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Improving Model-based

Reinforcement Learning

with Multitask Learning

Jaak Simm,†1 Masashi Sugiyama†1

and Hirotaka Hachiya†1

We introduce an extension to standard reinforcement learning setting called
observational RL (ORL) where additional observational information is avail-
able to the agent. This allows the agent to learn the system dynamics with
fewer data samples, which is an essential feature for practical applications of
RL methods. We show that ORL can be formulated as a multitask learning
problem. A similarity-based and a component-based multitask learning meth-
ods are proposed for learning the transition probabilities of the ORL problem.
The effectiveness of the proposed methods is evaluated in experiments of grid
world and object lifting tasks.

1. Introduction

Recently, there is an increasing interest for methods of planning and learning
in unknown and stochastic environments. These methods are investigated in the
field of Reinforcement Learning (RL) and have been applied to various domains,
including robotics6), AI for computer games, such as tetris3). However, one of
the main limiting factors for RL methods has been their scalability to large
environments, where finding good policies requires too many samples, making
most RL methods impractical.

1.1 Transfer Learning in RL

One of the approaches for solving the scalability problem is to reuse the data
from similar RL tasks by transferring data or previously found solutions to the
new RL task. These methods have been a focus of the research lately and are
†1 Tokyo Institute of Technology

called transfer learning methods. The transfer learning methods can be separated
into value-based and model-based transfer learning methods, depending on what
is being transferred between the RL tasks.

In value-based transfer learning the value functions of previously solved RL
tasks are transferred to the new task at hand. A popular approach for transferring
value functions is to use the previously found value functions as initial solutions
for the value function of the new RL task. These methods are called starting-
point methods, for example see the temporal-difference learning based approach
by Tanaka et al.10) and a comparative study of these methods by Taylor et al.11).
For successful transfer, a good mapping of states and actions between the RL
tasks is required. When a poor mapping is used the transfer can result in worse
performance than doing the standard reinforcement learning without a transfer.

On the other hand, model-based transfer learning methods transfer the tran-
sition models and reward models from the solved RL tasks to new RL tasks.
Similarly to the value-based transfer, the mapping between states and actions of
the learned RL tasks and the target RL task is required. However, the require-
ments for the mapping are weaker than those in the case of value-based transfer
and, thus, the transfer is also possible between less similar tasks. The reason
is that the transition model and reward model only depend on a single transi-
tion from the current state whereas the value function depends on a sequence of
rewards (and thus transitions) starting from the current state.

A model-based transfer method was proposed by Wilson et al.12) that success-
fully estimates the prior probabilities of tasks. If the model of the new task is
similar to previously encountered tasks, the data from the previous tasks can be
used to estimate the transition and reward model for the new task. Thus, the
new task can be learned with fewer samples.

However, these model-based and value-based transfer approaches still require
almost full learning of at least one initial task. That is “previous tasks”, which
are used in transfer learning of new tasks, should have been learned with sufficient
accuracy. If the tasks have large state spaces, then the initial learning will require
a huge amount of data, which is not practical. This kind of setting where the tasks
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are ordered is called transfer learning. In contrast, multitask learning is a setting
where there is no initial task and all tasks are solved simultaneously. Another
issue with the above reviewed methods is that the advantage of transferring
between large RL tasks is problematic because a good mapping between them is
not usually available.

1.2 Proposed Observational Idea

To tackle the above mentioned problems we propose a setting where the sharing
does not occur between different RL tasks but between different regions (parts)
of the same RL task. This is accomplished by allowing the agent to access
additional observational data about the regions of state-action space of the RL
task ?1. The usefulness of the observational data is that it identifies the regions of
the task that participate in the multitask learning. Moreover, the strength of the
sharing between different regions depends on the similarity of their observations.
The more similar the observations are, the stronger the sharing is. This kind of
observational data is often available in practice, e.g., in the form of camera data
or sensor measurements.

