
IPSJ SIG Technical Report

CG on GPU-enhanced Clusters

Ali Cevahir,†1 Akira Nukada†1

and Satoshi Matsuoka†1,†2

Motivated by high computation power and low price per performance ratio
of GPUs, GPU accelerated clusters are being built for high performance scien-
tific computing. In this work, we explain implementation of a mixed precision
Conjugate Gradient solver for unstructured matrices on a GPU-extended clus-
ter. Basic computations of the solver are held on GPUs and communications
are managed by the CPU. For sparse matrix-vector multiplication, which is the
most time-consuming operation, solver automatically selects the fastest between
several high performance kernels running on GPUs. In a GPU-extended clus-
ter, it is more difficult than traditional CPU clusters to obtain scalability, since
GPUs are very fast compared to CPUs. GPU-extended clusters demand faster
communication between computation units. We demonstrate performance of
the solver and discuss communication bottleneck for the solver using up to 64
GPUs.

1. Introduction

GPUs, which are originally designed for accelerating computer graphics ap-
plications, are now being used for wide range of general purpose applications
such as physics simulations, bioinformatics, cryptography, database, etc.8) Mod-
ern GPUs provide higher compute capability and memory bandwidth with lower
price and power consumption per performance ratios, compared to conventional
CPUs. Therefore, nowadays they are considered as a good companion or alter-
native computing resources to CPUs for applications requiring high computation
power and memory bandwidth. Manufacturers like NVIDIA and ATI supports
general purpose computing on GPUs and release software APIs (CUDA18) and
CTM1)) which hide graphics interface, making easy to program GPUs as highly

†1 Tokyo Institute of Technology
†2 National Institute of Informatics

parallel many core coprocessors. Recent GPUs support double precision floating
point operations based on IEEE 754 standard, for scientific applications requiring
higher accuracy.

Compute Unified Device Architecture (CUDA) is NVIDIAs new generation
GPU hardware and software architecture. A CUDA GPU contains number of
SIMD multiprocessors. GPU has a device memory that is accessible by all pro-
cessors. Memory access latency of many core GPU devices is hidden by running
high number of threads in parallel. Each multiprocessor contains its own shared
memory and read-only constant and texture caches that are accessible by all
processors within the multiprocessor. Threads in the same multiprocessor can
communicate through fast shared memory. CUDA API supports programming
different memory types.

Some systems integrate GPU clusters to be used as visualization resources.
Examples include installations by GraphStream with 212-node Eureka system at
Argonne National Laboratory and 256-node Gauss system at Lawrence Liver-
more National Laboratory13). Considering GPUs as high-performance low-cost
many core co-processors, GPU clusters are being deployed for high performance
scientific computing. Worlds largest GPU cluster is TSUBAME system deployed
in our university, Tokyo Institute of Technology, which is currently in 41st place
of Top500. TSUBAME integrates 680 NVIDIA Tesla GPUs and is the first sys-
tem that is listed in Top500 as a GPU-enhanced cluster17). Some non-graphics
applications in the literature running on GPU accelerated clusters are flow sim-
ulation using the Lattice Boltzmann model on 32 GPUs10), biomedical image
analysis with 32 GPUs15) and FEM calculations with 160 GPUs12).

In this work, we study sparse linear iterative solvers on a GPU-enhanced clus-
ter. Each node of cluster may have several GPUs installed on it, which are
controlled by host CPU(s). Particularly, we present our approaches and results
on a Conjugate Gradient (CG) solver. We adopt a mixed precision iterative re-
finement algorithm6), which is faster than full double precision implementation,
without sacrificing solution accuracy. Several BLAS operations are consisted in
sparse iterative solvers. Sparse matrix vector multiplication (MxV) is usually the
most time-consuming of them. Parallel execution of sparse solvers for unstruc-
tured problems on a cluster requires considerable amount of communication, e.g.,

