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順列制約をみたす模調要求をもつ正モジュラシステム
について

石 井 利 昌†1 牧 野 和 久†2

有限集合 V，正モジュラ関数 f : 2V → R および模調関数 r : 2V → R からなる
システム (V, f, r) において，すべての X ⊆ V − R に対し f(X) ≥ r(X) が成り立
つような要素数最小の集合 R ⊆ V を求める問題を考える．この問題は横断問題と呼
ばれ，Sakashita ら6) により無向グラフまたは無向ハイパーグラフにおける辺連結度
要求をもつ供給点配置問題および外部ネットワーク問題を一般化した枠組みとして導
入された．
本論文では，任意の模調関数 r が r(X) = max{pr(v, W ) | v ∈ X ⊆ V −W} を

みたす関数 pr : V × 2V → R により特徴づけられることを示し，さらに供給点配置
問題に対する Tamura らの結果8) を一般化し, r が π-単調であるとき横断問題が簡
潔な貪欲法により解けることを示す．ここで，すべての W ⊆ V と π(u) ≥ π(v) で
あるすべての 2 要素 u, v ∈ V に対し pr(u, W ) ≥ pr(v, W ) が成り立つ V の順列 π

が存在するとき，r は π-単調であるという．
また，r が π-単調であるときの横断問題における極小不足集合族 W に関する構造

的性質も示す．すなわち，すべての点 u とその親 v に対し π(u) ≤ π(v) が成り立つ
ような W に対する基本木が存在することを示す．この性質は，供給点配置問題に対
する貪欲法の正当性の別の証明を与える．
さらに，フラクショナル横断問題が，横断問題に対するアルゴリズムと同様の手法

により解けることを示す．

Posi-modular Systems with Modulotone Requirements
under Permutation Constraints

Toshimasa Ishii†1 and Kazuhisa Makino†2

Given a system (V, f, r) on a finite set V consisting of a posi-modular function
f : 2V → R and a modulotone function r : 2V → R, we consider the problem of
finding a minimum set R ⊆ V such that f(X) ≥ r(X) for all X ⊆ V −R. The
problem, called the transversal problem, was introduced by Sakashita et al.6)

as a natural generalization of the source location problem and external net-

work problem with edge-connectivity requirements in undirected graphs and
hypergraphs.

By generalizing8) for the source location problem, we show that the
transversal problem can be solved by a simple greedy algorithm if r is π-
monotone, where a modulotone function r is π-monotone if there exists a per-
mutation π of V such that the function pr : V × 2V → R associated with r
satisfies pr(u, W ) ≥ pr(v, W ) for all W ⊆ V and u, v ∈ V with π(u) ≥ π(v).
Here we show that any modulotone function r can be characterized by pr as
r(X) = max{pr(v, W ) | v ∈ X ⊆ V −W}.

We also show the structural properties on the minimal deficient sets W for
the transversal problem for π-monotone function r, i.e., there exists a basic tree
T for W such that π(u) ≤ π(v) for all arcs (u, v) in T , which, as a corollary,
gives an alternative proof for the correctness of the greedy algorithm for the
source location problem.

Furthermore, we show that a fractional version of the transversal problem
can be solved by the algorithm similar to the one for the transversal problem.

1. Introduction

Given a system (V, f, r) on a finite set V consisting of a posi-modular function

f : 2V → R and a modulotone function r : 2V → R with f(∅) ≥ r(∅), we consider

the following problem:

Minimize |R|
subject to f(X) ≥ r(X) for all X ⊆ V −R

R ⊆ V.

(1)

Here f(∅) ≥ r(∅) is necessary for the problem to have a feasible solution. This prob-

lem was first introduced by Sakashita et al.6) as a generalized framework of the source

location problem and external network problem with edge-connectivity requirements

in undirected graphs and hypergraphs3),5),8). They showed that the family of minimal

deficient sets of (V, f, r) forms a tree hypergraph, and that conversely any tree hyper-

graph can be represented by minimal deficient sets of (V, f, r) for some posi-modular

function f and some modulotone function r, where a set X ⊆ V with f(X) < r(X)
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is called deficient. Note that Problem (1) asks to find a minimum set hitting all

deficient sets. By combining these results with properties shown in2),3), it follows

that Problem (1) can be solved in O(|V |3ρ(|V |)) time, where ρ(|V |) is the time re-

quired to check the feasibility (i.e., a given R ⊆ V satisfies f(X) ≥ r(X) for all

