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Posi-modular Systems with Modulotone Requirements
under Permutation Constraints

TosHIMASA IsHITT! and KAzZUHISA MAKINOT2

Given a system (V] f,r) on a finite set V' consisting of a posi-modular function
f:2Y — R and a modulotone function 7 : 2" — R, we consider the problem of
finding a minimum set R C V such that f(X) > r(X) for all X CV — R. The
problem, called the transversal problem, was introduced by Sakashita et al.®)
as a natural generalization of the source location problem and external net-

work problem with edge-connectivity requirements in undirected graphs and
hypergraphs.

By generalizing®) for the source location problem, we show that the
transversal problem can be solved by a simple greedy algorithm if r is -
monotone, where a modulotone function r is m-monotone if there exists a per-
mutation 7 of V such that the function p, : V x 2V — R associated with r
satisfies pr(u, W) > pr(v, W) for all W C V and w,v € V with n(u) > 7(v).
Here we show that any modulotone function r can be characterized by p, as
r(X) = max{p,(v, W) |[ve X CV - W}

We also show the structural properties on the minimal deficient sets W for
the transversal problem for m-monotone function r, i.e., there exists a basic tree
T for W such that w(u) < w(v) for all arcs (u,v) in T, which, as a corollary,
gives an alternative proof for the correctness of the greedy algorithm for the
source location problem.

Furthermore, we show that a fractional version of the transversal problem
can be solved by the algorithm similar to the one for the transversal problem.

1. Introduction

Given a system (V) f,r) on a finite set V consisting of a posi-modular function
f :2Y — R and a modulotone function r : 2¥ — R with f(#) > r(@), we consider

the following problem:

Minimize |R|
subject to f(X)>r(X)forall X CV —R (1)

RCV.
Here f(@) > r(0) is necessary for the problem to have a feasible solution. This prob-
lem was first introduced by Sakashita et al.®) as a generalized framework of the source
location problem and external network problem with edge-connectivity requirements

3):5)8)  They showed that the family of minimal

in undirected graphs and hypergraphs
deficient sets of (V, f,r) forms a tree hypergraph, and that conversely any tree hyper-
graph can be represented by minimal deficient sets of (V, f,r) for some posi-modular

function f and some modulotone function r, where a set X C V with f(X) < r(X)
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is called deficient. Note that Problem (1) asks to find a minimum set hitting all

23 it follows

deficient sets. By combining these results with properties shown in
that Problem (1) can be solved in O(|V[®p(|V])) time, where p(|V]) is the time re-
quired to check the feasibility (i.e., a given R C V satisfies f(X) > r(X) for all
X C V — R), while it is still open whether the feasibility can be checked in poly-
nomial time. They also gave a polynomial time algorithm for Problem (1) by utilizing
a basic tree for the tree hypergraph, under the assumption that f is submodular and
r is given by either r(X) = max{di(v) | v € X} for a function d; : V — R4 or
r(X) = max{da(u,v) | u € X,v € V — X} for a function d2 : V. xV — Ry. We
here remark that these assumptions are necessary only for executing the algorithm in
polynomial time. Both of the source location problem and external network problem
satisfy these assumptions, and hence are polynomially solvable. On the other hand, it
was shown by Tamura et al.®) that the source location problem can be solved in poly-
nomial time by a much simpler greedy algorithm without using any basic tree for the
tree hypergraph.

Then natural questions arise: (i) is there some relationship between Sakashita et al.’s
algorithm and Tamura et al.’s greedy one? (ii) if so, how can we characterize cases
where such a greedy algorithm works? In this paper, we show that there exists a basic
tree for the family of all minimal deficient sets for which Sakashita et al.’s algorithm can
perform in the same way as Tamura et al.’s algorithm does. In other words, Sakashita
et al.’s algorithm includes Tamura et al.’s one as its special case. Furthermore, we show
that this relationship can be extended to Problem (1) in which a modulotone function
r has a property called w-monotonicity.