1 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

for sharing input and/or output vector of MxV. Hence, minimization techniques
for inter-process communication should be considered for efficient parallel imple-
mentations. For a multi-GPU cluster, where each node has more than one GPU,
parallelization is even harder. To achieve an efficient parallel implementation,
parallelization inside a GPU between GPU cores, inside a node between GPUs
and between nodes should be carefully handled. Kernels running on GPUs re-
quire high degree of fine-grained parallelization between cores of a GPU. This
imposes careful workload distribution between GPU threads. Optimization tech-
niques for accessing GPUs complex memory architecture for memory-intensive
kernels, e.g. MxV, should be carefully thought. GPU adds heterogeneity to the
cluster, which should be handled by careful organization of operations running
on GPUs and CPUs. Additional communication between GPUs and CPU cores
is required. Compared to the very fast GPU computation units, communication
bandwidth between nodes remains slow, as a result reduces parallel efficiency.

Other than scalar square root and division operations, all basic vector and ma-
trix operations of our solver are held on GPUs. For MxV, our solver automatically
selects the fastest between several kernels proposed by NVIDIA researchers4) and
ourselves9). For minimization of communication and load balancing of MxV be-
tween nodes and GPUs, we utilize state-of-the-art 1D hypergraph partitioning
models7).

To demonstrate effectiveness of our proposals, we held experiments on a set
of well-known matrices. We compare strong scalability results of GPU vs. CPU
cluster implementations on the same underlying InfiniBand-based network, pro-
viding 20 Gbps per node. On 16 nodes of TSUBAME, each node having 2 GPUs,
we obtain up to 152 Gflops CG performance and 13.2 times speedup over single
GPU implementation. This is 15 times faster than CPU implementation of same
number of CPU cores. We use up to 16 cores per node for CPU experiments,
and observe that CG is always faster on GPU cluster than CPU cluster.

The organization of the remaining sections is as follows. In Section 2, we give
some background information on the techniques we have used in this work. In
Section 3, we explain efficient implementation of basic operations of CG on the
GPU. In Section 4, we explain the parallel CG algorithm and techniques for
efficient parallelization of CG on multi-GPU clusters. In Section 5, we represent

and discuss experimental results. We conclude in Section 6.

2. Background

2.1 Sparse matrix-vector multiplication on GPUs
Based on different compressed sparse matrix storage schemes, different MxV

algorithms are proposed on the GPU which effectively utilize its resources. There
are many compressed storage formats of sparse matrices. Please refer [19] for
explanations of storage formats.

NVIDIA has recently released an MxV library, called SpMV, based on CUDA4).
Six different MxV implementations are explained in the paper for structured and
unstructured matrices. Among those different implementations, two of them,
which they call CSR vector and HYB kernels, mostly achieve better performance
for unstructured matrices. Näıve CSR algorithm is called CSR scalar, in which
every matrix row is assigned to a different GPU thread. Memory access is costly
for this simple thread assignment. To reduce memory access time by coalesced
memory accesses and better load balancing amongst running threads, in CSR
vector kernel one warp of threads are assigned for a matrix row. This kernel is
sensitive to matrix row sizes. Another faster kernel HYB processes matrix that
is decomposed in structured and unstructured parts. A fixed number of nonzeros
per row are stored in ELL format and remaining entries are stored in COO
format. ELL format is very suitable for vector architectures and full coalescing
for global memory reads can be achieved. Each nonzero element of the matrix is
assigned to a different thread in COO kernel, and segmented reduction operation
is performed to compute sums for output vector.

We have proposed a JDS-based MxV algorithm in our previous work9). JDS
is suitable for vector architectures. Unlike ELL, JDS allows varying number of
nonzeros per row. The algorithm utilizes coalesced memory accesses, texture and
constant caches for performance. Each JDS-stored matrix row is assigned to a
different thread.

In this work, we are going to use the three kernels we have explained above:
HYB, CSR vector and JDS-based kernels. Besides the ones that are mentioned
above, several other works are devised for efficient MxV on GPUs. Blocked CSR
(BCSR) is used in [5]. BCSR decreases number of memory fetches from the device

2 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

memory to some extent, however number of elements to be multiplied increases.
A similar algorithm to CSR vector kernel of NVIDIA is reported in [3].

