%)* be a set of
sequences. The following three statements are equivalent.

(1) The set S is regular.

(2) there exists a modified Myhill-Nerode relation with respect to S.

(3) The equivalent relation =g is of finite index and right linearly separable.

Proof. (1)=(2):
Let M = (d,Q, qo, F,w, h, s) be an LSA accepting S. The relation =y is right invari-
ant because
a=um = 0(qo, @) = (g0, 5)
= Vv € (RY)" (g0, @) = (40, 57)
=Vye (RY ay=um By .

The relation =j; is of finite index because the number of equivalence classes of =)/
is bounded by |Q].
Let [a]=,, be any equivalence class of =5;. Consider the relation R([a]=,,) in-

duced by [a]=,,. Let p = §(qo, ) and let h(p) = (h1,...,hi,). We define a partition
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m={S1,...,8i,+1} of R such that, for k =1,...,i, + 1, it holds that
Sk déf{meR|hk,1 <z@w(p) <hg},
where ho = —oo and h;,+1 = oo. It is clear that the partition 7 of R? is linearly sepa-

rable. Furthermore, it is straightforward to see that z,y € Sk implies d(p,z) = d(p,y)
implies ax =p ay implies  R([a]=,,) y. Thus, 7 is finer than the equivalence classes
of R([a]=,,) , which implies that =j is right linearly separable.

Finally, we have

S = L(M)={aeRY" | §(q,a) e F}
=User{a € RY)" | 6(q,q) = f}
= UfGF[O‘f]EM )

where oy is any representative element « such that d(qo, o) = f. Thus, S is a union of
some equivalence classes of =js.

Therefore, =ps is a Myhill-Nerode relation with respect to S.

(2)=(3):
Let = be a Myhill-Nerode relation with respect to S. The relation = is finer than ~g

because

a=p=VYye R, ay=p8y
=>Vye RYH, aye S iff fye s
> axs (.

Thus, the relation ~g is of finite index.
It is clear from definition of &g that g is right invariant. Therefore we deduce from

Lemma 1 that ~g is right linearly separable.

(3)=(1):

Let a be any element in (R?)*. Since ~s is right linearly separable, there exists a
finite linearly separable partition m = {S1,..., Sk} which is finer than the equivalence
classes of R([a]~g) . Thus, there exist w € R* and h = (h1,...,hp—1) € (R')* such
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hii1<w®zxz<h;, & z€5; (izl,...,k),
where hg = —oo0 and hr = oo. Such w and h are denoted by w, and h., respec-
tively. Note that hai—1 < £ ® wa < hq, iff € € S;. Then, we define an LSA
M =(d,Q,q, F',w', 1, s"), where

F'={lal~s | a€ S},
W ([ades) = ha -

Q' =RYHY /) ~s , 90 = [N~s

' ([elxs,2) = [azlas »  w'([adxs) = wa

Since ~g is of finite index, the set Q' is finite. The function &’ is well-defined since
~g is right invariant and right linearly separable. The selection of « in the defini-
tion of w’ and A’ could be arbitrary. Note that for any o, 3 € (R%)*, the equality
I ([0)~g, B) = [@fB]~g holds. Finally, we have
ac L(M) & 6o, ) € F'

& S ([Nrg,a) € F'

& [a)ag €F'

Saes .

Therefore, L(M') = S, which implies that S is regular. O

5. Uniqueness of Minimum State LSA

In this section, we demonstrate the uniqueness of the minimum state LSA for a given

one.

Let S be any regular subset of (R%)*. In the sequel, by
Mmin = (d, Qmin, gomin, Fmin, Wmin, Pmin, Smin )
we denote the LSA M’ constructed in the proof (8)—(1) of Theorem 1. We will prove
that the minimum state LSA accepting S is determined uniquely in the sense that Mmin
is isomorphic to every minimum state LSA. The definition of isomorphism is described
below.
Let M = (d,Q, qo, F,w, h,s) and M' = (d,Q’, qo, F',w’, k', s") be LSAs. We say that

(© 2009 Information Processing Society of Japan
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M is isomorphic to M’ iff there exists a bijection f from Q to Q' satisfying the following
conditions:
(1) flao)=qo -
(2)  f(6(g,2)) = &' (f(qg),z) holds for any ¢ € Q and = € R* .
(B) fF)=F".

Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular subset of
(R%)*. The LSA My is isomorphic to every minimum state LSA accepting S.

Proof. Omitted because of the space constraint. This theorem can be proved in the

similar way as in the theorem for finite automata. O

6. Characterization of Minimum State LSA

In this section, we characterize the minimum state LSA for a given one.

Let M = (d,Q,qo, F,w, h,s) be an LSA accepting the set of sequences S with no
unreachable states. For any p,q € Q, there exists «, 3 € (R?)* such that §(qo,a) = p
and 6(qo, B) = q. We define the equivalence relation ~ over @ as follows:

prgEans .
The choice of a and 8 can not be determined uniquely. However, for o/, o’ € (Rd)*
such that 6(qo,’) = 8(qo,a’”), we have 6(qo, ') = 8(qo, ') for any v € (R%)*.
Hence, it holds that o’ ~g o’’. Therefore, ~ is well-defined.

We say that p and ¢ are indistinguishable iff p ~ ¢q. The states p and ¢ are said to
be distinguishable iff p ¢ q.

Example 2. Consider an LSA in Figure 1. The equality w(g2) = w(gs) holds, which
implies that  ® w(g2) = = ® w(gs) for any z € RL If z @ w(gz) = = @ w(gz) < 10
holds, then §(q2,z) = 0(gs,x) = g3; otherwise d(q2,z) = (g3, x) = ¢1 holds. Thus we
have 6(g2, ) = 6(g3, x) for any = € R?, which implies that ga ~ g3, that is, g2 and g3
are indistinguishable.

