
IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009)

Regular Paper

Efficient and Strongly Secure Password-based

Server Aided Key Exchange

Kazuki Yoneyama†1

In ACNS’06, Cliff, et al. proposed the password-based server aided key ex-
change (PSAKE) as one of password-based authenticated key exchanges in the
three-party setting (3-party PAKE) in which two clients with different pass-
words exchange a session key with the help of their corresponding server.
Though they also studied a strong security definition of the 3-party PAKE,
their security model is not strong enough because there are desirable security
properties which cannot be captured. In this paper, we define a new formal
security model of the 3-party PAKE which is stronger than the previous model.
Our model captures all known desirable security requirements of the 3-party
PAKE, like the resistance to key-compromise impersonation, to the leakage of
ephemeral private keys of servers and to the undetectable on-line dictionary
attack. Also, we propose a new scheme as an improvement of PSAKE with the
optimal number of rounds for a client, which is secure in the sense of our model.

1. Introduction

Recently, password-based authenticated key exchange (PAKE) protocols have
received much attention as practical schemes in order to share a mutual session
key secretly and reliably. Basic PAKE schemes enable two entities to authen-
ticate each other and agree on a large session key from a human memorable
password. Thus, PAKE schemes are regarded as practical key exchange schemes
because entities do not have any pre-shared cryptographic symmetric key, certifi-
cate or support from a trusted third party. Such basic schemes where two entities
pre-share a common password are classified into a model called same password-
authentication (SPA) model. The SPA model is the most studied PAKE model
in previous papers and is usually used for client-to-server key exchanges. The
concept of PAKE was first introduced by Bellovin and Merritt 4) in 1992 known

†1 University of Electro-Communications

as encrypted key exchange (EKE). The first construction of password-only PAKE
in the SPA model was proposed by Jablon 12) in 1996 known as simple password
exponential key exchange (SPEKE). Formal definitions for this setting were first
given by Bellare, et al. 3) and Boyko, et al. 5), and a concrete construction was
also given in the random oracle (RO) model. In addition, various protocols have
been proposed to achieve a secure PAKE scheme in the SPA model.

1.1 Password-based Key Exchange in the 3-party Setting
Within a variety of communication environments such as a mobile network, one

of the main concerns is to establish a secure channel between clients with differ-
ent passwords. Several schemes have been presented to provide PAKE between
two entities with different passwords, called different password-authentication
(DPA) models. In practice, clients prefer to remember very few passwords. Con-
sequently, PAKE in the DPA model is useful to solve this problem. In the DPA
model, entities carry out a key exchange with the assistance of an intermediate
server because entities have no secret common information. So, PAKE in the
DPA model is usually called password-based authenticated key exchanges in the
three-party setting (3-party PAKE) and is usually used for client-to-client key
exchanges.

Basic security requirements of the 3-party PAKE are known-key security (KS)
(i.e., the session key is not compromised in the face of adversaries who have
learned some other session keys), basic impersonation (BI) (i.e., the adversary
cannot impersonate any honest client to the other client of the session without
the client’s password), and the resistance to off-line dictionary attacks (offDA).
The resistance to offDA means that there is no successful adversary as follows:
The adversary guesses a password and verifies his guess off-line. No participation
of the server is required, so the server does not notice the attack. If his guess is
wrong the adversary tries again with another password, until he finds the proper
one.

Though the 3-party PAKE has been considered in previous papers 16),17), these
schemes assume a trusted intermediate server because the server can know the
session key of clients. Several works 7),15),18) considered key privacy against a
passive server (KP) (i.e., a semi-honest server cannot know any information about
the session key of clients). However, none of their schemes warrants a provable

1942 c© 2009 Information Processing Society of Japan

1943 Efficient and Strongly Secure Password-based Server Aided Key Exchange

security. Indeed, a scheme 18) is known to be vulnerable to an undetectable on-
line dictionary attack (UDonDA) 11). The central idea of UDonDA is that an
attacker guesses a password of a client, completes some computations with it
and sends the server the result as a part of his request for a session key. Then, if
the server cannot tell this request from the request from honest clients, the server
performs some further computations on the result using the correct password of
the client and responds. This response helps the attacker verify his guess. So,
the server is used as an oracle without taking notice of the attack.