2.2 Mixed precision iterative refinement for Conjugate Gradients
Conjugate Gradient method is used to solve linear systems Ax = b, where

matrix A is symmetric and positive definite. Solvers on GPUs that do not sup-
port double precision floating point operations suffer from loss of accuracy in the
result. Therefore, in this work we adopt a mixed precision iterative refinement
algorithm for CG6) which is based on inner-outer iteration method11). The al-
gorithm explained in6) is tested on conventional processors, but reported to be
applicable on GPUs, also. Authors report that the mixed precision algorithm
achieves faster solution of the same or even better accuracy compared to the full
double precision solver.

Basically, mixed precision algorithm runs the preconditioned CG. However,
instead of using a fixed preconditioner, preconditioner is solved using a single
precision sparse iterative method, in each iteration. Operations other than the
inner solver run in double precision. Single precision inner solver may also use
preconditioned CG method if a preconditioner is available or any other iterative
method that result in symmetric and positive definite operations. Inner solver
runs for a predetermined number of iterations and takes most of the time of the
overall solution.

3. Implementation of CG solver on GPU

We implement the mixed precision algorithm summarized in Section 2.2. We
implement CG for inner solver, assuming that we have no preconditioner readily
available. Inner solver iterates for a fixed number of iterations. Core operations
of single precision inner solver and double precision refinement operations run on
the GPU. Refinement might be implemented on CPU with the cost of additional
transfers between GPU and CPU for r and z vectors and slower outer solver
performance. These additional costs are insignificant since there are only sev-
eral outer loop iterations for thousands of inner solver iterations. In fact, outer
solver should be implemented on CPU if older GPUs without double precision
support are used. Mixed precision refinement requires storing both double and
single precision entries for matrix and vectors. Hence, it is also useful to make

refinement on CPU for reducing memory requirements of GPU.
MxV dominates running time of CG. Different MxV algorithms are proposed for

GPUs, as summarized in Section 2.1. Matrix sparsity patterns, such as nonzero
density and variance of number of nonzeros in rows/columns, greatly affect algo-
rithms performance. As a result, different algorithms may be faster for different
matrices, according to the matrix processed.

We compared NVIDIAs six MxV algorithms4), whose implementations are pub-
licly available, and our MxV algorithm9) for 50 symmetric and positive definite
matrices chosen from University of Florida Sparse Matrix Collection20) on a Tesla
GPU. For 28 matrices HYB algorithm is faster, for 16 matrices our JDS-based
algorithm is faster, for 4 matrices CSR vector algorithm is faster and for 2 ma-
trices ELL algorithm is faster. Algorithms performance difference is usually too
big. The fastest algorithm for a matrix instance may be several times faster than
the second fastest algorithm for the same matrix.

In the implementation of CG, we use the three fastest MxV kernels: NVIDIAs
HYB and CSR vector, and our JDS-based kernels. Before CG iterations, the
fastest within these three kernels for the problem is chosen to be the actual
running MxV kernel during iterations. We run kernels several times before CG
iterations and select the fastest. This selection cost is negligible since until solu-
tion usually there are thousands of inner loop iterations, each consists one MxV.

Not only MxV, but all operations of the inner CG solver other than scalar
division and square root operations are efficiently implemented on the GPU. Note
that division and square root operations are not standard compliant with IEEE
754 in CUDA. Dot product operation is implemented as in the parallel reduction
example of NVIDIAs CUDA SDK14). For SAXPY operations y ← y + ax, where
x and y are vectors and a is a scalar, each output element yi is calculated by a
different thread. We use L2 norm for convergence, hence there is no need for an
extra norm operation. Instead one square root operation is enough.

