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線形分離オートマトンの最小化に関する理論

沼 井 裕 二 †1 宇田川 祥彰 †2 小 林 聡†1

本論文では，有限オートマトンを拡張した計算モデルである線形分離オートマトン

（LSA）の理論的な考察を行う．LSA は実ベクトル系列を受理する能力を持ち，各状

態には線形関数と閾値系列が付随する．この二つによって，各時点でのある状態から

の遷移先状態が決定する．LSA の状態遷移は，パーセプトロンの振舞いと対応する．

LSAに関する Myhill-Nerode の定理を用いて最小化に関する理論を構築すること

が，本論文の主目的である．同定理の証明は，LSAの拡張元である有限オートマトン

に関する定理の場合と同じように行うことができる．ここから，LSAへの拡張は理論

的に自然なものであることがわかる．

Theory of Minimizing Linear Separation Automata

Yuji Numai ,†1 Yoshiaki Udagawa †2

and Satoshi Kobayashi †1

In this paper, we theoretically analyze a certain extension of a finite automa-
ton, called a linear separation automaton (LSA). An LSA receives a sequence
of real vectors, and has a linear function and a threshold sequence at every
state, which determine the transition from some state to another at each step.
Transitions of LSAs are just corresponding to the behavior of perceptrons.

We develop the theory of minimizing LSAs by using Myhill-Nerode theorem
for LSAs. Its proof is performed as in the proof of the theorem for finite au-
tomata. Therefore we find that the extension to an LSA from the original finite
automaton is theoretically natural.
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1. Introduction

The computational model, finite automata, is an inevitably important concept in

computer science. Recent advances in information technology and its related fields re-

veal the importance of computational models which can deal with time series of real

valued data. Many researchers utilize computational tools based on these models to

solve various problems including weather forecasting1), motion recognition2),3), and

time-sequential image analysis4).

There are several works proposing an extension of an automaton which can deal with

real values in some sense. Models in these works include hybrid automata5),6) and timed

automata7). Hybrid automata is a mathematical model for describing systems in which

computational processes interact with physical processes. More formally speaking, hy-

brid automata is a finite state machine augmented with differential equations at each

state. It is used for modelling various control systems and for verifying various theoret-

ical properties of them. Timed automata is a labeled transition system for modelling

real-time systems. It has time-passage action in addition to ordinary inputs, outputs,

and internal actions. It was developed as providing a formal framework for simulation

proof techniques of such real-time systems.

In this paper, we will theoretically analyze a certain extension of a finite automaton,

which has a linear function and a threshold sequence at every state, and receives a

sequence of real vectors. We call this automaton a linear separation automaton

(LSA).

Let us consider how an LSA works. Transitions of LSAs are just corresponding to the

behavior of perceptrons8),9). Figure 1 shows an example M1 of an LSA. An LSA has

a weight vector w(qi) of a linear function and a threshold sequence h(qi) at each state

qi. If a vector x ∈ R2 is input to the current state qi, then the next state is determined

by comparing the inner product x ⊗ w(qi) with each element of h(qi). If a threshold

sequence h(qi) has n elements, then there can be n + 1 transitions from a state qi. In

an LSA M1, the transition δ(q1, x) from q1 with x is the following:
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Fig. 1 LSA M1

δ(q1, x) =


q1 if x ⊗ w(q1) ≤ 0

q2 if 0 < x ⊗ w(q1) ≤ 5

q3 if 5 < x ⊗ w(q1) .

We will develop the theory of minimizing LSAs by using Myhill-Nerode theorem

for LSAs. Its proof is performed as in the proof of the theorem for the original finite

automaton10),11). Therefore we find that the extension to an LSA from the original

finite automaton is theoretically natural.

LSA-like computational models have been already utilized in some application prob-

lems. For instance, Matsunaga and Oshita proposed to use a state transition system

for recognizing a specified motion. Their system receives at each state feature vector

values acquired from a camera or a motion capture, and determines its transition from

the current state by using Support Vector Machines.

In order to develop a theory of learning such computational models, we need compu-

tational analysis on the proposed models themselves. For instance, the uniqueness of

the minimum state finite automaton for a given one is crucially important in the theory

of learning finite automata, because almost all of the learning algorithms try to identify

the minimum state automaton of a target language12),13). Therefore we will develop

the theory of minimizing LSAs in this paper.