The first formal security definition of the 3-party PAKE (AFP model) was
proposed by Abdalla, et al. 1). They also provided a generic method to construct
provably secure 3-party PAKE protocol from the 2-party PAKE. To reduce the
complexity of the generic construction, the first concrete protocol of a provably
secure 3-party PAKE protocol in the random oracle model is proposed in the
paper 2). Wang and Hu pointed out that schemes in papers 1),2) are vulnerable to
UDonDA, and provided a stronger definition of the 3-party PAKE (WH model)
which captures the resistance to UDonDA.

Cliff, et al. 9) proposed another security definition of the 3-party PAKE (CTB
model) which is an extension of the Canetti-Krawczyk model 6) for the 2-party
AKE. Also, they proposed a variant of the 3-party PAKE, called the password-
based server aided key exchange (PSAKE), which has the similar setting of the
3-party PAKE except the server uses password and encryption based authentica-
tors. The encryption based authenticator in PSAKE means that a client has the
server’s public-key as well as the password to access the server, and the server
has his private-key as well as clients’ passwords. They also prove the security
of PSAKE in the standard model, i.e., without any random oracle. Owing to
the encryption based authenticator, PSAKE has strong security which cannot
be achieved in password-only setting 3-party PAKE schemes. Indeed, PSAKE
seems to be secure from the leakage of ephemeral private keys of servers (LEP)
(i.e., even if the session specific ephemeral private key of the server in a session is
compromised, the secrecy of the session key is not compromised) �1 and from key-

�1 This property is not guaranteed when the ephemeral private key of a client of the session
is leaked. In this case, the password of the client is easily derived by off-line dictionary
attacks because the session key deterministically depends on the client’s ephemeral key, its

compromise impersonation (KCI) (i.e., when a client’s password is compromised,
this event does not enable an outside adversary to impersonate other entities to
the client). LEP represents the security under the situation whereby local and
temporary computations (ephemeral key) of servers may be leaked to adversaries.
These leakages may also occur by sloppy usages or implementations. For exam-
ple, an ephemeral key may remain in the memory for the reuse of computations
in order to reduce computational costs or because of the failure to release the
temporary memory area. Then, contents of the memory may be revealed by vari-
ous attacks, e.g., malicious Trojan Horse programs. Thus, even if we successfully
developed an exceedingly secure 3-party PAKE scheme, such a leakage might be
possible. So, it is desirable that 3-party PAKE schemes satisfy LEP.

1.2 Need for New Security Models
The AFP model, the CTB model and the WH model formalize the indistin-

guishability of session keys against outside adversaries. However, each model has
some uncaptured security requirement. For example, the AFP model and the
WH model cannot grasp the notion of forward secrecy (FS) (i.e., secrecy of the
past session keys after the leakage of passwords). Also, the CTB model and the
WH model cannot grasp KP. Furthermore, in the AFP and the CTB model,
the resistance to UDonDA is out of scope. In addition, there are some security
requirements which are not captured in these models (see Section 2.2) �2. Indeed,
schemes in papers 1),19) are insecure against LEP because they include the 2-party
PAKE between a client and a server. In the 2-party PAKE, if an ephemeral pri-
vate key of either party is leaked, the password of the party is easily derived by
offDA because the session key deterministically depends on the client’s ephemeral
key, its static password and the communication received from the other party.
Thus, the secrecy of the session key is not guaranteed. Therefore, by LEP the
temporary session key is revealed and schemes in papers 1),19) are clearly insecure
against BI. Similarly, the scheme in the paper 2) is also insecure against LEP

static password, and the communication received from other parties. Thus, the secrecy of
the session key is not guaranteed. So, we only consider leakage with respect to the server.