The m-monotonicity of a modulotone function is defined as follows. An arbitrary
modulotone function r can be characterized by using a function p, : V x2YV — R, which
is a slight generalization of similar properties shown in®. A modulotone function is
called m-monotone if there exists a permutation 7 of V' such that for all u,v € V and
W CV —{u,v}, w(u) > «w(v) if and only if pr(u, W) > p,(v,W).

function r in the above source location problem satisfies 7(X) = max{di(v) | v € X},

A modulotone

X C V for some function d; : V — Ry, and hence is m-monotone. Also, Problem (1)

with a m-monotone modulotone function includes problems whose requirements are
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based on a function ¢ on V; we will discuss these problems later in Subsection 3.2. We
then show that if r is m-monotone, then there exists a tree hypergraph whose basic
tree satisfies m(u) < mw(v) for each pair of u and its parent v. This interesting property
enables that Sakashita et al.’s algorithm® can be executed in a simple greedy manner
without computing any basic tree for the tree hypergraph.

Furthermore, we consider a fractional version of Problem (1):

Minimize z(V)
subject to  f(X) +z(X) >r(X) forall X CV (2)

z:V —R,
where z(X) = > _ #(v) for all X C V. This problem can be regarded as a gener-

alization of a capacitated type of the source location problem with edge-connectivity
requirements in undirected graphs. Then we show that Sakashita et al.’s algorithm can
be extended to this problem.

The rest of this paper is organized as follows. In Section 2, after giving basic defini-
tions, we review properties and applications of Problem (1) shown in®. In Section 3, we
define a m-monotonicity of a modulotone function. Furthermore, we show a structural
property of minimal deficient sets of Problem (1) with a m-monotone modulotone func-
tion, which enables a greedy algorithm. Section 4 discusses Problem (2) as a fractional

version of Problem (1). Finally, we give some concluding remarks in Section 5.
2. Preliminaries

Let V be a finite set. For two sets X,Y C V, we say that X and Y intersect each
other if XNY #0, X —Y # 0, and Y — X # (. For a family £ C 2", the hypergraph
(V,€) may be written as £ simply. Let V(€) denote the vertex set of a hypergraph
E. For a hypergraph &, a subset R C V is called a transversal (or hitting set) of £ if
RNE # ( for all E € £ A hypergraph £ is called a tree hypergraph (or hypertree)
if there exists a tree T with a vertex set V such that each hyperedge in £ induces a
subtree of T. We call such a tree T a basic tree for £, and we may regard T as a rooted
tree in describing algorithms. For a subset U of vertices in a tree T, T'[U] denotes the

subgraph of T induced by U. For a vertex v in a rooted tree T, T'(v) denotes the subtree

(© 2009 Information Processing Society of Japan



gooooboooag
IPSJ SIG Technical Report

of T rooted at v.
2.1 Posi-modular Systems

In this subsection, let us review several properties about Problem (1) shown by

Sakashita et al.®. A set function f : 2¥ — R is called submodular if

X))+ )z f(XNY)+ f(XUY) 3)
for arbitrary two subsets X,Y of V', and posi-modular if
X))+ fY) 2 (X =Y)+ (Y - X) (4)

for arbitrary two subsets X,Y of V. A set function r : 2V — R is called modulotone if
for any nonempty subset X of V, there exists an element v € X such that all subsets
Y of X with Y > v satisfies r(Y') > r(X).

Observe that Problem (1) is equivalent to that of asking to find a minimum transver-
sal Rof {X CV | f(X) <r(X)}. Aset X CV is called deficient if f(X) < r(X). A
deficient set X is called minimal if any proper subset Y of X is not deficient. We denote
the family of all minimal deficient sets by W(f,r). It is known that the posi-modular
systems have the following interesting property, where a Sperner family denotes a fam-
ily of sets in V in which arbitrary two distinct sets E, E’ satisfy neither E C E’ nor
E' CE.