X ⊆ V − R), while it is still open whether the feasibility can be checked in poly-

nomial time. They also gave a polynomial time algorithm for Problem (1) by utilizing

a basic tree for the tree hypergraph, under the assumption that f is submodular and

r is given by either r(X) = max{d1(v) | v ∈ X} for a function d1 : V → R+ or

r(X) = max{d2(u, v) | u ∈ X, v ∈ V − X} for a function d2 : V × V → R+. We

here remark that these assumptions are necessary only for executing the algorithm in

polynomial time. Both of the source location problem and external network problem

satisfy these assumptions, and hence are polynomially solvable. On the other hand, it

was shown by Tamura et al.8) that the source location problem can be solved in poly-

nomial time by a much simpler greedy algorithm without using any basic tree for the

tree hypergraph.

Then natural questions arise: (i) is there some relationship between Sakashita et al.’s

algorithm and Tamura et al.’s greedy one? (ii) if so, how can we characterize cases

where such a greedy algorithm works? In this paper, we show that there exists a basic

tree for the family of all minimal deficient sets for which Sakashita et al.’s algorithm can

perform in the same way as Tamura et al.’s algorithm does. In other words, Sakashita

et al.’s algorithm includes Tamura et al.’s one as its special case. Furthermore, we show

that this relationship can be extended to Problem (1) in which a modulotone function

r has a property called π-monotonicity.

The π-monotonicity of a modulotone function is defined as follows. An arbitrary

modulotone function r can be characterized by using a function pr : V ×2V → R, which

is a slight generalization of similar properties shown in4). A modulotone function is

called π-monotone if there exists a permutation π of V such that for all u, v ∈ V and

W ⊆ V − {u, v}, π(u) ≥ π(v) if and only if pr(u, W ) ≥ pr(v, W ). A modulotone

function r in the above source location problem satisfies r(X) = max{d1(v) | v ∈ X},
X ⊆ V for some function d1 : V → R+, and hence is π-monotone. Also, Problem (1)

with a π-monotone modulotone function includes problems whose requirements are

based on a function q on V ; we will discuss these problems later in Subsection 3.2. We

then show that if r is π-monotone, then there exists a tree hypergraph whose basic

tree satisfies π(u) ≤ π(v) for each pair of u and its parent v. This interesting property

enables that Sakashita et al.’s algorithm6) can be executed in a simple greedy manner

without computing any basic tree for the tree hypergraph.

Furthermore, we consider a fractional version of Problem (1):

Minimize x(V )

subject to f(X) + x(X) ≥ r(X) for all X ⊆ V

x : V → R,

(2)

where x(X) =
∑

v∈X
x(v) for all X ⊆ V . This problem can be regarded as a gener-

alization of a capacitated type of the source location problem with edge-connectivity

requirements in undirected graphs. Then we show that Sakashita et al.’s algorithm can

be extended to this problem.

The rest of this paper is organized as follows. In Section 2, after giving basic defini-

tions, we review properties and applications of Problem (1) shown in6). In Section 3, we

define a π-monotonicity of a modulotone function. Furthermore, we show a structural

property of minimal deficient sets of Problem (1) with a π-monotone modulotone func-

tion, which enables a greedy algorithm. Section 4 discusses Problem (2) as a fractional

version of Problem (1). Finally, we give some concluding remarks in Section 5.

2. Preliminaries

Let V be a finite set. For two sets X, Y ⊆ V , we say that X and Y intersect each

other if X ∩ Y 6= ∅, X − Y 6= ∅, and Y −X 6= ∅. For a family E ⊆ 2V , the hypergraph

(V, E) may be written as E simply. Let V (E) denote the vertex set of a hypergraph

E . For a hypergraph E , a subset R ⊆ V is called a transversal (or hitting set) of E if

R ∩ E 6= ∅ for all E ∈ E . A hypergraph E is called a tree hypergraph (or hypertree)

if there exists a tree T with a vertex set V such that each hyperedge in E induces a

subtree of T . We call such a tree T a basic tree for E , and we may regard T as a rooted

tree in describing algorithms. For a subset U of vertices in a tree T , T [U ] denotes the

subgraph of T induced by U . For a vertex v in a rooted tree T , T (v) denotes the subtree
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of T rooted at v.