�2 Indeed, the scheme in the paper 9) may be secure against UDonDA and satisfies other
desirable security requirements. However, the CTB model itself does not support these
requirements.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1944 Efficient and Strongly Secure Password-based Server Aided Key Exchange

Table 1 Comparison between previous schemes and our scheme.

setting of # of rounds UDonDA LEP
setup for a client

[AFP05] password-only 2 + P insecure insecure

[AP05] password-only 2 insecure insecure

[WH06] password-only 2 + P secure insecure

[CTB06] password and public-key crypto 3 unproven unproven

Our scheme password and public-key crypto 2 secure secure

Where P denotes the number of moves of a secure 2-party PAKE.

because the ephemeral private key of the server passwords can be revealed by
offDAs.

1.3 Our Contribution
We define a new security model of 3-party PAKE stronger than previous mod-

els. Our model is based on the recent formal model of authenticated key exchange
by LaMacchia, et al. 14). The major difference between our model and previous
models consists in adversary’s available oracle queries. Specifically, revealing of
static secret or ephemeral secret separately, and in adversary’s capability in the
target session, i.e., the adversary can obtain static secrets of all entities and
ephemeral secrets of the server in the target session are different. Therefore, our
model can afford resistance to complicated attacks which cannot be captured in
previous models.

Also, we construct a new 3-party PAKE scheme based on the Abdalla-
Pointcheval scheme in the paper 2). Our scheme has the same setting as PSAKE
(i.e., use of public-key crypto). Also, our scheme only needs the optimal num-
ber of rounds, i.e., 2-rounds between a client and the server, as does Abdalla-
Pointcheval scheme. Thus, our scheme is more efficient than general constructions
in papers 1),19) and PSAKE. Furthermore, we show that our scheme is secure in
the sense of our security model and the random oracle model. While public-key
encryption schemes are time-consuming, as same as PSAKE, with the help of
the server’s public-key crypto, our scheme can provide a strong security like the
resistance to LEP and to KCI. To our knowledge, our scheme is the first 3-party
PAKE scheme for which the resistance to LEP is proved.

The comparison between previous schemes and ours is shown in Table 1.

2. Preliminaries

2.1 3-party PAKE
3-party PAKE schemes contain three parties (two clients and a server) who will

engage in the protocol. We denote the set of clients by U and the server by S. Let
each password be pre-shared between a client and the server and be uniformly
and independently chosen from a fixed low-entropy dictionary D of size |D|. Note
that clients do not need to share passwords with other clients. In addition, in
PSAKE and our scheme, the server pre-establishes his public-key and private-
key pair and releases the public-key. We denote with U l the lth instance which
clients U ∈ U run. Also, we denote with Sl the lth instance which the server S

runs. All instances finally output the accept symbol and halt if their specified
execution is correctly finished. The session identifier sidli

P of an instance P li is
represented via matching conversations, i.e., concatenations of messages which
are sent and received between clients in the session, along with their identity
strings, (initialized as null). Note that, we say that two instances P li

i and P
lj
j

are partnered if both P li
i and P

lj
j output accept, both P li

i and P
lj
j share the same

sid but not null, and the partner identification set for P li
i coincides with the one

for P
lj
j .

2.2 Security Requirement
It is desirable for 3-party PAKE protocols to possess all the following security

properties:
• Known-key security (KS): The session key is not compromised in the

face of adversaries who have learned some other session keys.
• Forward secrecy (FS): If static secrets (including passwords) of a client

and the server is compromised, secrecy of past session keys is not compro-
mised.

• Key privacy against passive server (KP): The session key cannot be
distinguished from a random number by the passive server �1.