In section 2, we will give necessary definitions and notation needed in the sequel of

this paper. Section 3 introduces a linear separation automaton (LSA). We show that

Myhill-Nerode theorem for LSAs is established as in the original finite automata in

section 4. The uniqueness of the minimum state LSA is shown in section 5. In section

6, we will characterize the minimum state LSA for a given one by using Myhill-Nerode

theorem for LSAs. Section 7 includes concluding remarks and future works.

2. Preliminaries

We introduce basic definitions and notation needed later in this paper.

By R, we denote the set of real numbers. For a positive integer d, by Rd we denote

d-dimensional vector space over R. For x, y ∈ Rd, x ⊗ y denotes the inner product

of x and y. We define (Rd)∗ as the set of all finite sequences of vectors in Rd. For a

sequence α = ⟨x1, . . . , xn⟩ ∈ (Rd)∗, we denote the length of α by |α|, that is, |α| = n.

An element in (Rd)∗ of length 0 is called an empty sequence, and is denoted by λ.

For sequences α, β ∈ (Rd)∗, we denote the concatenation of α and β by αβ. For

α = ⟨x1, . . . , xn⟩ ∈ (R1)∗, the sequence α is said to be increasing if the inequality

xi < xi+1 holds for every i.

A partition π = {S1, . . . , Sk} of Rd (i.e., S1, . . . , Sk are mutually disjoint non-empty

subsets of Rd such that ∪i=1,...,kSi = Rd ) is said to be linearly separable iff there

exists w ∈ Rd and an increasing h = ⟨h1, . . . , hk−1⟩ ∈ (R1)∗ such that

hi−1 < w ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k) ,

where h0 = −∞ and hk = ∞.

Consider equivalence relations ≡,≡1, and ≡2 over (Rd)∗. An equivalence relation ≡1

is finer than an equivalence relation ≡2 (or ≡2 is coarser than ≡1) iff x ≡1 y implies

x ≡2 y for any x and y. An equivalence relation ≡ is right invariant iff α ≡ β implies

αγ ≡ βγ for any α, β and γ. Consider partitions π1 and π2 of Rd. A partition π1 is

finer than a partition π2 (or π2 is coarser than π1) iff for any block B ∈ π1, there exists

a block B′ ∈ π2 such that B ⊆ B′.
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3. Linear Separation Automata

This section introduces an extension of a finite automaton, called a linear sepa-

ration automaton (LSA). This automaton has a linear function and a threshold

sequence at every state, and receives a sequence of real vectors. The transition from

the current state to another is determined by the linear function and the threshold

sequence associated with the current state.

An LSA M is defined as a 7-tuple

M = (d, Q, q0, F, w, h, s) ,

where

d is a positive integer specifying the dimension of input vectors to M ,

Q is a finite set of states,

q0 is an initial state (q0 ∈ Q),

F is a finite set of final states (F ⊆ Q),

w is a weight function from Q to Rd such that w(q) is a unit vector for any q ∈ Q,

h is a threshold function from Q to (R1)∗ such that h(q) is increasing for every q ∈ Q,

and s is a sub-transition function from Q to Q∗.

If |s(q)| ≥ 1, then the equality |h(q)| = |s(q)| − 1 holds for every q ∈ Q.

Let us define the transition function δM of M from Q × Σ to Q. First, in case of

|s(q)| = 0, the transition function δM is undefined. Secondly, suppose that |s(q)| ≥ 1.

Consider any state q ∈ Q. In order to improve the readability, we define iq = |h(q)| for

any q ∈ Q. Let s(q) = ⟨p1, . . . , piq+1⟩ and h(q) = ⟨h1, . . . , hiq ⟩. The value δM (q, x) for

a given x ∈ Rd is defined as follows:

δM (q, x) =



p1 if x ⊗ w(q) ≤ h1

p2 if h1 < x ⊗ w(q) ≤ h2

...
...

piq if hiq−1 < x ⊗ w(q) ≤ hiq

piq+1 if hiq < x ⊗ w(q) .

We sometimes write δ for δM .

In the state transition diagrams of LSAs as in Figure 1, we illustrate the condition

of the transition from a state p to a state q by using an interval I ⊆ R. Suppose that

δ(p, x) = q holds if hi < x ⊗ w(p) ≤ hj . In the diagram, the transition from p to q is

associated with an interval (hi, hj ].

For α = ⟨x1, . . . , xl⟩ ∈ (Rd)∗, we write δ(p, α) = q if there exists a sequence

p1(= p), p2, . . . , pl+1(= q) of states such that δ(pi, xi) = pi+1 holds for i = 1, . . . , l.