4. Parallel CG on Multi-GPU-enhanced cluster

We propose a mixed MPI/CPU-thread/GPU data-parallel algorithm on a GPU
cluster, in which each node has multiple GPUs and at least one CPU. CUDA
supports multiple GPUs run together for an application in a node. For each GPU

3 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

CG(bkl, xkl, . . .) //32 bit inner solver
r0kl ← bkl

p0
kl ← bkl

x0
kl ← 0

γ prevkl ← DotProduct(r0kl, r
0
kl)

for i ← 1 to iterLimit do
GPUSendsToHost(pi−1

kl , h pi−1
kl)

if myCPUThreadId = 0 then
AsyncExchangeBtwNodes(h pi−1

kl)
qi−1
kl ← MxV(Alocal

kl ,pi−1
kl)

SynchronizeThreads()
GPUrecvsFromHost(pi−1,h pi−1)
qi−1
kl ← qi−1

kl + MxV(Acoupling
kl ,pi−1)

αkl ← DotProduct(pi−1
kl ,qi−1

kl)
γ prev ← AllReduceSum(γ prevkl)
α ← γ prev/AllReduceSum(αkl)
xi
kl ← VectorSum(xi−1

kl , αpi−1
kl)

rikl ← VectorSum(ri−1
kl ,−αqi−1

kl)
γkl ← DotProduct(rikl, r

i
kl)

γ ← AllReduceSum(γkl)
β ← γ/γ prev

γ prev ← γ

pi
kl ← VectorSum(rikl, βpi−1

kl)
σ ← sqrt(γ) //L2 norm of ri

if σ < ε then
break

done

Fig. 1 Parallel CG algorithm for CPU thread l of node k. Outer loop is implemented in
similar way and calls this method as the single precision solver.

in a node, CPU core(s) hold one thread and organizes communication required
by that GPU. MPI calls between nodes are held by one thread from each node.
We use non-blocking MPI calls, so that inter-node communications with GPU
computations of communicating threads can be overlapped.

The parallel CG algorithm for node k and CPU thread l, which controls lth

GPU of that node (Gkl), is given in Fig. 1. It runs as the single precision inner
solver of the mixed precision algorithm explained in Section 2.2. In Fig. 1, scalars
are written in Greek letters, vectors in Latin letters and capital A denotes the
iteration matrix. For scalars, subscript kl denotes the partial result computed in
CPU thread l of node k. For matrix A and vector variables, subscript kl denotes
the portion of the matrix or vector stored by GPU Gkl. Row-wise decomposition
of A and vector partitionings are conformable, i.e., if row i of A is assigned to
Gkl, then ith entries of all vectors are also assigned to Gkl. Superscripts local and
coupling over matrix A respectively denote submatrices consisting only columns
that do not and do incur communication during MxV, i.e., columns correspond-
ing to local input vector entries (pkl) and communicating input vector entries.
Superscripts over vectors are iteration numbers. Function calls written with bold
fonts are executed on GPU Gkl. Function calls with italic fonts denote commu-
nication. MxV, DotProduct and VectorSum respectively correspond to sparse
matrix-vector multiplication, vector dot product and SAXPY operations, whose
algorithmic details are explained in the previous section. Vector dot products
are computed on GPUs and the scalar result is copied to the nodes host memory.
AllReduceSum computes the global sum of the partial scalar results. Global
sums are computed first by thread synchronization within each node, then by
global MPI communications between nodes. Solver iterates for iterLimit num-
ber of iterations, unless residual converges. The optimal value of iterLimit is
not known. As in6), we choose it to be the number of iterations it took to do a
fixed relative reduction for the residual in the first iteration.

Automatic selection of MxV kernel is done in a similar way with the sequential
algorithm. Before execution of the CG solver, each CPU thread executes three
MxV algorithms for its local and coupling submatrices -without communication-
several times on its assigned GPU and chooses the fastest one as the MxV kernel
during iterations. Hence, GPUs within a node may execute different MxV kernels,

4 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

according to the sparsity patterns of their assigned submatrices. Note that,
selected MxV kernel does not affect the total volume of communication; since the
submatrix and vector to be multiplied does not change, but the sparse storage
format and multiplication algorithm change.