• Resistance to basic impersonation (BI): It may be desirable that even

�1 Since the server knows all passwords of its clients, a malicious server is always able to
impersonate one of its members and exchange a session key with another client. So, we
cannot require that a malicious server cannot learn the session key.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1945 Efficient and Strongly Secure Password-based Server Aided Key Exchange

if an adversary reveals the ephemeral private key of the server in a session,
the adversary cannot impersonate any honest client to the other client of the
session without the client’s password.

• Resistance to key-compromise impersonation (KCI): When a client’s
password is compromised, it may be desirable that this event does not enable
an outside adversary to impersonate other entities to the client.

• Resistance to unknown-key share (UKS): Any client C including a
malicious client insider cannot interfere with the session establishment be-
tween two honest clients A and B such that at the end of the attack both
parties compute the same session key (which C is not allowed to learn it),
yet while A is convinced that the key is shared with B, B believes that the
peer to the session has been C (definition by Diffie, et al. 10)). In addition,
client A should not be able to coerce into sharing a key with any client C

including a malicious client insider when in fact it thinks that it is sharing
the key with the other client B (definition by Choo, et al. 8)).

• Resistance to leakage of ephemeral private key of server (LEP):
Even if all the session specific ephemeral private keys of the server in a session
are compromised, secrecy of the session key should not be compromised �1.

• Resistance to undetectable on-line dictionary attacks (UDonDA):
There is no successful adversary as follows: The adversary attempts to use
a guessed password in an on-line transaction. He verifies the correctness
of his guess by using responses from the server. If his guess fails he must
start a new transaction with the server using another guessed password. By
computing requests to the server which a failed guess can not be detected and
logged by the server, the adversary makes the server be not able to depart an
honest request from a malicious request. So, the adversary can obtain enough
information to guess the password and eventually find the right password.

• Resistance to off-line dictionary attacks (offDA): There is no success-

�1 This property is not guaranteed when the ephemeral private key of a client of the session
is leaked. In this case, the password of the client is easily derived by off-line dictionary
attacks because the session key deterministically depends on the client’s ephemeral key, the
static password, and the communication received from other parties. Thus, secrecy of the
session key is not guaranteed. So, we only consider resistance to LEP of the server.

ful adversary as follows: The adversary guesses a password and verifies his
guess off-line. No participation of the server is required, so the server do not
notice the attack. If his guess fails the adversary tries again with another
password, until he finds the proper one.

In the AFP model, FS, and resistance to KCI, LEP and UDonDA cannot be
captured. First, the resistance to KCI and LEP, and FS cannot be represented
because adversary capabilities do not include any query for corruption of parties
in the test session. Therefore, the conditions of KCI, LEP and FS cannot be
represented. Also, the resistance to UDonDA is out of scope in the AFP model.
They count UDonDA in the number of queries for message modifications which
are limited to certain numbers. Hence, in the AFP model, UDonDA is not
discriminated from detectable on-line dictionary attacks.

Since the CTB model is the extension for the 3-party PAKE from the Canetti-
Krawczyk model 6) for the 2-party AKE, the CTB model inherits uncaptured
security properties from the Canetti-Krawczyk model. More specifically, in the
CTB model, KP, and resistance to KCI, LEP and UDonDA cannot be captured.
First, the resistance to KCI cannot be represented because adversary capabili-
ties do not include any query for corruption of parties in the test session before
completing the session. The resistance to LEP cannot be represented because
adversary capabilities do not include any query to access ephemeral keys of par-
ties in the test session. Therefore, the conditions of KCI and LEP cannot be
represented. Also, KP and the resistance to UDonDA are out of scope in the
CTB model. Though KP requires that a passive server (i.e., passwords of clients
can be known), cannot distinguish between the real session key in a session and
a random key, there is no definition which captures such a situation. Thus, KP
is not guaranteed even if the security in the CTB model is satisfied. In the AFP
model, they count UDonDA in the number of queries for message modifications
which are limited to certain numbers. Hence, in the CTB model, UDonDA is not
discriminated from detectable on-line dictionary attacks.