2.1 Posi-modular Systems

In this subsection, let us review several properties about Problem (1) shown by

Sakashita et al.6). A set function f : 2V → R is called submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (3)

for arbitrary two subsets X, Y of V , and posi-modular if

f(X) + f(Y ) ≥ f(X − Y ) + f(Y −X) (4)

for arbitrary two subsets X, Y of V . A set function r : 2V → R is called modulotone if

for any nonempty subset X of V , there exists an element v ∈ X such that all subsets

Y of X with Y 3 v satisfies r(Y ) ≥ r(X).

Observe that Problem (1) is equivalent to that of asking to find a minimum transver-

sal R of {X ⊆ V | f(X) < r(X)}. A set X ⊆ V is called deficient if f(X) < r(X). A

deficient set X is called minimal if any proper subset Y of X is not deficient. We denote

the family of all minimal deficient sets by W(f, r). It is known that the posi-modular

systems have the following interesting property, where a Sperner family denotes a fam-

ily of sets in V in which arbitrary two distinct sets E, E′ satisfy neither E ⊆ E′ nor

E′ ⊆ E.

Theorem 2.1 6) A Sperner family E ⊆ 2V is a tree hypergraph if and only if

E = W(f, r) holds for a posi-modular function f : 2V → R and a modulotone function

r : 2V → R. 2

By this theorem and properties observed in2),3), it follows that Problem (1) can be

solved in O(|V |3ρ(|V |)) time, where ρ(|V |) is the time required to check the feasibility,

while it is still open whether the feasibility can be checked in polynomial time. On the

other hand, we can solve Problem (1) more efficiently (more precisely, quadratically

faster) by the following algorithm MinTransversal, under the assumption that f is

submodular and r is given as

r(X) =

{
max{d1(v) | v ∈ X} if X 6= ∅
0 if X = ∅,

(5)

for a function d1 : V → R+ or

r(X) =

{
max{d2(u, v) | u ∈ X, v ∈ V −X} if X 6= ∅, V
0 if X = ∅ or V

(6)

for a function d2 : V × V → R+.

Algorithm 1 Algorithm MinTransversal6)

Require: A posi-modular function f : 2V → R, a modulotone function r : 2V → R
with f(∅) ≥ r(∅).

Ensure: A minimum transversal R of W(f, r).

1: Compute a basic tree T for W(f, r).

2: Initialize R := ∅ and U := V .

3: while U 6= ∅ do

4: Choose a leaf v of T [U ] and U := U − {v}.
5: if R ∪ U is not a transversal then

6: R := R ∪ {v}.
7: end if

8: end while

9: Output R as a solution.

It is not difficult to observe that both functions defined as (5) and (6) are modulotone.

Also, we remark that these assumptions are necessary only for executing this algorithm

in polynomial time.

2.2 Applications of Problem (1)

We here introduce the source location problem and the external network problem in

undirected graphs discussed as applications of Problem (1) in6).

Let G = (V, E, c) be an undirected graph with a set V of vertices, a set E of edges,

and a capacity function c : E → R+. Suppose that each vertex v ∈ V has a demand

d1(v) ∈ R+. The source location problem is defined as follows:

Minimize |S|
subject to λG(S, v) ≥ d1(v) for all v ∈ V

S ⊆ V,

(7)

where λG(S, v) denotes the maximum flow value (or edge-connectivity) between S and
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v in G, and we define λG(S, v) = +∞ if v ∈ S. This problem has been studied as a

location problem with requirements measured by a network flow amount or network

connectivity1),5),7),8).

In a multimedia network, a set S of some specified network nodes, such as the so-

called mirror servers, may have functions of offering the same services for users. A

user at a node v can use the service by communicating with at least one node s ∈ S

through a path between s and v. The edge-connectivity between S and v measures the

robustness of the service against network link failures. Thus, location problems with

such a fault-tolerancy can be formulated as the source location problem.

By the max-flow min-cut theorem, it is not difficult to see that the constraint

of Problem (7) is equivalent to u(X) ≥ r(X) for all subsets X of V − S, where

u(X) =
∑{c(u, v) | u ∈ X, v ∈ V − X, (u, v) ∈ E} (i.e., u is a cut function in G)

and r is given as (5). Since u is posi-modular, it follows that Problem (7) is a special

case of Problem (1).

Given an undirected graph G = (V, E, c) and a demand function d2 : V × V → R+,

the external network problem is given by:

Minimize |S|
subject to λG/S(u, v) ≥ d2(u, v) for all u, v ∈ V

S ⊆ V,

(8)

where G/S denotes the graph obtained from G by contracting S into a single vertex s,

and if u ∈ S, we define λG/S(u, v) = λG/S(s, v). This problem has been studied as a

problem of finding access points to some highly reliable external network while taking

into account a network flow amount or connectivity3).