A motivating example for our observational framework is a mobile robot moving
around on a ground, where there are two types of ground conditions: slippery
and non-slippery. The robot knows its current location and thus, can model the
environment using a standard Markov decision formulation, predicting the next
location from the current location and the movement action (e.g., forward and
backward). However, if the robot has access to additional sensory information
about the ground conditions at each state, it could use that additional observation
to share the data between similar regions and models of the environment more
efficiently even when only a small amount of transition data is available. We call
this kind of RL setting Observational RL.

In our observational setting there is no order for solving the tasks, meaning
that all regions are solved simultaneously, i.e., as a multitask learning setup.
?1 The idea of separating the RL task into partitions has been explored by Ravindran et

al.7) in the context of hierarchical RL. However, in contrast to the transfer learning setting
considered here they assumed that the agent knows a common transition model for all
partitions and the goal is to learn how to fit that model to each partition.

Additionally, since the sharing takes place between regions of the whole problem,
the mapping is essentially between smaller parts of the problem. Therefore, the
problem of finding a good mapping is often mitigated.

This paper extends the study of our proposed Observational RL framework and
methods, initially published in8). Thus, we only shortly summarize the framework
and focus more on new experimental results (Section 5) and discussion (Section
6).

2. Ordinary RL

The goal of reinforcement learning is to learn optimal actions in unknown
and stochastic environment. The environment is specified as a Markov Decision
Problem (MDP), which is a state-space-based planning problem defined by S,
PI , A, PT , R and γ. Here S denotes the set of states, PI(s) defines the initial
state probability, A is the set of actions, and 0 ≤ γ < 1 is the discount factor.
The state transition function PT (s′|s, a) defines the conditional probability of
the next state s′ given the current state s and action a. At each step the agent
receives rewards defined by function R(s, a, s′) ∈ R. The goal of RL is to find a
policy π : S → A that maximizes the expected discounted sum of future rewards
when the transition probabilities PT and/or the reward function R is unknown.

3. Observational RL

In this section we formulate the setting of Observational RL (ORL). For better
understandability, we first start with a simpler framework that already includes
the main idea. Then, later extend it to a more general setting.

3.1 Basic Idea

The Observational RL setting extends the ordinary RL setting by allowing
the agent to access additional observational information about the state-action
space. For the basic case, consider that the agent has observations about each
state. This means that for each state s ∈ S the agent has some observation
o ∈ O, where O is the set of observations. Thus, formally the observational
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information can be defined as a function φ(s) ∈ O mapping each state to its
observation. In many cases in practice we can treat some information as this
kind of observational data, while the Markov property of the state still holds.
For example, in the case of the mobile robot these observations could be sensor
measurements about ground conditions and the state is the location of the robot.
In other words, the transition probability is determined by the location of the
robot without the information about the ground conditions.

The current paper focuses on the model-based RL approach9), which consists
of following two steps:

( 1 ) Estimate the transition probabilities PT (s′|s, a) using transition data.
( 2 ) Find an optimal policy for the estimated transition model by using a dy-

namic programming method, such as value iteration.

More specifically, the transition data consists of, possibly non-episodic?1, samples
{(st, at, s

′
t)}T

t=1, where st and at correspond to the current state and action of
the t-th transition and s′t is the the next state.

3.2 Formulation of ORL

In the previous formulation the observations were just connected to single
states. It is useful to extend the formulation by connecting the observations
to regions (i.e., subsets) of the state-action space S×A. Let u denote a region an
observation is connected to. We call u an observed region because it is a subset of
state-action space u ⊂ S×A. Thus, the basic ORL idea described above was just
a special case when u ∈ S. There are two motivations for this extension. Firstly,
it allows us to work with structural problems where one observation is connected
to several states, e.g., a manipulation task of various objects by a robotic arm,
where an observation is connected to an object, and thus to all states involved
in the manipulation of that object. Secondly, this extension means that the ob-
servations are now also connected to actions. This allows one to have different
observations for different actions and the sharing can depend on actions. For

?1 Non-episodic means that there is no requirement that the next state of the t-th transition
sample (i.e., s′t) has to be equal to the starting state of the (t+1)-th transition sample (i.e.,
sn+1).

example, in the mobile robot case the movement actions (forward and backward)
could participate in the sharing, whereas some other actions, such as picking up
an object, could be left out from the sharing.