The communication on a GPU cluster is three-fold: communication between
GPU cores within each GPU, between GPUs and host CPU(s) in a node, and
between nodes. First type of communication is handled in kernels running on
GPUs, whose details are given in previous section. Between GPUs and host
CPUs, communication occurs for copying scalar results of dot products computed
by GPUs to host memory. Also, GPUs communicate host CPUs for exchanging
input vector (p) entries of MxV. Host CPUs of each node hold an array bf h p
in main memory to coordinate the communication between GPUs. This array is
also used for inter-node communication. Each GPU copies its p vector entries
that are required for MxV by other GPUs of the cluster to the corresponding
indices of its host h p vector. This operation is called GPUsendsToHost in
the figure. Once each GPU sends vector entries that are required by others,
MPI communication between nodes are held. Threads with id 0 of each node
are responsible for exchanging p vector entries among nodes. Threads with id 0
overlap computation of their local MxV on their assigned GPU with asynchronous
inter-node communication. Before each GPU in a node receive p vector entries
that they require for coupling MxV, threads in that node synchronizes to be
sure that thread 0 is done with inter-node communication. After GPUs receive
required vector entries (GPUrecvsFromHost) MxV can be executed for coupling
submatrix of the sparse matrix bf A. The result is added to the output vector
computed beforehand by MxV for local submatrix.

The algorithm explained in the figure runs for any conformable distribution
of the matrix and vector variables to processors. For reduction of communica-
tion incurred by MxV and load balancing, we use hypergraph-partitioning-based
decomposition7).

5. Experimental results

We evaluate performance of proposed CG algorithm for multi-GPU clusters
on TSUBAME supercomputer17)16). Each node of TSUBAME has 8 AMD 2.4

GHz Opteron dual core processors, 2 NVIDIA Tesla GPUs and 32 GB of main
memory. We use 1 CPU (2 cores) from each node in our multi-GPU cluster ex-
periments, where each core runs one thread and is responsible for controlling one
GPU. Each Tesla GPU contains 30 streaming multiprocessors, each with 8 cores
(240 cores in total) and 4 GB of device memory. Nodes are connected with high
speed 4x SDR InfiniBand dual rail network, providing 20 Gbps bandwidth per
node. Linux version 2.6.16 OS is installed on nodes. C++ programming language
is used for coding. CUDA version 2.2 is used for programming GPUs, pthread
library is used for CPU threading and Voltaire MPI is used for MPI communi-
cation between nodes. For partitioning hypergraphs, recursive partitioning tool
PaToH7) is used, which runs sequentially on the CPU. 11 unstructured sparse
matrices that are symmetric and positive definite with real value entries from
Sparse Matrix Collection of University of Florida20) are used for performance
evaluation.

Hypergraph partitioning is executed before CG solver as a preprocessing for
efficient parallel multi-GPU solver. The preprocessing cost for hypergraph par-
titioning is amortized during CG iterations. The preprocessing cost for 8-way
hypergraph partitioning is worth 60 to 310 sequential single precision CG itera-
tions on the CPU for the matrices in our dataset.

Several refinement iterations in double precision on GPUs are executed for
thousands of inner solver iterations. Hence CG solver performance is almost equal
to the single precision inner solver performance. Solver performance in Gflops
using hierarchical hypergraph-partitioning-based model is given in Fig. 2. In the
figure, we compare sequential and parallel solver performances. “1 GPU”denotes
sequential performance using single GPU and “n×2GPUs”denotes performance
on n nodes, each having 2 GPUs. Matrices are sorted according to the number of
nonzeros they contain on x axis. For each loop iteration, executing 1 MxV and 5
vector operations, 2 × nnz + 10 × n flops are counted, where nnz is the number
of nonzeros and n is the dimension of the matrix. Gflops is the count of billions
of flops per second.