In a communication network N , each pair of nodes may have some requirements

measured by a network flow amount or connectivity. Suppose that we can use a highly

reliable external network N ′ in which neither node nor link failures occurs. Then we

can improve the reliability of N by adding access points to N ′. The problem of asking

to find a minimum set S of access points to N ′ in order to satisfy the connectivity

requirements can be formulated as Problem (8).

Again by the max-flow min-cut theorem, we can see that the constraint of Problem (8)

is equivalent to u(X) ≥ r(X) for all subsets X of V − S, where r is given as (6). Thus,

Problem (8) is also a special case of Problem (1).

Furthermore, since a cut function u is submodular, both problems can be solved in

polynomial time by Algorithm MinTransversal. In particular, for the source location

problem, a much simpler greedy algorithm without using any basic tree for the tree hy-

pergraph was proposed8). This algorithm is described as Algorithm MinSourceSet.

Algorithm 2 Algorithm MinSourceSet8)

Require: An undirected graph G = (V, E, c) and a demand function d1 : V → R+.

Ensure: A minimum set S satisfying λG(S, v) ≥ d1(v) for all v ∈ V .

1: Order vertices of V such that d1(v1) ≤ · · · ≤ d1(vn).

2: Initialize S := ∅ and U := V .

3: for j = 1 to n do

4: U := U − {vj}.
5: if S ∪ U is infeasible then

6: S := S ∪ {vj}.
7: end if

8: end for

9: Output S as a solution.

3. Modulotone Function with π-Monotonicity

From the previous section, we can observe that as for Problem (7), if there exists a

basic tree T for the family W(f, r) of minimal deficient sets such that d1(u) ≤ d1(v)

holds for each pair of a vertex u and its parent v in T , then Algorithm MinTransver-

sal can be executed in the same way as Algorithm MinSourceSet does; that is, in

such cases we need not prepare any basic tree for the tree hypergraph. In this section,

we will prove the existence of such a basic tree in a more general setting.

For this, we first characterize a modulotone function by using a function p : V ×2V →
R in Subsection 3.1. In Subsection 3.2, we define Problem (1) with a function r called
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π-monotone which is a generalization of Problem (7), discuss its applications, and prove

the existence of basic trees for W(f, r) defined as above.

3.1 Characterization of a Modulotone Function

We here show that an arbitrary modulotone function can be characterized by using a

function p : V × 2V → R. This is a slight generalization of similar properties observed

in4). For a nonempty subset X of V and a function p : V × 2V → R, let

p∗(X) = max{p(v, U) | U ⊆ V, v ∈ X ⊆ V − U}. (9)

Lemma 3.1 (i) Let p : V × 2V → R be a function. Then, the set function

p∗ : 2V → R given as (9) is modulotone.

(ii) Let p∗ : 2V → R be a modulotone function. Then, there exists a function

p : V × 2V → R that satisfies (9). 2

3.2 π-Monotonicity

For a modulotone function r, we denote by pr a function p : V × 2V → R such that r

is given as (9). A modulotone function r is called π-monotone if there exist a function

pr and a permutation π : V → [|V |] of V such that for all u, v ∈ V and U ⊆ V −{u, v},
π(u) ≥ π(v) if and only if pr(u, U) ≥ pr(v, U). In this section, we focus on Problem (1)

in the case where r is π-monotone.

We first observe that the function r defined as (5) is π-monotone. Let pr(v, U) = d1(v)

for all v ∈ V and U ⊆ V , and π be a permutation of V such that π(u) ≥ π(v) if and only

if d1(u) ≥ d1(v) for each pair of two vertices u and v. Thus, r is clearly π-monotone.

It follows that Problem (7) is a special case of Problem (1) with a π-monotone r.

For the function r defined as (6), if d2(u, v) is defined as a function of (q(u), q(v))

such as q(u)+q(v) or q(u)q(v) for a given function q : V → R, then we can observe that

r is π-monotone. For example, it is natural to consider a situation where a user who

pays more cost (or money) can communicate with a higher reliablity; d2(u, v) may be

considered as a value proportional to q(u)+q(v) where q(u) is a payment of a user u. In

another situation where each node u corresponds to a city whose population is q(u), the

reliablility requirement between two cities u and v may be assumed to be proportional

to q(u)q(v). In these settings, Problem (8) becomes a special case of Problem (1) with

a π-monotone r.