We define the set of sequences accepted by an LSA M , denoted by L(M), as

L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F } .

A subset L of (Rd)∗ is said to be regular if there exists an LSA M such that L = L(M).

We define the size of M as size(M) = |Q|.
A state q ∈ Q is said to be reachable if there exists α ∈ (Rd)∗ such that δ(q0, α) = q.

A state is said to be unreachable if it is not reachable.

Let M = (d, Q, q0, F, w, h, s) be an LSA. We define an equivalence relation ≡M over

(Rd)∗ as follows:

α ≡M β
def⇔ δ(q0, α) = δ(q0, β) .

Example 1. Consider an LSA M1 = (d = 2, Q = {q1, q2, q3}, q1, F = {q1}, w, h, s) in

Figure 1. Let δ be the transition function of M1, and let α = ⟨x1, x2, x3⟩ be a sequence

of vectors in R2 with x1 = (1, 1), x2 = (2, 2), and x3 = (10, 10). The inner product

x1 ⊗ w(q1) = 3/
√

5 is in the interval (0, 5], which implies that δ(q1, x1) = q2. We see

in the same way that δ(q2, x2) = q3 and δ(q3, x3) = q1 ∈ F . Hence the sequence α is

accepted by M1.

�

4. Myhill-Nerode Theorem for LSAs

In the sequel of this paper, we will develop the theory of minimizing LSAs by using

Myhill-Nerode theorem for LSAs. Its proof is performed as in the proof of the theorem

for the original finite automaton.

In this section, we will show that Myhill-Nerode theorem for LSAs is established as

in the original finite automata.
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Myhill-Nerode theorem is originally proved by Myhill10) and Nerode11). This theorem

characterizes the class of languages accepted by a finite automaton. We modify this

theorem in order to develop the theory of minimizing linear separation automata.

Let ≡ be a right invariant equivalence relation over (Rd)∗ and consider an equivalence

class [α]≡ containing α ∈ (Rd)∗. An equivalence relation R([α]≡) over Rd induced by

[α]≡ is defined as follows:

x R([α]≡) y
def⇔ αx ≡ αy .

For any α and β with α ≡ β, the equality R([α]≡) = R([β]≡) holds, because ≡ is

right invariant.

We say that a right invariant equivalence relation ≡ over (Rd)∗ is right linearly

separable iff for any equivalence class [α]≡, there exists a finite linearly separable

partition of Rd that is finer than the equivalence classes of R([α]≡) .

Lemma 1. Consider two right invariant equivalence relations ≡1 and ≡2 over (Rd)∗

such that ≡1 is finer than ≡2. If ≡1 is right linearly separable, then ≡2 is right linearly

separable.

Proof. Let α ∈ (Rd)∗. We have

x R([α]≡1) y
def⇔ αx ≡1 αy , and

x R([α]≡2) y
def⇔ αx ≡2 αy .

Since ≡1 is finer than ≡2, we have αx ≡1 αy implies αx ≡2 αy. Hence we obtain

x R([α]≡1) y ⇒ x R([α]≡2) y .

Thus, R([α]≡1) is finer than R([α]≡2) . Since ≡1 is right linearly separable, there

exists a finite linearly separable partition P of Rd that is finer than the equivalence

classes of R([α]≡1) . Then, P is finer than the equivalence classes of R([α]≡2) , because

R([α]≡1) is finer than R([α]≡2) . We have finally proven the claim.

We modify a Myhill-Nerode relation for finite automata as follows.

Definition 1 (Modified Myhill-Nerode Relation for LSAs). Let S ⊆ (Rd)∗

be a set of sequences. The equivalence relation ≡ over (Rd)∗ satisfying the following

conditions is called a modified Myhill-Nerode relation with respect to S.

( 1 ) The equivalence relation ≡ is right invariant.

( 2 ) The equivalence relation ≡ is of finite index.

( 3 ) The equivalence relation ≡ is right linearly separable.

( 4 ) The set S is a union of some equivalence classes of ≡.

�

For any subset S of (Rd)∗, we define an equivalence relation ≈S over (Rd)∗ as follows:

α ≈S β
def⇔ ∀γ ∈ (Rd)∗ (αγ ∈ S iff βγ ∈ S) .

We can demonstrate the following, which is the most important theorem in this paper.

Theorem 1 (Myhill Nerode Theorem for LSAs). Let S ⊆ (Rd)∗ be a set of

sequences. The following three statements are equivalent.