As seen in the figure, up to 152 Gflops of CG performance is achieved. Bigger
matrices better scale with the increase in number of nodes, because workloads
become insufficient to utilize GPU resources for smaller matrices and communi-

5 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

Fig. 2 CG Performance for different matrices and different number of nodes. Matrices are
sorted in increasing number of nonzeros they contain.

cation time dominates. Reduction of communication time is the most important
factor for performance. Without using hypergraph-partitioning-based models,
we obtain almost no speedup. For ldoor matrix, which we obtain best CG per-
formance; on 16 nodes only 26,859 words are communicated between nodes for
input vector of MxV, where the dimension of this matrix is 952,203. Local and
coupling MxV computation times (excluding communication time) cost 35% of
total solution time for this instance. For crankseg 2, which reveals the worst
performance, 117,127 words are communicated between 16 nodes, where the di-
mension of this matrix is 63,838. For this instance, total MxV computation time
takes 25% of total solution time. Note that, crankseg 2 is our densest matrix and
variation of number of nonzeros within rows for this matrix is very high, which
are two main reasons for relatively higher communication volume incurred. For
the smallest matrix in the dataset, tmt sym, the ratio of MxV computation time
to total time is 15% and for the biggest matrix, audikw 1, the ratio is 38%, on 16
nodes. These numbers confirm that as the matrix gets smaller with increasing
number of GPUs, communication time dominates.

Fig. 3 CG performance on SMP and GPU clusters using hypergraph-partitioning-based
decomposition for the fastest and slowest matrix instances.

Chosen MxV kernel is another factor that affects the performance of the solver.
We observed that for all 11 matrices, HYB is the fastest sequential MxV kernel.
However, on 16 nodes, it is interesting to observe that none of the GPUs select
HYB as its MxV kernel, for all matrices. For 8 matrices all 32 GPUs select
JDS-based kernel, for 2 matrices all GPUs select CSR vector kernel and for
inline 1 matrix 25 GPUs select JDS-based kernel and 7 GPUs select CSR vector
algorithm. Hence, as demonstrated, HYB kernel is effective sequentially, but
it is not desirable for row-wise parallelization. The reason for that is not the
partitioning techniques that we have explained, but decomposition itself. During
our experiments with a set of matrices that we do not report all of them in this
section, we have found out that HYB performance is worse for smaller matrices.

Strong scaling comparisons on GPUs and CPUs shows that GPUs are superior
to CPUs at their performance saturation points. We used largest symmetric and
positive definite matrices from the University of Florida Sparse Matrix Collec-
tion; however sizes of the matrices are still insufficient to obtain speedups for
32 nodes over 16 nodes. Performance of the solver is bounded by the network
communication between nodes for number of nodes beyond 16. We demonstrate
this by comparing CG performance on multi-GPU cluster with SMP cluster on
TSUBAME using exactly same network between nodes, while theoretical peak
flops per node is completely different. Single precision peak performance of 16
CPU cores in a node is 153.6 Gflops (2.4 × 4 × 2 × 8) and 2 GPUs in a node
is 2073.6 Gflops (1.44 × 3 × 240 × 2). Comparison results are given in Fig. 3.

6 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

For CPU implementation, pthread library is used for parallelization among cores
within a node. As in the GPU case, only one thread from each node is responsible
for non-blocking MPI communication. Communication is minimized using hier-
archical partitioning as explained for multi-GPU clusters. Hence, using two cores
per node, exactly same submatrices are assigned to cores, instead of GPUs, and
total communication volume between cores is same with the multi-GPU cluster
implementation. Regardless of the number of cores per node, inter-node commu-
nication volume is same, using hierarchical partitioning. We experiment double
and single precision CG with 2 CPU cores per node. We also experiment single
precision CG with 16 cores per node. Hence, we use up to 512 CPU cores from
TSUBAME.

In Fig. 3, we only draw comparisons for two matrices in the border, but char-
acters of the performance ratios for other matrices are almost same. We observe
fall-offs for 16 cores per node on 32 nodes, just like the GPU case. Performance
scales for 2 CPU cores per node, because the computation can be still considered
as slow compared to network communication time. SMP cluster performance is
always below of the multi-GPU cluster performance with the same underlying
network. For all matrices in our dataset, average single precision CG performance
is 21 Gflops for 512 cores and 46 Gflops for 64 GPUs.