On the other hand, we remark that even if r is given as (6), then r is not necessar-

ily π-monotone. Consider pr in the case where V = {v1, v2, v3, v4}, d2(v1, v2) = 1,

d2(v3, v4) = 2, and d2(vi, vj) = 0 otherwise. For X1 = {v1, v3}, pr(v1, U) ≤ 1

holds for all nonempty subsets U of V − X1, since otherwise r(v1) > 2, a contra-

diction. It follows by r(X1) = 2 that pr(v3, U
′) = 2 for some U ′ ⊆ V − X1. For

X2 = {v1, v3, v4}, pr(v, V − X2 (= {v2})) = 0 for all v ∈ {v3, v4} by r({v1, v2}) = 0.

It follows by r(X2) = 1 that pr(v1, V −X2) = 1. Thus, by pr(v3, U
′) > pr(v1, U

′) and

pr(v3, V −X2) < pr(v1, V −X2), we can see that this r is not π-monotone.

In the rest of this subsection, we will show the following interesting structural prop-

erty about W(f, r).

Theorem 3.2 For a posi-modular function f : 2V → R and a π-monotone modulo-

tone function r : 2V → R, there exists a basic tree T for E = W(f, r) (which is a tree

hypergraph) such that for any pair of two vertices u and v in T ,

if u is a child of v, then π(u) ≤ π(v). (10)

This property enables us to execute Algorithm MinTransversal greedily based on π

without any basic tree forW(f, r). Indeed, if we pick up all elements in V in nondecreas-

ing order of their π-values, then it follows that we pick up a leaf of T [U ] for the current

U in each iteration of the while loop of Algorithm MinTransversal. Also notice that

this greedy procedure based on π is a generalization of Algorithm MinSourceSet.

Corollary 3.3 If a modulotone function r is π-monotone, then Problem (1) can be

solved in a greedy manner based on π as described in Algorithm 3. 2

Before proving this theorem, we show several preparatory lemmas. For a set X ⊆ V ,

let π(X) = max{π(v) | v ∈ X}.
Lemma 3.4 If W1 and W2 in W(f, r) satisfy W1 ∩W2 6= ∅, then W1 and W2 inter-

sect each other and we have π(W1 ∩W2) > π(W1−W2) or π(W1 ∩W2) > π(W2−W1).

2

Lemma 3.5 Let W = {W1, W2, . . . , Wp} be a family of sets in W(f, r) with

W1 ∩ W2 ∩ . . . ∩ Wp 6= ∅. Then there exists a set Wq ∈ W such that all elements

w ∈ Wq with π(w) = π(Wq) are contained in W1 ∩W2 ∩ . . . ∩Wp. 2

Proof of Theorem 3.2. Let E be a tree hypergraph with E = W(f, r) and T1 be its basic

tree. Let vr be a vertex with the maximum π-value (i.e., π(vr) = max{π(v) | v ∈ V })
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Algorithm 3 Algorithm MinTransversal2

1: Order elements of V such that π1(v1) ≤ · · · ≤ π1(vn).

2: Initialize S := ∅ and U := V .

3: for j = 1 to n do

4: U := U − {vj}.
5: if S ∪ U is infeasible then

6: S := S ∪ {vj}.
7: end if

8: end for

9: Output S as a solution.

and regard T1 as a tree rooted at vr. Assume that T1 does not satisfy (10). Let u, v, and

w be three vertices in T1 such that u = pT1(v), v = pT1(w), π(u) ≥ π(v) < π(w), and

depth(w; T1) is the minimum, where pT (x) denotes the parent of x in T , and depth(x; T )

denotes the length of the simple path connecting r and x in T rooted at r. For a tree

T rooted at r, define FT = {(x, pT (x)) | π(x) > π(pT (x))}, and a potential function

Φ(T ) = depth(x∗T ; T ) +
∑

x: (x,pT (x))∈FT

n(π(x)− π(pT (x)),

where n = |V | and x∗T is a vertex x with (x, pT (x)) ∈ FT such that depth(x; T ) is

the minimum. Notice that if (10) is satisfied, Φ(T ) = 0, otherwise Φ(T ) > 0. Be-

low, we will prove this theorem by showing the existence of a basic tree T ′ for W(f, r)

such that Φ(T ′) < Φ(T1). Let C(v) denote the set of all children of v other than w

in T1, and W∗ denote the family of sets in W(f, r) containing v. Partition W∗ into