( 1 ) The set S is regular.

( 2 ) there exists a modified Myhill-Nerode relation with respect to S.

( 3 ) The equivalent relation ≈S is of finite index and right linearly separable.

Proof. (1)⇒(2):

Let M = (d, Q, q0, F, w, h, s) be an LSA accepting S. The relation ≡M is right invari-

ant because

α ≡M β ⇒ δ(q0, α) = δ(q0, β)

⇒ ∀γ ∈ (Rd)∗ δ(q0, αγ) = δ(q0, βγ)

⇒ ∀γ ∈ (Rd)∗ αγ ≡M βγ .

The relation ≡M is of finite index because the number of equivalence classes of ≡M

is bounded by |Q|.
Let [α]≡M be any equivalence class of ≡M . Consider the relation R([α]≡M ) in-

duced by [α]≡M . Let p = δ(q0, α) and let h(p) = ⟨h1, . . . , hip⟩. We define a partition
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π = {S1, . . . , Sip+1} of Rd such that, for k = 1, . . . , ip + 1, it holds that

Sk
def
= {x ∈ R | hk−1 < x ⊗ w(p) ≤ hk } ,

where h0 = −∞ and hip+1 = ∞. It is clear that the partition π of Rd is linearly sepa-

rable. Furthermore, it is straightforward to see that x, y ∈ Sk implies δ(p, x) = δ(p, y)

implies αx ≡M αy implies x R([α]≡M ) y. Thus, π is finer than the equivalence classes

of R([α]≡M ) , which implies that ≡M is right linearly separable.

Finally, we have

S = L(M) = {α ∈ (Rd)∗ | δ(q0, α) ∈ F}
= ∪f∈F {α ∈ (Rd)∗ | δ(q0, α) = f}
= ∪f∈F [αf ]≡M ,

where αf is any representative element α such that δ(q0, α) = f . Thus, S is a union of

some equivalence classes of ≡M .

Therefore, ≡M is a Myhill-Nerode relation with respect to S.

(2)⇒(3):

Let ≡ be a Myhill-Nerode relation with respect to S. The relation ≡ is finer than ≈S

because

α ≡ β ⇒ ∀γ ∈ (Rd)∗, αγ ≡ βγ

⇒ ∀γ ∈ (Rd)∗, αγ ∈ S iff βγ ∈ S

⇒ α ≈S β .

Thus, the relation ≈S is of finite index.

It is clear from definition of ≈S that ≈S is right invariant. Therefore we deduce from

Lemma 1 that ≈S is right linearly separable.

(3)⇒(1):

Let α be any element in (Rd)∗. Since ≈S is right linearly separable, there exists a

finite linearly separable partition π = {S1, . . . , Sk} which is finer than the equivalence

classes of R([α]≈S ) . Thus, there exist w ∈ Rd and h = ⟨h1, . . . , hk−1⟩ ∈ (R1)∗ such

that

hi−1 < w ⊗ x ≤ hi ⇔ x ∈ Si (i = 1, . . . , k) ,

where h0 = −∞ and hk = ∞. Such w and h are denoted by wα and hα, respec-

tively. Note that hα,i−1 < x ⊗ wα ≤ hα,i iff x ∈ Si. Then, we define an LSA

M ′ = (d, Q′, q′0, F
′, w′, h′, s′), where

Q′ = (Rd)∗/ ≈S , q′0 = [λ]≈S , F ′ = {[α]≈S | α ∈ S } ,

δ′([α]≈S , x) = [αx]≈S , w′([α]≈S ) = wα , h′([α]≈S ) = hα .

Since ≈S is of finite index, the set Q′ is finite. The function δ′ is well-defined since

≈S is right invariant and right linearly separable. The selection of α in the defini-

tion of w′ and h′ could be arbitrary. Note that for any α, β ∈ (Rd)∗, the equality

δM′([α]≈S , β) = [αβ]≈S holds. Finally, we have

α ∈ L(M ′) ⇔ δM′(q′0, α) ∈ F ′

⇔ δM′([λ]≈S , α) ∈ F ′

⇔ [α]≈S ∈ F ′

⇔ α ∈ S .

Therefore, L(M ′) = S, which implies that S is regular.

5. Uniqueness of Minimum State LSA

In this section, we demonstrate the uniqueness of the minimum state LSA for a given

one.