For 16 nodes of GPU cluster, peak single precision performance is around 32
Tflops, where we achieve up to 152 Gflops, only 0.5% of the theoretical peak. For
single GPU, we achieve up to 15.6 Gflops performance over 1Tflops theoretical
peak, which is around 1.5% of peak. This is because performance of the sparse
solver is bounded by the peak memory bandwidth, instead of peak flops. Actu-
ally, we achieve up to 87 GB/s effective memory bandwidth using texture cache
memory on single GPU, whose theoretical device memory bandwidth is 102.4
GB/s. Assuming cache hit rate of 100%, we achieve device memory bandwidth
up to 60 GB/s on single GPU. For 16 nodes and 32 GPUs, our peak effective
memory bandwidth utilization is 838 GB/s using texture cache. Assuming 100%
cache hit rate, we achieve up to 586 GB/s device memory bandwidth utilization,
which is around 18% for theoretical bound of 3.3 TB/s.

3.8 Gflops of CG performance is reported using NAS Parallel Benchmark (NPB)
with class B matrix2) for a Myrinet interconnected 128 node Pentium 4 1.7 GHz

cluster21). Using same number of cores (8 nodes × 16 cores), MPI-based NPB
with class B matrix achieves 4.8 Gflops in TSUBAME. Former utilizes 0.87%
of the peak flops rate and TSUBAME utilizes 0.78%. Using 32 nodes, each
having 2 CPU cores, TSUBAME achieves 5.5 Gflops NPB CG performance,
utilizing 1.8% of peak flop performance. The reason for TSUBAME to achieve
less performance with 128 cores is the large communication volume incurred by
randomly generated class B matrix, although the computation density of class B
matrix is very high per row compared to the ones in our dataset. On the other
hand, on 32×2 cores our CPU implementation with reduction of communication
by hypergraph-partitioning-based models achieves average of 11.6 Gflops double
precision performance for all 11 matrices in our dataset, utilizing 3.8% of peak
flops.

6. Conclusion

We have explained a scalable implementation of a mixed precision Conjugate
Gradient solver for unstructured problems on a cluster, in which each node of
the cluster contains multiple GPUs with double precision support. Although we
have explained proposed techniques on a CG solver, they can be easily adopted
to other sparse iterative solvers. We have integrated several fast kernels for basic
operations of CG. CPU-GPU organization and intra- and inter-node communica-
tions are successfully handled in the parallel algorithm. Network communication
is bottleneck in performance of parallel sparse solvers on traditional clusters. In-
terconnection between compute nodes of a GPU cluster -compared to fast GPU
computation units- is even much slower for obtaining scalability. However, we
have shown that scalability can be still obtained by application of techniques
that are traditionally used for distributed memory systems. We have adopted
state-of-the-art 1D matrix decomposition models based on hypergraph partition-
ing for communication reduction and load balancing among GPUs. We have
shown strong scalability up to 16 nodes, each node having 2 Tesla GPUs, us-
ing well-known unstructured matrices in our dataset. We have also shown that
SMP cluster implementations could not catch the performance of the multi-GPU
cluster performance, with exactly same communication network.

Hypergraph partitioning is executed as a preprocessing to CG solver. There

7 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

IPSJ SIG Technical Report

are publicly available, effective and efficient partitioning tools for hypergraphs,
but they are implemented on CPUs. Peak performance of GPUs is much higher
than that of CPUs. Hence, preprocessing incurred by partitioning might be more
severe for applications running on GPU - although in our case, preprocessing cost
is amortized since there are many CG iterations. There are publicly available
parallel partitioning tools which might be an alternative to reduce preprocessing
time. Actually, it is required to use a parallel partitioning tool for bigger matrices,
in case of insufficient single-node memory. Still, there is a gap in performance
scales of GPU computing and parallel partitioning tools that are developed for
CPUs.