X1 = {X ∈ W(f, r) | v, w ∈ X, u /∈ X, C(v) ∩ X 6= ∅}, X2 = {X ∈ W(f, r) | v, w ∈
X, u /∈ X, C(v) ∩ X = ∅}, Y1 = {X ∈ W(f, r) | u, v ∈ X, w /∈ X, C(v) ∩ X 6= ∅},
Y2 = {X ∈ W(f, r) | u, v ∈ X, w /∈ X, C(v) ∩ X = ∅}, Z1 = {X ∈ W(f, r) | u, v, w ∈
X, C(v) ∩ X 6= ∅}, and Z2 = {X ∈ W(f, r) | u, v, w ∈ X, C(v) ∩ X = ∅}. Notice

that every two sets in W∗ intersect each other since every set is a minimal deficient set.

There are the following three possible cases: (Case-1) X1∪X2 = ∅, (Case-2) Y1∪Y2 = ∅,
and (Case-3) otherwise.

(Case-1) Let T2 denote the tree from T1 by deleting the edge (v, w) and adding a new

edge connecting u and w (i.e., pT2(w) := u). T2 is also a basic tree for W(f, r) because

otherwise there exists a set X ∈ W(f, r) with v, w ∈ X and u /∈ X, contradicting

X1 ∪ X2 = ∅. Also, we can observe that Φ(T2) < Φ(T1). Indeed, if π(u) < π(w), then

we have Φ(T2) − Φ(T1) = depth(w; T2) − depth(w; T1) + n(−π(u) + π(v)) < 0 because

x∗T1 = x∗T2 = w, depth(w; T2) = depth(w; T1) − 1, and π(u) ≥ π(v). If π(u) ≥ π(w),

then we have Φ(T2) − Φ(T1) = depth(x∗T2 ; T2) − depth(w; T1) + n(−π(u) + π(v)) < 0

because depth(x∗T2 ; T2) ≤ n− 1 and π(u) > π(v) (by π(u) ≥ π(w) > π(v)).

(Case-2) Let T2 denote the tree from T1 by deleting the edge (u, v), adding a new

edge connecting u and w (i.e., pT2(w) := u), and making the parent of v the vertex w

(i.e., pT2(v) := w). T2 is also a basic tree for W(f, r) because otherwise there exists a

set X ∈ W(f, r) with u, v ∈ X and w /∈ X, contradicting Y1 ∪ Y2 = ∅.
Also, we can observe that Φ(T2) < Φ(T1). Indeed, if π(u) < π(w), then we have

Φ(T2)−Φ(T1) = depth(w; T2)−depth(w; T1)+n(−π(u)+π(v)) < 0 because x∗T1 = x∗T2 =

w, depth(w; T2) = depth(w; T1)−1, π(u) ≥ π(v), and (v, w) /∈ FT2 . If π(u) ≥ π(w), then

we have Φ(T2)−Φ(T1) = depth(x∗T2 ; T2)− depth(w; T1) + n(−π(u) + π(v)) < 0 because

depth(x∗T2 ; T2) ≤ n− 1, π(u) > π(v) (by π(u) ≥ π(w) > π(v)), and (v, w) /∈ FT2 .

(Case-3) If X2 6= ∅, then X ∈ X2 and Y ∈ Y1 ∪ Y2 satisfy X ∩ Y = {v},
π(X − Y ) ≥ π(w) > π(v) (= π(X ∩ Y )), and π(Y −X) ≥ π(u) ≥ π(v) (= π(X ∩ Y )),

contradicting Lemma 3.4. If Y2 6= ∅, then X ∈ X1∪X2 and Y ∈ Y2 satisfy X∩Y = {v},
π(X−Y ) ≥ π(w) > π(v) (= π(X∩Y )), and π(Y −X) ≥ π(u) ≥ π(v) (= π(X∩Y )), con-

tradicting Lemma 3.4. Hence, assume that X2 = ∅ = Y2. Then the following property

holds, where its proof is omitted due to space limitation.

Claim 3.6 Z2 = ∅. 2

Let Y1 be a set in Y1 and y1 ∈ Y1 be a vertex with π(y1) = π(Y1). We first

claim that π(y1) > π(v). This follows since otherwise π(y1) = π(u) = π(v) (by

π(y1) ≥ π(u) ≥ π(v)) and it follows that for X1 ∈ X1, π(Y1) = π(Y1−X1) = π(X1∩Y1)

(by u ∈ Y1−X1 and v ∈ X1 ∩Y1) and π(X1−Y1) ≥ π(w) > π(v) = π(X1 ∩Y1), imply-

ing that X1 and Y1 would contradict Lemma 3.4. Then if every X ∈ X1 ∪ Z1 contains

y1, then construct the tree T2 from T1 by deleting the edge (v, w), adding a new edge

connecting y1 and w, and making the parent of w the vertex y1 (i.e., pT2(w) := y1).