Now the observations function is φ : U → O where U contains all observed
regions. If there are N observations then, the observational data is {(un, on)}N

n=1

where observation on ∈ O corresponds to region un ⊂ S ×A. In this case the set
of observed regions is U = {un}N

n=1.

Compared to the basic idea in Section 3.1 the sharing takes now place be-
tween different regions, not just states. Therefore, we require that all observed
regions have a common parameterization for their transition models. The tran-
sition probabilities of state-action pairs in u, i.e., (s, a) ∈ u, are modeled with
PT (s′|s, a; βu) and βu is the parameter for the transition model of the region u.

4. Proposed Methods

In this section we give short overview of two proposed multitask-learning-based
methods for ORL, for more details please see8). First of them is based on the sim-
ilarity idea and the second one comes from the mixture-of-components multitask
learning ideas.

4.1 Similarity-based ORL

The idea of the similarity-based ORL method is to add data from similar
tasks directly to the likelihood function of the models for every observed region.
Consider the single task estimation of maximum (log) likelihood for observed
region u

β̂u = argmax
βu

∑
(s,a,s′)∈Du

log PT (s′|s, a; βu), (1)

where Du is a set of transition data from observed region u. A straightforward
extension of the single task estimation (1) is to add data from other tasks and
weight them according to the similarity of the other tasks to the current task at
hand. This can be expressed by

β̂u = argmax
βu

∑
v∈U

∑
(s,a,s′)∈Dv

ku(v) log PT (s′|s, a; βu), (2)
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where ku(v) ∈ [0, 1] is the similarity of the observed region v to observed region u.
Thus, data from observed regions that have high similarity ku(v) have a big effect
on the estimation of the model of region u. In the case of a mobile robot, consider
the estimation of the model for a region of slippery states u (e.g., an icy region).
If the similarity function ku assigns high similarity to other regions of slippery
states (e.g., other icy regions or wet regions) and a low similarity value for non-
slippery states then the similarity-based ORL method will provide an accurate
estimate for βu even if region u has few or no samples. A practical option for the
similarity function is to use the Gaussian kernel between the observations of the
regions or nearest neighbor similarity.

4.2 Component-based ORL

Here we introduce the idea of component-based multitask learning where the
role of task features is to a priori determine the component the task belongs to.
Let there be M components, then P (m|φ(u)) denotes the probability that the
task u with features φ(u) belongs to the component m (where m ∈ {1, . . . , M}).

Let (s, a) be a state-action pair and u ∈ U be such that (s, a) ∈ u, then the
sharing between elements of U is formulated as a mixture of components for the
transition probability:

PT (s′|s, a) =
M∑

m=1

PT (s′|s, a,m)P (m|φ(u)), (3)

where PT (s′|s, a, m) is the transition probability to state s′ under component m

for state-action pair (s, a) and P (m|φ(u)) is the component membership prob-
ability mentioned above. In the example of a mobile robot, these components
would comprise of states that have similar transition dynamics, e.g., one com-
ponent could be a group of states where a certain moving action fails due to
difficult ground conditions and another component represents states where the
moving action succeeds.

The parameterized version of (3) is given by

PT (s′|s, a, β, α) =
M∑

m=1

PT (s′|s, a, βm)P (m|φ(u), α), (4)

where βm is the parameter for the transition model of component m and α is the

parameter for the component membership probabilities. The estimates of both
of these parameters will be determined by maximum likelihood estimation by
employing EM method. It should be noted that any parameterization will work
as long as the maximum likelihood estimation is computationally tractable. The
choice of parameterization for P (m|φ(u), α) depends on the type of observations,
O. For details please see8). We follow standard approach for implementing the
EM method. This includes using several restarts to the EM procedure to avoid
local optima and using cross-validation to choose the number of components (M).