Let 1 = (1,1). We obtain z1 ® w(q1) = 3/v/5, which implies that §(g1,z1) = g2. We
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also obtain z1 ®w(g2) = 1 ®w(gs) = 7/5, which implies that §(g2, z1) = d(gs, 1) = gs.
Thus we have ¢1 %% g2 and ¢1 ¢ g3, that is, g1 and g2 (or ¢1 and g¢3) are distinguishable.

O
Lemma 2.
p~q & Vye®RY), d(py) € Fiff 8(q,y) EF .
Proof. We have
p~q<= 30&,6 € (Rd)*z 5((10704) =P, 5(Q0»5) =q, @ =g ﬂ
~ 30‘76 € (Rd)*7 6(q07a) =D 6(q076) =4q,
Yy e RY*, ay € L(M) iff By € L(M)
& 3a, B € (RY)", 6(q0, @) =p, 6(q0,B) = q,
vy € (RY)", 6(qo,ay) € F iff 6(qo, By) € F
&y e (RN, 3(p,7) € Fiff 6(g,7) € F .
O
Furthermore, Lemma 2 immediately implies Lemma 3.
Lemma 3.
p~q & Vae (R, §(p,a)~d(ga) .
Proof. We have
p~qeVa,8eRY, §(p,af) € Fiff 6(q,af) € F
& Va,B e (RY, §(5(p,a),B) € Fiff §(5(q,),3) € F
S Va e (Rd)*7 d(p, ) ~ (g, ) .
O

For any p € Q, by r(p) we denote a representative element of [p]~ .

Lemma 4.

S(r(p),x) ~r((p,x)) -
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Proof. For any z € (R%)*, we have
o(r(p),x) ~6(p,z) (By Lemma 3)
~r(d(p,z)) -

O

We will prove that the minimum state LSA is obtained by identifying indistinguish-

able states.

We define an LSA
M/ ~=(d,Q",q0, F',w' 1, 8)
where
Q=Q/~, wv=lpl~, F'={ld~lqgeF}, (g~ =z) =[0(r(e),2)]~ ,
w'([g]~) =w(r(q)) , R (lg~) =h(r(q)) -

Lemma 5. For a € (R%)*,
St/ ([Plns @) = [0(py )]~

Proof. We will prove this lemma by induction on |a|.
In case of |a| =0, i.e., @ = A, we have
Sna/~([Pls A) = [Pl~
=[6(p, M)~ -

Assume that the claim holds for || < k and consider the case of |a| = k + 1. Let
a=pz (B€(RY*,zecR?). Then, we have
511/ ([P)or @) = Brt - (Br1/ ([P} ), )
= 0n/~([6(p, B)]~,x) (By induction hypothesis)
— [5(r(6(p, B)), )]~
5(5(p, 8), %)~ (By Lemma 4)
5(p, B)))-~
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O

Lemma 6.
p€ Fiff [p|l. € F .

Proof. From the definition of F”, it is clear that p € F implies [p]. € F’. Suppose that
[p]~ € F’. Then, there exists ¢ € F such that p ~ q. We deduce from §(g, \) € F and
Lemma 2 that p = d(p,\) € F holds. O

Lemma 7.
L(M/~)=L(M) .

Proof. For any a € (R%)*, we have
a € L(M/ ~) < Sayn(go, @) € F'
& Snyn([qo]~, @) € F'
< [0nm(qo, )]~ € F’
< 0m(qo, ) € F
SaeLl(M) .

(By Lemma 5)
(By Lemma 6)

O

Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA. The
LSA M/ ~ is a minimum state LSA such that L(M/ ~) = L(M).

Proof. Lemma 7 implies that L(M/ ~) = L(M) holds.

It is clear that ~ is an equivalence relation. From the definition of ~, the index
|Q/ ~ | of ~ is equal to |(R?)*/ ~s |. Therefore we conclude that size(M/ ~) = |Q/ ~
| =1(R")"/ ~s | = size(Mmin). O

Example 3. Consider an LSA M; in Figure 1. From the example above, the states g2
and g3 are indistinguishable; and the states ¢1 and g2 (or ¢1 and ¢3) are distinguishable.
Let g4 be a state obtained by merging g2 with ¢s. Thus, we obtain the minimum state
LSA for M, illustrated in Figure 2.

d

(© 2009 Information Processing Society of Japan
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(—o0,0]

(—e0,10]
SgE=
-

oy 2 _ 34
W(%)—(\/g,\/g) w(q4)—(g,g)
h(g,)=(0) h(q,)=(10)

44 : merger of 4> with 43

Fig.2 LSA M;/ ~

7. Conclusions

In this paper, we theoretically analyzed a certain extension of a finite automaton,
called a linear separation automaton (LSA). We developed the theory of minimizing
LSAs by using Myhill-Nerode theorem for LSAs. Myhill-Nerode theorem for LSAs is
established as in the original finite automata. The minimum state LSA for a given one
is unique, and is characterized by using Myhill-Nerode theorem for LSAs.

In order to develop a theory of learning computational models like LSAs, we need com-
putational analysis on the models themselves. The theory of minimizing LSAs will play

a crucial roles in the theory of learning LSAs as in the original finite automatal®'%).

Some of our future works are the following.

In this paper, we do not give algorithms for minimizing LSAs. Therefore in the
next paper, we will present some algorithms for minimizing LSAs, which are the naive
algorithm directly induced by Myhill-Nerode theorem for LSAs, and a more efficient
algorithm.

The development of the theory of learning LSAs is one of the future research topics.
Its theory will help us solve some application problems including weather forecasting,

motion recognition, and time-sequential image analysis.
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