Theorem 2.1 © A Sperner family € C 2V is a tree hypergraph if and only if
& = W(f,r) holds for a posi-modular function f :2¥ — R and a modulotone function
r:2¥ - R O
By this theorem and properties observed in?"®, it follows that Problem (1) can be
solved in O(|V[2p(|V])) time, where p(|V|) is the time required to check the feasibility,
while it is still open whether the feasibility can be checked in polynomial time. On the
other hand, we can solve Problem (1) more efficiently (more precisely, quadratically
faster) by the following algorithm MINTRANSVERSAL, under the assumption that f is

submodular and r is given as

max{di(v) |v e X if X #0
rx) = 4 Al ve ) )
0 if X =0,
for a function d; : V' — Ry or
max{dz(u,v) |lue X,veV -X} ifX#0V
r(X) = . (6)
0 ifX=0orV
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for a function da : V x V. — Ry.
Algorithm 1 Algorithm MINTRANSVERSAL®)
Require: A posi-modular function f : 2V — R, a modulotone function r : 2V — R
with f(0) > r(0).
Ensure: A minimum transversal R of W(f,r).
1: Compute a basic tree T' for W(f,r).
2: Initialize R:=0 and U := V.
3: while U # 0 do
4:  Choose a leaf v of T[U] and U := U — {v}.
5. if RUU is not a transversal then
6: R:= RU{v}.
7. end if
8: end while

9: Output R as a solution.

It is not difficult to observe that both functions defined as (5) and (6) are modulotone.
Also, we remark that these assumptions are necessary only for executing this algorithm
in polynomial time.

2.2 Applications of Problem (1)

We here introduce the source location problem and the external network problem in
undirected graphs discussed as applications of Problem (1) in®.

Let G = (V, E, c¢) be an undirected graph with a set V' of vertices, a set E of edges,
and a capacity function ¢ : £ — R4. Suppose that each vertex v € V has a demand

di(v) € R4. The source location problem is defined as follows:

Minimize |S)|
subject to  Ag(S,v) > di(v) for allv € V (7)

ScV,
where Ag(S,v) denotes the maximum flow value (or edge-connectivity) between S and
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v in G, and we define A\g(S,v) = 400 if v € S. This problem has been studied as a
location problem with requirements measured by a network flow amount or network
connectivityl)’s)’7)’8).

In a multimedia network, a set S of some specified network nodes, such as the so-
called mirror servers, may have functions of offering the same services for users. A
user at a node v can use the service by communicating with at least one node s € S
through a path between s and v. The edge-connectivity between S and v measures the
robustness of the service against network link failures. Thus, location problems with
such a fault-tolerancy can be formulated as the source location problem.

By the max-flow min-cut theorem, it is not difficult to see that the constraint
of Problem (7) is equivalent to u(X) > r(X) for all subsets X of V — S, where
w(X) = > {c(u,v) | v € X,v € V—X,(u,v) € E} (i.e., u is a cut function in G)
and r is given as (5). Since u is posi-modular, it follows that Problem (7) is a special
case of Problem (1).

Given an undirected graph G = (V, E, ¢) and a demand function d2 : V X V — Ry,
the external network problem is given by:

Minimize |S]
subject to  Ag/s(u,v) > d2(u,v) for all u,v € V (8)

sScV,
where G/S denotes the graph obtained from G by contracting S into a single vertex s,

and if u € S, we define Ag/g(u,v) = Ag/s(s,v). This problem has been studied as a
problem of finding access points to some highly reliable external network while taking
into account a network flow amount or connectivity3>.

In a communication network N, each pair of nodes may have some requirements
measured by a network flow amount or connectivity. Suppose that we can use a highly
reliable external network N’ in which neither node nor link failures occurs. Then we
can improve the reliability of N by adding access points to N'. The problem of asking
to find a minimum set S of access points to N’ in order to satisfy the connectivity
requirements can be formulated as Problem (8).

Again by the max-flow min-cut theorem, we can see that the constraint of Problem (8)

is equivalent to u(X) > r(X) for all subsets X of V' — S, where r is given as (6). Thus,
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Problem (8) is also a special case of Problem (1).

Furthermore, since a cut function u is submodular, both problems can be solved in
polynomial time by Algorithm MINTRANSVERSAL. In particular, for the source location
problem, a much simpler greedy algorithm without using any basic tree for the tree hy-

pergraph was proposed®. This algorithm is described as Algorithm MINSOURCESET.

Algorithm 2 Algorithm MINSOURCESET®)

Require: An undirected graph G = (V, E, ¢) and a demand function di : V — Ry.
Ensure: A minimum set S satisfying Ag(S,v) > di(v) for all v € V.

1: Order vertices of V' such that di(v1) < -+ < di(vn).

2: Initialize S := 0 and U := V.