5. Experimental Results

In this section we present experimental results from two simulated domains:
grid world with slippery ground conditions and a robot’s object lifting tasks.

5.1 Slippery Grid World

We conducted experiments on a mobile robot task with discrete state and action
space. The size of the state space of the grid world is 15 × 15 and there are 4
movement actions: left, right, up and down. There are two types of states, one
type is slippery, where all movement actions fail with probability 0.8, keeping the
robot at the same spot and the other type is non-slippery having probability of
failure 0.15. The goal of the agent is to reach the goal state from the initial state.
An example of the grid world is shown in Figure 1. The goal of the robot is to
reach the goal state denoted with “G” starting from bottom left state “S”. White
squares are non-slippery and colored squares are slippery states. The observations
about each state are two-dimensional real values of sensor measurements of water
level and amount of loose gravel. Their distribution is depicted in Figure 2.

Due to the rather high rate of failure of actions in slippery states, the robot
should avoid these states and thus, it is essential to accurately estimate the
transition probabilities. The average performance over 50 runs for component-
based and similarity-based ORL methods is reported in Table 1. Methods named
‘Comp(n)’ are component-based methods with n components. Thus, ‘Comp(1)’
actually just merges all observed regions as a unified task. For component-based
methods, ‘Comp(2)’ and ‘Comp(3)’, we manually chose the regularization param-
eter of the logistic regression to be 10−3. For similarity-based method ‘Sim(fixed)’
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Table 1: KL-divergence of the estimated transition probabilities from the true model, for the
slippery grid world experiment with 2-dimensional observations. For each method the mean
and standard deviation of its KL-divergence averaged over 50 runs are reported, for different
data sizes N = 50, N = 100, N = 150, and N = 200. Bolded values in each column show
methods whose performance is better than others using t-test with 1% confidence level.

Method N = 50 N = 100 N = 150 N = 200

Comp(1) 0.375 ± 0.065 0.280 ± 0.023 0.255 ± 0.012 0.244 ± 0.013
Comp(2) 0.373 ± 0.102 0.177 ± 0.036 0.117 ± 0.034 0.080 ± 0.034
Comp(3) 0.422 ± 0.123 0.235 ± 0.069 0.164 ± 0.051 0.123 ± 0.045

Comp(CV) 0.322 ± 0.053 0.190 ± 0.051 0.127 ± 0.032 0.094 ± 0.035
Sim(fixed) 0.369 ± 0.046 0.207 ± 0.022 0.153 ± 0.015 0.125 ± 0.010
Sim(CV) 0.338 ± 0.028 0.211 ± 0.023 0.162 ± 0.021 0.132 ± 0.014

Single task 1.686 ± 0.004 1.628 ± 0.006 1.576 ± 0.008 1.526 ± 0.009

the Gaussian kernel with a fixed width σ = 2.5 was used. The ‘Comp(CV)’
is the component-based ORL that uses 5-fold CV to choose the regularization
parameter for logistic regression from the set {10−3, 10−1, 100} and the num-
ber of components. Similarly, ‘Sim(CV)’ is the similarity-based ORL that uses
5-fold CV to choose the optimal width for the Gaussian kernel from the set
{1.5, 3.0, 4.5, 6.0, 10.0}.

With 50 samples none of the other ORL methods perform better than
‘Comp(1)’ (unified task), suggesting that there are too few samples to success-
fully perform data sharing. However, all ORL methods outperform the ‘Single
task’ implying that the use of data sharing in this case is valuable. As seen from
Table 1 the cross-validation version of component-based method ‘Comp(CV)’ is
performing almost as well as the best fixed parameter version.