The WH model can be regarded as the AFP model plus resistance to UDonDA.
Thus, FS, and the resistance to KCI and LEP cannot be captured from the same
reason as the AFP model.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1946 Efficient and Strongly Secure Password-based Server Aided Key Exchange

3. New Model: Strong 3-party Hybrid AKE Security

3.1 Adversary Capabilities
An outside adversary or a malicious insider can obtain and modify messages

on unauthenticated-links channels. Furthermore, the adversary is given oracle
access to client and server instances. We remark that unlike the standard notion
of an “oracle”, in this model instances maintain a state which is updated as the
protocol progresses.
• Execute(U l1

1 , U l2
2 , Sl3) : This query models passive attacks. The output of

this query consists of the messages that were exchanged during the honest
execution of the protocol among U l1

1 , U l2
2 and Sl3 .

• SendClient(U l,m) : This query models active attacks against a client. The
output of this query consists of the message that the client instance U l would
generate on receipt of message m.

• SendServer(Sl,m) : This query models active attacks against the server. The
output of this query consists of the message that the server instance Sl would
generate on receipt of message m.

• SessionKeyReveal(U l) : This query models misuses of session keys. The out-
put of this query consists of the session key held by the client instance U l if
the session is completed for U l. Otherwise, return ⊥.

• StaticKeyReveal(P) : This query models leakage of the static secret of P (i.e.,
the password between the client and the server, or the private information
for the server). The output of this query consists of the static secret of P .
Note that, the adversary is neither given full control of P not provided with
any ephemeral secret information.

• EphemeralKeyReveal(P l) : This query models the leakage of all session-specific
information (ephemeral key) used by the instance P l. The output of this
query consists of the ephemeral key of the instance P l.

• EstablishParty(U, S, pwU) : This query models the adversary to register a
static secret pwU on behalf of a client. In this way the adversary totally
controls that client. Clients against whom the adversary did not issue this
query are called honest.

• Test(U l) : This query doesn’t model the adversarial ability, but the indistin-

guishability of the session key. At the beginning, a hidden bit b is chosen.
If no session key for the client instance U l is defined, then return the un-
defined symbol ⊥. Otherwise, return the session key for the client instance
U l if b = 1 or a random key from the same space if b = 0. Note that, the
adversary can make an only Test query at any time during the experiment.
The target session is called the test session.

• TestPassword(U, pw′) : This query doesn’t model the adversarial ability, but
no leakage of the password. If the guess password pw′ is just the same as
the client U ’s password pw, then return 1. Otherwise, return 0. Note that,
the adversary can ask an only TestPassword query at any time during the
experiment.

3.2 Definition of Indistinguishability
Firstly, we consider the notion of indistinguishability. This notion provides

security properties with respect to session keys, i.e., KS, FS, KP, resistance to
BI, resistance to KCI and resistance to LEP. Note that, to capture notions of FS
and resistance to KCI, an adversary can obtain static keys in the test session.

The adversary is considered successful if it guesses whether the challenge is the
true session key or a random key. The adversary is allowed to make Execute,
SendClient, SendServer, SessionKeyReveal, StaticKeyReveal, EphemeralKeyReveal,
EstablishParty and Test queries, and outputs a guess bit b′. Let Succind denote
the event that b′ = b where b is the random bit chosen in the Test(U l) query.
Note that, we restrict the adversary such that U l and the partnered client Ū l′ of
the session are honest, and none of the following conditions hold:
(1) The adversary reveals the session key of sidl

U or of sidl′
Ū .

(2) The adversary asks no SendClient(U l,m) or SendClient(Ū l′ ,m′) query.
Then the adversary either makes queries:
• EphemeralKeyReveal(U l) or
• EphemeralKeyReveal(Ū l′).