3: for j =1tondo

4 U :=U—{v;}.

5. if SUU is infeasible then

6: S:=SuU{v;}.
7. end if
8: end for

9: Output S as a solution.

3. Modulotone Function with m-Monotonicity

From the previous section, we can observe that as for Problem (7), if there exists a
basic tree T for the family W(f,r) of minimal deficient sets such that di(u) < di(v)
holds for each pair of a vertex u and its parent v in T', then Algorithm MINTRANSVER-
SAL can be executed in the same way as Algorithm MINSOURCESET does; that is, in
such cases we need not prepare any basic tree for the tree hypergraph. In this section,
we will prove the existence of such a basic tree in a more general setting.

For this, we first characterize a modulotone function by using a function p : V x 2V —

R in Subsection 3.1. In Subsection 3.2, we define Problem (1) with a function r called

(© 2009 Information Processing Society of Japan
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m-monotone which is a generalization of Problem (7), discuss its applications, and prove
the existence of basic trees for W(f,r) defined as above.

3.1 Characterization of a Modulotone Function

We here show that an arbitrary modulotone function can be characterized by using a
function p : V x 2V — R. This is a slight generalization of similar properties observed
in®. For a nonempty subset X of V and a function p: V x 2V — R, let

p*(X) =max{p(v,U) |[UCV,ve X CV -U}L 9)

Lemma 3.1 (i) Let p : V x 2¥ — R be a function. Then, the set function
p* : 2V — R given as (9) is modulotone.
(ii) Let p*
p:V x 2V — R that satisfies (9). |

3.2 mw-Monotonicity

: 2¥ — R be a modulotone function. Then, there exists a function

For a modulotone function r, we denote by p, a function p : V x 2¥ — R such that r
is given as (9). A modulotone function r is called w-monotone if there exist a function
pr and a permutation 7 : V' — [|V]] of V such that for all u,v € V and U C V — {u, v},
m(uw) > mw(v) if and only if p,(u,U) > pr(v,U). In this section, we focus on Problem (1)
in the case where r is m-monotone.

We first observe that the function r defined as (5) is m-monotone. Let p,(v,U) = d1(v)
forallv € Vand U C V, and 7 be a permutation of V such that 7(u) > 7(v) if and only
if di(u) > di(v) for each pair of two vertices u and v. Thus, r is clearly m-monotone.
It follows that Problem (7) is a special case of Problem (1) with a m-monotone 7.

For the function r defined as (6), if da2(u,v) is defined as a function of (g(u),q(v))
such as g(u) +q(v) or g(u)q(v) for a given function ¢ : V' — R, then we can observe that
r is m-monotone. For example, it is natural to consider a situation where a user who
pays more cost (or money) can communicate with a higher reliablity; da(u,v) may be
considered as a value proportional to g(u)+¢(v) where ¢(u) is a payment of a user u. In
another situation where each node u corresponds to a city whose population is ¢(u), the
reliablility requirement between two cities v and v may be assumed to be proportional
to g(u)g(v). In these settings, Problem (8) becomes a special case of Problem (1) with
a m-monotone 7.

On the other hand, we remark that even if r is given as (6), then r is not necessar-
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ily m-monotone. Consider p, in the case where V. = {vi,v2,vs,v4}, d2(v1,v2) 1,
da(vs,vs) = 2, and da(vi,v;) = 0 otherwise. For X1 = {vi,vs}, pr(vi,U) < 1
holds for all nonempty subsets U of V — X, since otherwise r(vi) > 2, a contra-
diction. It follows by r(X1) = 2 that p,(vs,U’) = 2 for some U' C V — X;. For
X2 = {v1,v3,v4}, pr(v,V — Xo (= {v2})) = 0 for all v € {v3,va} by r({vi,v2}) = 0.
It follows by r(X2) = 1 that p,(v1,V — X2) = 1. Thus, by p,(vs,U’) > p,(v1,U’) and
pr(vs, V — X32) < pr(v1,V — X2), we can see that this r is not m-monotone.

In the rest of this subsection, we will show the following interesting structural prop-
erty about W(f,r).