5.2 Grid World with High-dimensional Observations

We also tested the grid world example width high-dimensional observations.
Now the observations were 10-dimensional. The first two dimensions were exactly
the same as before, containing useful information about the states as depicted
in Figure 2. The new 8 dimensions did not contain any information, i.e., the
observations for slippery and non-slippery states were generated from the same
distribution, which was a single 8-dimensional Gaussian with mean zero and

Fig. 1: Mobile robot in a grid-world with
slippery and non-slippery states. Robot
starts from an initial state at bottom left
denoted with “S” and has to reach the

goal state “G”.
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Fig. 2: Distribution of observations for
non-slippery (blue circles) and slippery

(green crosses) states. The horizontal axis
displays the measured water level and the

vertical axis displays the measured
amount of loose gravel for each state.

Table 2: KL-divergence of the estimated transition probability from the true model, for the
slippery grid world experiment with 10-dimensional observations. For each method the mean
and standard deviation of its KL-divergence averaged over 50 runs are reported, for different
data sizes N = 50, N = 100, N = 150, and N = 200. Bolded values in each column show
methods whose performance is better than others using t-test with 1% confidence level.

Method N = 50 N = 100 N = 150 N = 200

Comp(CV) 0.395 ± 0.085 0.248 ± 0.044 0.190 ± 0.054 0.140 ± 0.039
Sim(CV) 0.398 ± 0.047 0.285 ± 0.014 0.244 ± 0.014 0.222 ± 0.012
Comp(1) 0.375 ± 0.065 0.280 ± 0.023 0.255 ± 0.012 0.244 ± 0.013

Single task 1.686 ± 0.004 1.628 ± 0.006 1.576 ± 0.008 1.526 ± 0.009

covariance identity.

Comparing Table 2 to Table 1 we can see that the performance of ORL meth-
ods is degraded compared to the problem with low-dimensional9 observation. As
expected, the performance of the similarity-based approach, ‘Sim(CV)’, has wors-
ened more than the performance of the component-based approach, ‘Comp(CV)’.
The effect the choice of the parameters has on the performance of both methods
is depicted in Figure 3. As seen from Figure 3(a), too weak regularization for lo-
gistic regression results in poorer performance. Similarly, too small kernel width
for the similarity-based ORL method has poor performance.
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(a) Dependence of the perfor-
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ORL on the regularization of lo-
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2 4 6 8 10 12 14
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Kernel width

K
L−

er
ro

r

 

 

N=100
N=200

(b) Dependence of the perfor-
mance of the similarity-based
ORL on Gaussian width.

Fig. 3: Average KL-divergence from the true distribution in slippery grid world tasks with
10-dimensional observations for sample sizes N = 100 and N = 200. The averages and

standard deviations were calculated from 50 runs.

Table 3: Value of the the policy found by using the estimated transition probabilities, for the
slippery grid world experiment with 10-dimensional observations. For each method the mean
and standard deviation of its value averaged over 50 runs are reported, for different data sizes
N = 50, N = 100, N = 150, and N = 200. Bolded values in each column show methods whose
performance is better than others using t-test with 1% confidence level.

Method N = 50 N = 100 N = 150 N = 200

Comp(CV) 0.648 ± 0.101 0.699 ± 0.048 0.724 ± 0.043 0.740 ± 0.027
Sim(CV) 0.659 ± 0.014 0.667 ± 0.020 0.705 ± 0.033 0.727 ± 0.024
Comp(1) 0.639 ± 0.011 0.649 ± 0.005 0.652 ± 0.002 0.651 ± 0.001

Single task −0.508 ± 0.121 −0.380 ± 0.177 −0.279 ± 0.192 −0.135 ± 0.201

Table 3 shows the value of the policies that were found from the transition
probabilities learned by different methods for high-dimensional observations case.
The component-based method outperforms similarity-based method for sample
sizes 100, 150 and 200, but only slightly. Compared to the differences in the
KL-error the similarity-based method would be expected to perform worse. It
is probable that for the slippery grid world task the similarity-based method
captures some important differences in the transition probabilities resulting in
similar performance to the component-based method.