Let S be any regular subset of (Rd)∗. In the sequel, by

Mmin = (d, Qmin, q0min, Fmin, wmin, hmin, smin)

we denote the LSA M ′ constructed in the proof (3)→(1) of Theorem 1. We will prove

that the minimum state LSA accepting S is determined uniquely in the sense that Mmin

is isomorphic to every minimum state LSA. The definition of isomorphism is described

below.

Let M = (d, Q, q0, F, w, h, s) and M ′ = (d, Q′, q′0, F
′, w′, h′, s′) be LSAs. We say that
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M is isomorphic to M ′ iff there exists a bijection f from Q to Q′ satisfying the following

conditions:

(1) f(q0) = q′0 .

(2) f(δ(q, x)) = δ′(f(q), x) holds for any q ∈ Q and x ∈ Rd .

(3) f(F ) = F ′ .

Theorem 2 (Uniqueness of Minimum State LSA). Let S be a regular subset of

(Rd)∗. The LSA Mmin is isomorphic to every minimum state LSA accepting S.

Proof. Omitted because of the space constraint. This theorem can be proved in the

similar way as in the theorem for finite automata.

6. Characterization of Minimum State LSA

In this section, we characterize the minimum state LSA for a given one.

Let M = (d, Q, q0, F, w, h, s) be an LSA accepting the set of sequences S with no

unreachable states. For any p, q ∈ Q, there exists α, β ∈ (Rd)∗ such that δ(q0, α) = p

and δ(q0, β) = q. We define the equivalence relation ∼ over Q as follows:

p ∼ q
def⇔ α ≈S β .

The choice of α and β can not be determined uniquely. However, for α′, α′′ ∈ (Rd)∗

such that δ(q0, α
′) = δ(q0, α

′′), we have δ(q0, α
′γ) = δ(q0, α

′′γ) for any γ ∈ (Rd)∗.

Hence, it holds that α′ ≈S α′′. Therefore, ∼ is well-defined.

We say that p and q are indistinguishable iff p ∼ q. The states p and q are said to

be distinguishable iff p ̸∼ q.

Example 2. Consider an LSA in Figure 1. The equality w(q2) = w(q3) holds, which

implies that x ⊗ w(q2) = x ⊗ w(q3) for any x ∈ Rd. If x ⊗ w(q2) = x ⊗ w(q3) ≤ 10

holds, then δ(q2, x) = δ(q3, x) = q3; otherwise δ(q2, x) = δ(q3, x) = q1 holds. Thus we

have δ(q2, x) = δ(q3, x) for any x ∈ Rd, which implies that q2 ∼ q3, that is, q2 and q3

are indistinguishable.

Let x1 = (1, 1). We obtain x1 ⊗w(q1) = 3/
√

5, which implies that δ(q1, x1) = q2. We

also obtain x1⊗w(q2) = x1⊗w(q3) = 7/5, which implies that δ(q2, x1) = δ(q3, x1) = q3.

Thus we have q1 ̸∼ q2 and q1 ̸∼ q3, that is, q1 and q2 (or q1 and q3) are distinguishable.

�

Lemma 2.

p ∼ q ⇔ ∀γ ∈ (Rd)∗, δ(p, γ) ∈ F iff δ(q, γ) ∈ F .

Proof. We have

p ∼ q ⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q, α ≈S β

⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q,

∀γ ∈ (Rd)∗, αγ ∈ L(M) iff βγ ∈ L(M)

⇔ ∃α, β ∈ (Rd)∗, δ(q0, α) = p, δ(q0, β) = q,

∀γ ∈ (Rd)∗, δ(q0, αγ) ∈ F iff δ(q0, βγ) ∈ F

⇔ ∀γ ∈ (Rd)∗, δ(p, γ) ∈ F iff δ(q, γ) ∈ F .

Furthermore, Lemma 2 immediately implies Lemma 3.

Lemma 3.

p ∼ q ⇔ ∀α ∈ (Rd)∗, δ(p, α) ∼ δ(q, α) .

Proof. We have

p ∼ q ⇔ ∀α, β ∈ (Rd)∗, δ(p, αβ) ∈ F iff δ(q, αβ) ∈ F

⇔ ∀α, β ∈ (Rd)∗, δ(δ(p, α), β) ∈ F iff δ(δ(q, α), β) ∈ F

⇔ ∀α ∈ (Rd)∗, δ(p, α) ∼ δ(q, α) .

For any p ∈ Q, by r(p) we denote a representative element of [p]∼ .