Observe that in this case, T2 is also a basic tree for E and Φ(T2) < Φ(T1), because
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Φ(T2)−Φ(T1) = depth(x∗T2 ; T2)−depth(w; T1)+n(−π(y1)+π(v)) < 0 by π(y1) > π(v).

Consider the remaining cases. Then, there exists a set X1 ∈ X1 ∪ Z1 with y1 /∈ X1.

Here, we assume that X1 contains a vertex x1 with π(x1) = π(X1) such that all sets

X ∈ X1 ∪ Z1 with y1 /∈ X contains x1 (this is possible by Lemma 3.5). Notice that

π(Y1 − X1) = π(Y1) by y1 ∈ Y1 − X1. Hence, we have π(X1 ∩ Y1) > π(X1 − Y1),

since otherwise (i.e., if π(X1 ∩ Y1) = π(X1)) X1 and Y1 would contradict Lemma 3.4.

Therefore, we have x1 ∈ X1 ∩ Y1.

If every X ∈ X1 ∪ Z1 contains x1, then construct the tree T2 from T1 by deleting

the edge (v, w), adding a new edge connecting x1 and w, and making the parent of

w the vertex x1 (i.e., letting pT2(w) := x1). Observe that in this case, T2 is also a

basic tree for W(f, r) and Φ(T2) < Φ(T1), because π(x1) = π(X1) ≥ π(w) > π(v)

indicates that Φ(T2)− Φ(T1) = depth(x∗T2 ; T2)− depth(w; T1) + n(−π(x1) + π(v)) < 0.

Consider the case where some X2 ∈ X1 ∪ Z1 with x1 /∈ X2. By the choice of X1,

we have y1 ∈ X2. Then, π(X1 ∩ X2) > π(X2 − X1) holds since otherwise (i.e., if

π(X2 −X1) = π(X2)) by x1 ∈ X1 −X2, we have π(X1 −X2) = π(X1) and hence X1

and X2 would contradict Lemma 3.4. Hence, by x1 ∈ X1 ∩ Y1, y1 ∈ X2 and this, we

have π(X1) ≥ π(X1 ∩X2) = π(X2) ≥ π(y1) = π(Y1) ≥ π(x1) = π(X1). It follows that

π(X1) = π(X2) = π(X1 ∩X2) holds, and X1 and X2 would contradict Lemma 3.4. 2

In Algorithm MinSourceSet, if there exist two vertices u and v with d1(u) = d1(v),

then we can choose u before v or vice versa, depending on the sorting in line 1. The

following corollary shows that there exists a basic tree for W(f, r) corresponding to

each of these cases.

Corollary 3.7 Let E = W(f, r) be a tree hypergraph whose basic tree T satisfies

(10), and (v, w) be an edge in T with v = pT (w) and π(v) = π(w). Then there exists

a basic tree T ′ for W(f, r) satisfying (10) such that w = pT ′(v) or v and w have a

common parent in T ′. 2

Finally, we give a much simpler proof of the property that the above greedy algorithm

based on π works. Notice that we scan all elements in nondecreasing order of their π-

values. When we pick up an element v and R ∪U − {v} is not a transversal of W(f, r)

for the current transversal R ∪ U , there exists a minimal deficient set Wv ∈ W(f, r)

such that Wv ∩ U = {v}. Then notice that all elements in Wv other than v have been

scanned and deleted, and this implies that v has the maximum π-value among all el-

ements in Wv; π(v) = π(Wv). It follows that for each v ∈ R, there exists such a set

Wv; let W = {Wv | v ∈ R}. Then we can prove that every two sets in W are disjoint,

which implies that R is a minimum transversal. Indeed, if two sets Wu and Wv satisfy

Wu ∩Wv 6= ∅, then by u ∈ Wu −Wv, π(u) = π(Wu), v ∈ Wv −Wu, and π(v) = π(Wv),

we have π(Wu −Wv) = π(Wu) and π(Wv −Wu) = π(Wv), contradicting Lemma 3.4.