(3) The adversary asks SendClient(Ū l′ ,m) query. Then the adversary either
makes queries:
• StaticKeyReveal(U),
• StaticKeyReveal(S),

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1947 Efficient and Strongly Secure Password-based Server Aided Key Exchange

• EphemeralKeyReveal(U i) for any session i or
• EphemeralKeyReveal(Ū l′).

(4) The adversary asks SendClient(U l,m) query. Then the adversary either
makes queries:
• StaticKeyReveal(Ū),
• StaticKeyReveal(S),
• EphemeralKeyReveal(U l) or
• EphemeralKeyReveal(Ū i) for any session i.

Now, the adversary A’s advantage is formally defined by:
Advind(A) = |2 · Pr[Succind]− 1| and Advind(t, R) = max

A
{Advind(A)},

where the maximum is over all A with a time-complexity at most t and using
the number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies the indistinguishability of the session key
if the advantage Advind is only negligibly larger than n · qsend/|D|, where n is
a constant and qsend is the number of send queries, and parties who complete
matching sessions compute the same session key.

3.2.1 Capturing Security Properties.
The condition of KS is represented as the adversary can obtain session keys

except one of the test session by SessionKeyReveal query. The condition of
KP against passive server is represented as the freshness condition 2, that is,
the adversary can obtain static and ephemeral private key of the server by
StaticKeyReveal and EphemeralKeyReveal query but no SendClient query for the
test session. BI is represented as the freshness condition 3, that is, the adver-
sary can freely eavesdrop messages, obtain ephemeral private key of the server,
and send any message to honest clients except the target client by Execute and
SendClient queries but no StaticKeyReveal query to the target client and the
server. KCI and the condition of FS are also represented as the freshness con-
dition 4, that is, the adversary can obtain static secret of the target client by
StaticKeyReveal query but cannot ask StaticKeyReveal query to the partnered
client and the server. LEP is represented as the adversary can obtain the
ephemeral key of the server during the test session by EphemeralKeyReveal query.
Also, our model captures resistance to unknown-key share (UKS) (i.e., any client

C including a malicious client insider cannot interfere with the session establish-
ment between two honest clients A and B such that at the end of the attack both
parties compute the same session key which C should not be able to learn it. Yet
while A is convinced that the key is shared with B, B believes that the peer to
the session has been C). UKS is represented as the adversary can establish a
malicious insider by EstablishParty query and try to make a honest client which
thinks that he shares the session key with the insider share the session key with
an another honest client by choosing these two honest clients for the test session.

By the definition of indistinguishability, if adversaries carry out the above ma-
licious behaviors according to KS, KP, BI, UKS, LEP, KCI and FS, information
of the session key is not leaked when a scheme satisfies the indistinguishability.
Thus, a scheme which satisfies the indistinguishability satisfies KS, KP, resistance
to BI, resistance to UKS, resistance to LEP, resistance to KCI and FS.

3.3 Definition of Password Protection
Next, we consider the notion of password protection. This notion provides se-

curity properties with respect to passwords, i.e., resistance to UDonDA and to
offDA. Beyond the notion of indistinguishability, the notion of password protec-
tion is needed because we have to consider security for passwords against attacks
by malicious client insiders which can trivially know the session key. Thus, just
the notion of indistinguishability cannot capture insider attacks. Also, we cannot
allow the adversary to reveal ephemeral private keys of the target client. Given
the ephemeral key, the target password is easily derived by offDA because the
session key in a session deterministically depends on the client’s ephemeral key,
the password, and the communication received from the other party.

The adversary is considered successful if it guesses a password of a client. The
adversary is allowed to make Execute, SendClient, SendServer, SessionKeyReveal,
StaticKeyReveal, EphemeralKeyReveal and TestPassword queries. Let Succpw de-
note the event that TestPassword(U) outputs 1. Note that, we restrict the ad-
versary such that U and the server of the session are honest, and none of the
following conditions hold:
• We suppose that S is the corresponding server of U . Then the adversary

either makes queries:
– StaticKeyReveal(U),

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1948 Efficient and Strongly Secure Password-based Server Aided Key Exchange

– StaticKeyReveal(S) or
– EphemeralKeyReveal(U i) for any session i.