Lemma 4.

δ(r(p), x) ∼ r(δ(p, x)) .
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Proof. For any x ∈ (Rd)∗, we have

δ(r(p), x) ∼ δ(p, x) (By Lemma 3)

∼ r(δ(p, x)) .

We will prove that the minimum state LSA is obtained by identifying indistinguish-

able states.

We define an LSA

M/ ∼= (d, Q′, q′0, F
′, w′, h′, s′) ,

where

Q′ = Q/ ∼ , q′0 = [q0]∼ , F ′ = {[q]∼ | q ∈ F} , δ′([q]∼, x) = [δ(r(q), x)]∼ ,

w′([q]∼) = w(r(q)) , h′([q]∼) = h(r(q)) .

Lemma 5. For α ∈ (Rd)∗,

δM/∼([p]∼, α) = [δ(p, α)]∼ .

Proof. We will prove this lemma by induction on |α|.
In case of |α| = 0, i.e., α = λ, we have

δM/∼([p]∼, λ) = [p]∼

= [δ(p, λ)]∼ .

Assume that the claim holds for |α| ≤ k and consider the case of |α| = k + 1. Let

α = βx (β ∈ (Rd)∗, x ∈ Rd). Then, we have

δM/∼([p]∼, α) = δM/∼(δM/∼([p]∼, β), x)

= δM/∼([δ(p, β)]∼, x) (By induction hypothesis)

= [δ(r(δ(p, β)), x)]∼

= [r(δ(δ(p, β), x))]∼ (By Lemma 4)

= [r(δ(p, βx))]∼

= [δ(p, βx)]∼

= [δ(p, α)]∼ .

Lemma 6.

p ∈ F iff [p]∼ ∈ F ′ .

Proof. From the definition of F ′, it is clear that p ∈ F implies [p]∼ ∈ F ′. Suppose that

[p]∼ ∈ F ′. Then, there exists q ∈ F such that p ∼ q. We deduce from δ(q, λ) ∈ F and

Lemma 2 that p = δ(p, λ) ∈ F holds.

Lemma 7.

L(M/ ∼) = L(M) .

Proof. For any α ∈ (Rd)∗, we have

α ∈ L(M/ ∼) ⇔ δM/∼(q′0, α) ∈ F ′

⇔ δM/∼([q0]∼, α) ∈ F ′

⇔ [δM (q0, α)]∼ ∈ F ′ (By Lemma 5)

⇔ δM (q0, α) ∈ F (By Lemma 6)

⇔ α ∈ L(M) .

Theorem 3 (Characterization of Minimum State LSA). Let M be an LSA. The

LSA M/ ∼ is a minimum state LSA such that L(M/ ∼) = L(M).

Proof. Lemma 7 implies that L(M/ ∼) = L(M) holds.

It is clear that ∼ is an equivalence relation. From the definition of ∼, the index

|Q/ ∼ | of ∼ is equal to |(Rd)∗/ ≈S |. Therefore we conclude that size(M/ ∼) = |Q/ ∼
| = |(Rd)∗/ ≈S | = size(Mmin).

Example 3. Consider an LSA M1 in Figure 1. From the example above, the states q2

and q3 are indistinguishable; and the states q1 and q2 (or q1 and q3) are distinguishable.

Let q4 be a state obtained by merging q2 with q3. Thus, we obtain the minimum state

LSA for M1, illustrated in Figure 2.

�
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7. Conclusions

In this paper, we theoretically analyzed a certain extension of a finite automaton,

called a linear separation automaton (LSA). We developed the theory of minimizing

LSAs by using Myhill-Nerode theorem for LSAs. Myhill-Nerode theorem for LSAs is

established as in the original finite automata. The minimum state LSA for a given one

is unique, and is characterized by using Myhill-Nerode theorem for LSAs.

In order to develop a theory of learning computational models like LSAs, we need com-

putational analysis on the models themselves. The theory of minimizing LSAs will play

a crucial roles in the theory of learning LSAs as in the original finite automata12),13).

Some of our future works are the following.

In this paper, we do not give algorithms for minimizing LSAs. Therefore in the

next paper, we will present some algorithms for minimizing LSAs, which are the naive

algorithm directly induced by Myhill-Nerode theorem for LSAs, and a more efficient

algorithm.

The development of the theory of learning LSAs is one of the future research topics.

Its theory will help us solve some application problems including weather forecasting,

motion recognition, and time-sequential image analysis.
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