4. Algorithm for Problem (2)

In this section, we consider Problem (2). This can be regarded as a generalization

of a variant of the source location problem; given an undirected graph G = (V, E, c)

and a demand function d1 : V → R+, find an x : V → R+ such that x(X) + u(X) ≥
max{d1(v) | v ∈ X} holds for all nonempty subsets X of V and x(V ) is the minimum.

In applications of multimedia networks, we can locate a mirror server v with an arbi-

trarily finite capacity x(v) and we want to minimize the total capacity x(V ) of servers

to be located. Notice that in a setting discussed in Subsection 2.2, each server to be

located has an infinite capacity.

For f : 2V → R, r : 2V → R, and W(f, r), x : V → R is called a cover of W(f, r) if

x(X) + f(X) ≥ r(X) for all X ⊆ V . Then we can find a minimum cover of W(f, r) by

Algorithm MinCover, similar to Algorithm MinTransversal.

Lemma 4.1 Algorithm MinCover finds a minimum cover x of W(f, r).

Proof. Let x∗ be a function obtained by Algorithm MinCover. Since x∗ is clearly

a cover of W(f, r), we only prove the optimality of x∗. Consider the iteration of the

while loop in which v is chosen. Note that immediately before this iteration starts,

x + x′ is a cover. As a result of line 4, if x + x′ is not a cover, then it follows by line

6 that some set Wv ∈ W(f, r) with v ∈ Wv satisfies x(Wv) + f(Wv) = r(Wv) and

Wv ⊆ V (T (v)). The latter property follows since if W contains the parent u of v, then

x(W ) ≥ x(u) = max{r(W ) | W ∈ W(f, r)} ≥ r(W ), a contradiction.

Then we claim that there exists a family W ⊆ W(f, r) of pairwise disjoint minimal

deficient sets such that each set W ∈ W satisfies x∗(W ) + f(W ) = r(W ) and each v

with x∗(v) > 0 is included in some set in W. Such a family W can be obtained by the
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Algorithm 4 Algorithm MinCover

Require: A posi-modular function f : 2V → R, a modulotone function r : 2V → R
with f(∅) ≥ r(∅).

Ensure: A minimum cover x : V → R of W(f, r).

1: Compute a basic tree T for W(f, r).

2: Initialize x(v) := 0 and x′(v) := max{r(W ) | W ∈ W(f, r)} for all v ∈ V and

U := V .

3: while U 6= ∅ do

4: Choose a leaf v of T [U ], x′(v) := 0, and U := U − {v}.
5: if x + x′ is not a cover then

6: x(v) := max{r(W )− x(W )− f(W ) | W ∈ W(f, r)}.
7: end if

8: end while

9: Output x as a solution.

following procedure (i) and (ii):

(i) Initialize U := {v ∈ V | x∗(v) > 0} and W := ∅.
(ii) While scanning all vertices v in T from the root in breadth-first order, only if

v ∈ U , then W := W ∪ {Wv}, U := U − {u ∈ Wv | x∗(u) > 0}.
It is not difficult to see that every two sets in the resulting W are pairwise dis-

joint because every Wv satisfies Wv ⊆ V (T (v)). Since any cover x satisfies x(V ) ≥∑
W∈W(r(W )− f(W )) = x∗(V ), it follows that x∗ is optimal. 2

Finally, we remark that if f is submodular and r is given as (5) or (6), Algorithm Min-

Cover can be implemented to run in the same complexity as Algorithm MinTransver-

sal. Furthermore, similarly to the discussion in the previous section, if r is π-monotone,

then we can execute it greedily based on π without any basic tree for W(f, r).

5. Concluding Remarks

In this paper, we consider the problem of finding a minimum transversal of a given sys-

tem (V, f, r) on a finite set V consisting of a posi-modular function f and a modulotone

function r with f(∅) ≥ r(∅). We define the π-monotonicity of a modulotone function,

and derive an interesting structural property for a basic tree for W(f, r) under the as-

sumption that r is π-monotone, which enables Algorithm MinTransversal to perform

in the same way as a simple greedy algorithm for the source location problem (i.e., Al-

gorithm MinSourceSet) does. This also shows that Algorithm MinTransversal is a

generalization of Algorithm MinSourceSet. Also, we define a fractional version of the

problem, and show that the discussion about algorithms and properties of the original

problem can be extended to this problem. For both problems, the greedy algorithms

can be implemented to run by checking the feasibility O(|V |) times. On the other hand,

as pointed out in6), it is still open whether the feasibility can be checked in polynomial

time, unless f is submodular and r is given as (5) or (6).
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