Theorem 3.2 For a posi-modular function f : 2V — R and a m-monotone modulo-
tone function r : 2V — R, there exists a basic tree T' for £ = W(f,r) (which is a tree
hypergraph) such that for any pair of two vertices v and v in T,

if w is a child of v, then 7(u) < 7(v). (10)
This property enables us to execute Algorithm MINTRANSVERSAL greedily based on m
without any basic tree for W(f, 7). Indeed, if we pick up all elements in V' in nondecreas-
ing order of their w-values, then it follows that we pick up a leaf of T[U] for the current
U in each iteration of the while loop of Algorithm MINTRANSVERSAL. Also notice that
this greedy procedure based on 7 is a generalization of Algorithm MINSOURCESET.

Corollary 3.3 If a modulotone function r is m-monotone, then Problem (1) can be
solved in a greedy manner based on 7 as described in Algorithm 3. O

Before proving this theorem, we show several preparatory lemmas. For a set X C V,
let 7(X) = max{n(v) | v € X}.

Lemma 3.4 If Wi and W> in W(f,r) satisfy W1 N Wa # (), then W1 and W> inter-
sect each other and we have 7(W1 NWa) > n(Wy — Wa) or m(W1NW2) > m(We — Wh).
O

Lemma 3.5 Let W = {Wi,Wa,...,W,} be a family of sets in W(f,r) with
WinWen...nW, # (. Then there exists a set W, € W such that all elements
w € Wy with w(w) = n(W,) are contained in Wi N WanN...NW,. m

Proof of Theorem 3.2. Let £ be a tree hypergraph with & = W(f,r) and T3 be its basic

tree. Let v, be a vertex with the maximum m-value (i.e., 7(v.) = max{r(v) | v € V})

(© 2009 Information Processing Society of Japan
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Algorithm 3 Algorithm MINTRANSVERSAL2

1: Order elements of V such that 71 (v1) < -+ < w1 (vn).
2: Initialize S:=0 and U := V.
3: for j =1tondo

4 U:=U—{v;}.

5. if SUU is infeasible then

6 S:=SuU{v}.

7 end if
8: end for

9: Output S as a solution.

and regard T} as a tree rooted at v,. Assume that 77 does not satisfy (10). Let u, v, and

w be three vertices in T1 such that u = pr, (v), v = pr, (W), w(u) > 7(v) < 7(w), and

depth(w;T1) is the minimum, where pr(x) denotes the parent of  in T, and depth(z; T)

denotes the length of the simple path connecting r and « in T rooted at r. For a tree

T rooted at r, define Fr = {(z,pr(z)) | n(z) > n(pr(z))}, and a potential function
O(T) = depth(er; T)+ Y, nln() = w(pr(),

z: (z,pr(x))EFT
where n = |V| and z7 is a vertex x with (z,pr(z)) € Fr such that depth(z;T) is

the minimum. Notice that if (10) is satisfied, ®(T") = 0, otherwise ®(T) > 0. Be-
low, we will prove this theorem by showing the existence of a basic tree T" for W(f,r)
such that ®(T’) < ®(T1). Let C(v) denote the set of all children of v other than w
in T1, and W* denote the family of sets in W(f,r) containing v. Partition W* into
X ={X eW(f,r) |vywe X,u¢g X,Clo)NX £ 0}, Xo = {X € W(f,7) | v,w €
Xu ¢ X,Clo)ynX =0}, 1 ={X e W(f,r) | y,v € X,w ¢ X,Clv)NX # 0},
Vo ={X e W(f,r) |u,v € X,w ¢ X,Clv)NX =0}, Z1 ={X € W(f,r) | u,v,w €
X,Clv)NX # 0}, and 22 = {X € W(f,7) | u,v,w € X,C(v) N X = 0}. Notice
that every two sets in W* intersect each other since every set is a minimal deficient set.
There are the following three possible cases: (Case-1) X1UX> = 0, (Case-2) Y1 UYVs = 0,
and (Case-3) otherwise.