References

1) Advanced Micro Devices, Inc.: ATI CTM Guide Technical Reference Manual ,
(2006).

2) Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V. and Weerantunga, S.: The NAS Parallel Benchmarks, RNR Technical
Report RNR-94-007 (1994).

3) Baskaran, M.M. and Bordawekar, R.: Optimizing Sparse Matrix-Vector Multipli-
cation on GPUs, IBM Research Report, RC24704 (2008).

4) Bell, N. and Garland, M.: Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors, Proc. SC ’09: ACM/IEEE Conference on Super-
computing , Portland, OR, USA (2009).

5) Buatois, L., Caumon, G. and Lévy, B.: Concurrent Number Cruncher: An Efficient
Linear Solver on the GPU, Proc. HPCC 2007, LNCS 4782 , pp. 358–371 (2007).

6) Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P. and Tomov, S.: Using Mixed
Precision for Sparse Matrix Computations to Enhance the Performance while
Achieving 64-bit Accuracy, ACM Transactions on Mathematical Software, Vol.34,
No.4 (2008).

7) Catalyurek, U.V. and Aykanat, C.: Hypergraph-Partitioning-Based Decomposi-
tion for Parallel Sparse-Matrix Vector Multiplication, IEEE Transactions on Par-
allel and Distributed Systems, Vol.10, No.7, pp. 673–693 (1999).

8) Che, S., Li, J., Sheaffer, J.W., Skadron, K. and Lach J.: Accelerating Compute
Intensive Applications with GPUs and FPGAs, Proc. IEEE Symposium on Appli-
cation Specific Processors (SASP) (2008).

9) Cevahir, A., Nukada, A. and Matsuoka, S.: Fast Conjugate Gradients with Multiple
GPUs, Lecture Notes in Computer Scienc, Vol.5544, Springer, pp. 898–903 (2009).

10) Fan, Z., Qiu, F., Kaufman, A. and Stover, S.Y.: GPU Cluster for High Performance

Computing, Proc. SC04: ACM/IEEE Conference on Supercomputing (2004).
11) Golub, G.H. and Ye, Q.: Inexact Preconditioned Conjugate Gradient Method

with Inner-Outer Iterations, SIAM Journal on Scientific Computing , Vol.21, No.4,
pp.1305–310 (2000).

12) Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S.H.M.,
Grajewski, M. and Turek, S.: Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster, Parallel Computing, Vol.33, No.10–11, pp. 685–699 (2007).

13) GraphStream Inc.: GraphStream Scalable Computing Platforms, http://www.

graphstream.com (accessed 2009).
14) Harris, M.: Optimizing Parallel Reduction in CUDA, NVIDIA Developer Technol-

ogy (2007).
15) Hartley, T.D.R., Catalyurek, U.V., Ruiz, A., Ujaldon, M., Igual, F. amd Mayo,

R.: Biomedical Image Analysis on a Cooperative Cluster of GPUs and Multicores,
Proc. 22nd ACM International Conference on Supercomputing , pp.15–25 (2008).

16) Matsuoka, S.: The Road to TSUBAME and Beyond, Petascale Computing: Algo-
rithms and Applications, Chapman & Hall Crc Computational Science Series, pp.
289–310 (2008).

17) Matsuoka, S., Aoki, T., Endo, T., Nukada, A., Kato, T. and Hasegawa, A.: GPU-
accelerated Computing – From Hype to Mainstream, the Rebirth of Vector Com-
puting, J. Physics: Conference Series 180 , (2009).

18) NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide (2007).

19) Saad, Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Computation, Tech.
Rep. CSRD TR 1029 , University of Illionis, Urbana, IL (1990).

20) University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/

research/sparse/matrices/.
21) Yi, H., Hong, J., Park, H. and Lee, S.: Scalability of a Tera-Scale Linux-Based

Clusters for Parallel ab initio Molecular Dynamics Applications, Proc. Third LCI
Conference (2002).

8 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-186 No.15
Vol.2009-HPC-123 No.15

2009/12/1