Fig. 4: Single motor robotic arm lifting
an object to a goal angle using torque
control. The object depicted with solid

line shows initial position and the dashed
line shows the goal state.
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Fig. 5: Distribution of observations for
light (green circles) and heavy (blue
crosses) objects. The horizontal axis
depicts the size of the object and the
vertical axis depicts the color of the

object (higher values corresponding to red
and small values corresponding to blue

color objects).

5.3 Results of Object Lifting Task

The goal for the task of object lifting by a single joint robotic arm is to lift an
object from the starting position to the goal angle of 36 degrees, as depicted in
Figure 4. The task involves 50 objects, randomly chosen at the start of the task.
Half of the objects are light and the other half are heavy, having different state
transition dynamics. Thus, ideally the sharing should happen only between the
objects of the same type. Each object has 3-dimensional observation, consisting
of object size, color and texture. The texture of the object does not contain
any information regarding the object and is randomly generated from a single
Gaussian distribution. The size and the color of objects contain some information
regarding the object’s nature. These two features are depicted in Figure 5 for
the 50 objects.

The state vector consists of object number (from 1 to 50), joint angle and an-
gle speed of the arm. The latter two are discretized, joint angle to 21 values of
0, 3, . . . , 60 degrees, and angle speed to 9 values of 0,±3,±7.5,±14.25,±24.4 de-
grees per step. The transition model is based on simulated frictionless dynamics
with gravitational force. If the simulation ends in a state between discretized val-
ues, the transition models assigns probabilities to the nearest discretized states
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according to the distance (the closer the state the higher the transition probabil-
ity). The reward function gives +1.0 for states with the goal joint angle (i.e., 36
degrees) and +0.5 for states that have joint angle next to the goal state, i.e., 33
and 39 degrees; all other states give zero rewards. The discount factor of 0.95 is
used, combined with the maximum possible reward it implies that the expected
value of a policy cannot be larger than 20. The arm is controlled by 9 actions
corresponding to different torques applied to the joint. Thus, the transition dy-
namics for heavy and light objects are quite different and thus, also the optimal
policy is different. There are totally 1701 state action pairs for one object, making
totally 85050 state-action pairs for 50 objects.

Table 4 shows the accuracy of the transition model estimation for the two ORL
methods (‘Comp(CV)’ and ‘Sim(CV)’), unified (‘Comp(1)’) and single task (‘Sin-
gle task’) methods. The data was collected uniformly over the state-action space.
As can be seen the component-based ORL method significantly outperforms all
other methods for sample sizes 16000 and above. The poor performance of the
similarity-based method is due to the irrelevant element in observations (i.e., tex-
ture) and relatively few number of tasks (i.e., 50) to the number of data collected
(8000 and more samples).

Similarly to transition model estimation results, the value of the learned policies
shows a good performance for the component-based method, see Table 5. The
expected value of the optimal policy for the object lifting task is 14.442 and with
32000 samples the component-based method achieves quite close value of 13.3.
In contrast to the mobile robot task, the similarity-based method only slightly
outperforms the unified task (significantly for 24000 and 32000 samples sizes,
with confidence level 1%). However, the difference is minimal to provide big
gains in the case of object lifting task. Nevertheless, both ORL methods and the
unified task strongly outperform the single task method.

5.4 Summary of Experiments

The two proposed ORL methods showed clear advantages over the no sharing
(i.e., single task) approach in the slippery grid world and the object lifting tasks.
If observations are noisy, then the component-based method performs better than

Table 4: KL-divergence of the estimated transition probability from the true model, for the
experiment of object lifting by robotic arm. For each method the mean and standard deviation
of its KL-divergence averaged over 50 runs are reported, for different data sizes N = 8000,
N = 16000, N = 24000, and N = 32000. Bolded values in each column show methods whose
performance is better than others using t-test with 1% confidence level.