(Case-1) Let T denote the tree from T by deleting the edge (v, w) and adding a new

Vo0l.2009-AL-127 No.5
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edge connecting u and w (i.e., pr, (w) := u). T» is also a basic tree for W(f,r) because
otherwise there exists a set X € W(f,r) with v,w € X and u ¢ X, contradicting
X1 UX, = (. Also, we can observe that ®(T>) < ®(T1). Indeed, if 7(u) < 7(w), then
we have @ (1) — ®(11) = depth(w; T2) — depth(w; T1) + n(—m(u) + 7(v)) < 0 because
xzp, = o7, = w, depth(w;T2) = depth(w;T1) — 1, and w(u) > w(v). If w(u) > 7(w),
then we have ®(T2) — ®(T1) = depth(zr,; Tz) — depth(w;T1) + n(—m(u) + 7(v)) < 0
because depth(xr,;T2) <n —1and w(u) > 7(v) (by m(u) > 7(w) > 7(v)).

(Case-2) Let T> denote the tree from 77 by deleting the edge (u,v), adding a new
edge connecting v and w (i.e., pr, (w) := u), and making the parent of v the vertex w
(i.e., pry (v) := w). T3 is also a basic tree for W(f,r) because otherwise there exists a
set X € W(f,r) with u,v € X and w ¢ X, contradicting Y1 U Vs = 0.

Also, we can observe that ®(72) < ®(71). Indeed, if 7(u) < w(w), then we have
O (T2) —®(T1) = depth(w; Tz) —depth(w; T1)+n(—m(u)+m(v)) < 0 because 27, =z, =
w, depth(w; T2) = depth(w; T1)—1, w(u) > 7(v), and (v,w) ¢ Fr,. If 7(u) > w(w), then
we have ®(Tz) — ®(T1) = depth(zr,; T2) — depth(w; T1) + n(—m(u) + 7(v)) < 0 because
depth(x7,;T2) <n — 1, w(u) > w(v) (by n(u) > n(w) > 7(v)), and (v,w) ¢ Fr,.

(Case-3) If Xo # 0, then X € X, and Y € Y1 U s satisfy X NY = {v},
(X —=Y)>7n(w) >70W) (=x(XNY)),and 7(Y — X) > w(u) > 7(v) (=7(X NY)),
contradicting Lemma 3.4. If Y5 # 0, then X € X1UAX> and Y € Ys satisfy XNY = {v},
m(X-Y) > 7n(w) >7(v) (=7(XNY)),and 7(Y —X) > w(u) > 7(v) (= 7(XNY)), con-
tradicting Lemma 3.4. Hence, assume that X2 = () = ). Then the following property
holds, where its proof is omitted due to space limitation.

Claim 3.6 Z, =10. O

Let Y1 be a set in Y4 and y1 € Y1 be a vertex with w(y1) = 7(Y1). We first
claim that m(y1) > w(v). This follows since otherwise m(y1) = w(u) = =w(v) (by
m(y1) > m(u) > 7(v)) and it follows that for X; € X1, n(Y1) = n(Y1 —X1) = n(X1NY1)
(byu e Y1 —X; and v € X1 NY1) and 7(X; — Y1) > w(w) > w(v) = m(X1 NY71), imply-
ing that X; and Y7 would contradict Lemma 3.4. Then if every X € X} U Z; contains
y1, then construct the tree Ts from 77 by deleting the edge (v, w), adding a new edge
connecting y1 and w, and making the parent of w the vertex y1 (i.e., pr, (w) := y1).

Observe that in this case, T3 is also a basic tree for £ and ®(T2) < ®(71), because
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O (Tz) — ®(Th) = depth(xt,; T2) — depth(w; T1) +n(—n(y1) +7(v)) < 0 by 7(y1) > w(v).

Consider the remaining cases. Then, there exists a set X1 € X1 U Z1 with y1 ¢ Xi.
Here, we assume that X contains a vertex z; with m(z1) = 7(X1) such that all sets
X € X1 U Z; with y1 ¢ X contains x1 (this is possible by Lemma 3.5). Notice that
(Y1 — X1) = m(Y1) by y1 € Y1 — X1. Hence, we have 7n(X; NY1) > 7(X1 — Y1),
since otherwise (i.e., if (X1 NY1) = 7n(X1)) X1 and Y7 would contradict Lemma 3.4.
Therefore, we have z1 € X1 NY;.