Method N = 8000 N = 16000 N = 24000 N = 32000

Comp(CV) 1.754 ± 0.023 0.944 ± 0.031 0.616 ± 0.011 0.447 ± 0.005
Sim(CV) 1.754 ± 0.023 1.153 ± 0.016 0.905 ± 0.010 0.772 ± 0.006
Comp(1) 1.754 ± 0.023 1.156 ± 0.016 0.916 ± 0.010 0.790 ± 0.006

Single task 4.357 ± 0.002 4.161 ± 0.004 3.975 ± 0.006 3.800 ± 0.006

Table 5: The expected value of the the policy found by using the estimated transition proba-
bilities, for the experiment of object lifting. For each method the mean and standard deviation
of the value of the policy averaged over 50 runs are reported, for different data sizes N = 8000,
N = 16000, N = 24000, and N = 32000. Bolded values in each column show methods whose
performance is better than others using t-test with 1% confidence level.

Method N = 8000 N = 16000 N = 24000 N = 32000

Comp(CV) 6.110 ± 0.987 12.203 ± 0.592 12.850 ± 0.451 13.319 ± 0.434
Sim(CV) 6.229 ± 0.867 7.292 ± 0.884 7.961 ± 0.689 8.402 ± 0.537
Comp(1) 6.110 ± 0.987 6.953 ± 0.765 7.331 ± 0.918 7.721 ± 0.503

Single task 1.172 ± 0.084 1.830 ± 0.088 2.691 ± 0.141 3.533 ± 0.129

the similarity-based method if enough samples are available. In other words, the
performance of the similarity-based method depends on the existence of a good
similarity function, whereas the component-based method is able to learn the
task similarities from data.

6. Discussion and Conclusion

We proposed the ORL framework for taking advantage of additional observa-
tional data to share transition data for the learning of the transition probabilities.
The two proposed methods for ORL show good performance in experiments, ob-
taining more accurate estimates for the transition probabilities and consequently
resulting in better policies.

Up to now we only considered situation where reward function R(s, a, s′) was
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known by the agent. Similarly to the transition probabilities it is possible to use
the ORL framework to speed up the learning of the reward function. For that we
need to assume a common parameterization for the probabilities of the rewards
for all regions, i.e., for region u the conditional probability density function of
rewards is P (r|s, a, s′;ωu), where (s, a) ∈ u, r ∈ R is reward and ωu is the
parameter for the reward function.

If the maximum likelihood estimation for P (r|s, a, s′; ωu) is computationally
tractable we can use both proposed ORL methods for estimating the parameters
for the reward function. The performance and the properties of the two methods
for reward function estimation are expected to be similar to those of transition
probability estimation.

In the current paper we did not discuss the topic of exploration in rela-
tion to ORL. One future research topic is to investigate whether Rmax2) style
exploration-exploitation can be introduced for ORL. Although the standard ex-
ploration policies based on Rmax can be used in ORL they are too conservative
because they require visiting each state and action pair many times. Efficient ex-
ploration should avoid exploring state-actions where data is available from other
regions. For efficient exploration in ORL setting we could use recently introduced
approximate Bayesian exploration methods, proposed by Kolter and Ng5) and by
Asmuth et al.1), both having polynomial resource guarantees. However, to use
these two Bayesian exploration methods we need to extend our methods to allow
sampling the posterior of the transition probabilities, instead of just providing
the maximum likelihood estimate.

Another possible research area is extending ORL to factored MDPs4) by al-
lowing observations to be linked to specific state factors and, thus, allowing us
to share data between similar factors. For example, the slippery grid world with
multiple mobile robots is a setting where sharing information between differ-
ent factors, i.e., different robots, is useful. In this example the sharing between
different factors means sharing data between similar robots that are in similar
locations. Thus, in addition to the information about state-action regions (i.e.,
locations) the observations should include information about the factors (i.e.,
robots).
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