If every X € X3 U Z; contains x1, then construct the tree T from 77 by deleting
the edge (v,w), adding a new edge connecting 1 and w, and making the parent of
w the vertex z; (i.e., letting pr, (w) := x1). Observe that in this case, T> is also a
basic tree for W(f,r) and ®(T>) < ®(T1), because m(z1) = 7(X1) > w(w) > w(v)
indicates that ®(12) — ®(11) = depth(xT,; T2) — depth(w; Th) + n(—n(z1) + 7(v)) < 0.
Consider the case where some Xy € X; U Z; with 21 ¢ X5. By the choice of Xj,
we have y1 € X5. Then, (X1 N X3) > 7(X2 — X1) holds since otherwise (i.e., if
m(Xe — X1) = w(X2)) by z1 € X1 — X2, we have 7(X1 — X2) = 7(X1) and hence X3
and X2 would contradict Lemma 3.4. Hence, by z1 € X1 NYi, y1 € X2 and this, we
have 7(X1) > n(X1 N X2) = 7(X2) > w(y1) = 7(Y1) > w(z1) = w(X1). It follows that
m(X1) = m(X2) = (X1 N X2) holds, and X; and X» would contradict Lemma 3.4. O

In Algorithm MINSOURCESET, if there exist two vertices u and v with di (u) = d1(v),
then we can choose u before v or vice versa, depending on the sorting in line 1. The
following corollary shows that there exists a basic tree for W(f,r) corresponding to
each of these cases.

Corollary 3.7 Let & = W(f,r) be a tree hypergraph whose basic tree T satisfies
(10), and (v, w) be an edge in T" with v = pr(w) and 7(v) = w(w). Then there exists
a basic tree T" for W(f,r) satisfying (10) such that w = py/(v) or v and w have a
common parent in 7”. O

Finally, we give a much simpler proof of the property that the above greedy algorithm
based on 7 works. Notice that we scan all elements in nondecreasing order of their -
values. When we pick up an element v and RUU — {v} is not a transversal of W(f,r)

for the current transversal R U U, there exists a minimal deficient set W, € W(f,r)
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such that W, N U = {v}. Then notice that all elements in W, other than v have been
scanned and deleted, and this implies that v has the maximum 7-value among all el-
ements in W,; m(v) = n7(W,). It follows that for each v € R, there exists such a set
Wy; let W = {W, | v € R}. Then we can prove that every two sets in W are disjoint,
which implies that R is a minimum transversal. Indeed, if two sets W, and W, satisfy
WuNW, # 0, then by u € W, — Wy, w(u) = (W), v € W, — Wy, and w(v) = 7(W,),
we have 7(W, — W) = n(W,) and ©#(W, — W,) = n(W,), contradicting Lemma 3.4.

4. Algorithm for Problem (2)

In this section, we consider Problem (2). This can be regarded as a generalization
of a variant of the source location problem; given an undirected graph G = (V, E,c)
and a demand function d; : V — Ry, find an = : V — R4 such that z(X) + u(X) >
max{d; (v) | v € X} holds for all nonempty subsets X of V and (V) is the minimum.
In applications of multimedia networks, we can locate a mirror server v with an arbi-
trarily finite capacity z(v) and we want to minimize the total capacity (V') of servers
to be located. Notice that in a setting discussed in Subsection 2.2, each server to be
located has an infinite capacity.

For f:2V = R, r:2¥ = R, and W(f,r), z: V — R is called a cover of W(f,r) if
z(X) + f(X) > r(X) for all X C V. Then we can find a minimum cover of W(f,r) by
Algorithm MINCOVER, similar to Algorithm MINTRANSVERSAL.

Lemma 4.1 Algorithm MINCOVER finds a minimum cover z of W(f,r).

Proof. Let x* be a function obtained by Algorithm MINCOVER. Since x* is clearly
a cover of W(f,r), we only prove the optimality of z*. Consider the iteration of the
while loop in which v is chosen. Note that immediately before this iteration starts,
x + 2’ is a cover. As a result of line 4, if z + 2’ is not a cover, then it follows by line
6 that some set W, € W(f,r) with v € W, satisfies z(W,) + f(W,) = r(W,) and
W, C V(T(v)). The latter property follows since if W contains the parent w of v, then
(W) > z(u) = max{r(W) | W € W(f,r)} > r(W), a contradiction.

Then we claim that there exists a family W C W(f,r) of pairwise disjoint minimal
deficient sets such that each set W € W satisfies (W) + f(W) = r(W) and each v
with z*(v) > 0 is included in some set in W. Such a family W can be obtained by the
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Algorithm 4 Algorithm MINCOVER
Require: A posi-modular function f : 2V — R, a modulotone function r : 2¥ — R
with f(0) > r(0).
Ensure: A minimum cover z : V. — R of W(f,r).
1: Compute a basic tree T for W(f,r).
2: Initialize z(v) := 0 and z'(v) := max{r(W) | W € W(f,r)} for all v € V and
U:=V.
3: while U # () do
4:  Choose a leaf v of T[U], '(v) := 0, and U := U — {v}.
5:  if x + 2’ is not a cover then
6 z(v) = max{r(W) —az(W) — f(W) | W e W(f,r)}.
7 end if
8: end while

9: Output z as a solution.

following procedure (i) and (ii):

(i) Initialize U := {v € V | 2"(v) > 0} and W := 0.

(ii) While scanning all vertices v in T from the root in breadth-first order, only if
v €U, then W:=WU{W,},U:=U —{ue W, |z"(u) >0}.
It is not difficult to see that every two sets in the resulting VW are pairwise dis-

joint because every W, satisfies W,, C V(T'(v)). Since any cover z satisfies z(V) >
Y owew (W) — f(W)) = z*(V), it follows that = is optimal. |

Finally, we remark that if f is submodular and r is given as (5) or (6), Algorithm MIN-
COVER can be implemented to run in the same complexity as Algorithm MINTRANSVER-
SAL. Furthermore, similarly to the discussion in the previous section, if r is 7-monotone,

then we can execute it greedily based on 7 without any basic tree for W(f,r).
5. Concluding Remarks

In this paper, we consider the problem of finding a minimum transversal of a given sys-

tem (V, f,r) on a finite set V consisting of a posi-modular function f and a modulotone
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function 7 with f(@) > r(0). We define the m-monotonicity of a modulotone function,
and derive an interesting structural property for a basic tree for W(f,r) under the as-
sumption that r is 7-monotone, which enables Algorithm MINTRANSVERSAL to perform
in the same way as a simple greedy algorithm for the source location problem (i.e., Al-
gorithm MINSOURCESET) does. This also shows that Algorithm MINTRANSVERSAL is a
generalization of Algorithm MINSOURCESET. Also, we define a fractional version of the
problem, and show that the discussion about algorithms and properties of the original
problem can be extended to this problem. For both problems, the greedy algorithms
can be implemented to run by checking the feasibility O(|V|) times. On the other hand,
as pointed out in6>, it is still open whether the feasibility can be checked in polynomial

time, unless f is submodular and r is given as (5) or (6).

o o 0O 0O

1) K. Arata, S. Iwata, K. Makino, and S. Fujishige, Locating sources to meet flow
demands in undirected networks, Journal of Algorithms 42 (2002), 54—68.

2) J. van den Heuvel and M. Johnson, Transversals of subtree hypergraphs and the
source location problem in digraphs, CDAM Research Report, LSE-CDAM-2004-10,
London School of Economics.

3) J. van den Heuvel and M. Johnson, The external network problem with edge- or
arc-connectivity requirements, Proceedings of the 1st Workshop on Combinatorial
and Algorithmic Aspects of Networking, 2004, pp. 114-126.

4) T. Ishii and K. Makino, Augmenting edge-connectivity between vertex subsets,
Proceedings of the 15th Computing: The Australasian Theory Symposium, 2009,
pp. 45-51.

5) H. Ito, H. Uehara, and M. Yokoyama, A faster and flexible algorithm for a location
problem on undirected flow networks, IEICE Trans. E83-A (2000), 704-712.

6) M. Sakashita, K. Makino, H. Nagamochi, and S. Fujishige, Minimum transver-
sals in posi-modular systems, SIAM Journal on Discrete Mathematics 23 (2009),
858-871.

7) H. Tamura, M. Sengoku, S. Shinoda, and T. Abe, Some covering problems in
location theory on flow networks, IEICE Trans. E75-A (1992), 678-683.

8) H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda, Plural cover problem on
undirected flow networks, IEICE Trans. J81-A (1998), 863-869 (in Japanese).

© 2009 Information Processing Society of Japan