Now, the adversary A’s advantage is formally defined by:
Advpw(A) = Pr[Succpw] and Advpw(t, R) = max

A
{Advpw(A)},

where the maximum is over all A with time-complexity at most t and using the
number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies password protection if the advantage
Advpw is only negligibly larger than n · qsend/|D|, where n is a constant and qsend

is the number of send queries for which messages are found as “invalid” by the
party. An “invalid” message means a message which is not derived according to
the protocol description.

3.3.1 Capturing Security Properties.
UDonDA is represented as the adversary can unlimitedly use SendClient and

SendServer queries as far as the party does not find that the query is “invalid”.
offDA is represented as the adversary can be the insider by SessionKeyReveal,
StaticKeyReveal and EphemeralKeyReveal queries except the target client and its
corresponding server.

By the definition of password protection, if adversaries carry out above mali-
cious behaviors according to UDonDA and offDA, information of the password is
not leaked when a scheme satisfies password protection. Thus, a scheme which
satisfies password protection satisfies resistance to UDonDA and resistance to
offDA.

4. Proposed Scheme

In this section, we show our 3-party PAKE scheme in the same setting as
PSAKE.

4.1 Notation
Let p be a prime and let g be a generator of a finite cyclic group G of order p.

A,B ∈ U are identities of two clients, and S is the identity of their corresponding
server. (Gen,Enc,Dec) is a public-key encryption scheme, where Gen(1k) is key
generation algorithm, Encpk(m;ω) is an encryption algorithm of a message m

using a public key pk and the randomness ω. Decsk(c) is a decryption algorithm

Public information : G, g, p, H1, H2, H3
Long-term secret of clients : pwA for A and pwB for B

Long-term secret of server : (pwA, pwB, skS)

Client A Server S Client B

x
R← Z∗p y

R← Z∗p
X := gx Y := gy

X∗ := X ·H1(pwA, A, B) Y ∗ := Y ·H1(pwB, B, A)
CA ← EncpkS

((X∗, pwA); ωA) CB ← EncpkS
((Y ∗, pwB); ωB)

A, B, CA−−−−−−−−→
B, A, CB←−−−−−−−−

(X̃∗, p̃wA) ← DecskS
(CA)

(Ỹ ∗, p̃wB) ← DecskS
(CB)

p̃wA
?
= pwA, p̃wB

?
= pwB

X̂ := X̃∗/H1(pwA, A, B)

Ŷ := Ỹ ∗/H1(pwB, B, A)

r
R← Z∗p, N

R← {0, 1}k
Ȳ := Ŷ r , X̄ := X̂r

Ȳ ∗ := Ȳ ·H2(N, pwA, X̃∗)
X̄∗ := X̄ ·H2(N, pwB, Ỹ ∗)

S, N, CB, X̄
∗

, Ȳ
∗

←−−−−−−−−−−−−−−−
S, N, CA, X̄

∗
, Ȳ
∗

−−−−−−−−−−−−−−−→

KA := (Ȳ ∗/H2(N, pwA, X∗))x KB := (X̄∗/H2(N, pwB, Y ∗))y

SKA := SKB :=
H3(A, B, S, CA, CB, X̄∗, Ȳ ∗, KA) H3(A, B, S, CA, CB, X̄∗, Ȳ ∗, KB)

Fig. 1 A high-level overview of our protocol.

of a cipher-text c using a private key sk. A and S (resp. B and S) share a
common secret password pwA (resp. pwB), and S has pre-established his private
key skS with his public key pkS . H1 : D × U2 → G, H2 : D × {0, 1}k × G → G

and H3 : U2×S×Cspace2×G3 → {0, 1}k are hash functions modeled as random
oracles, where Cspace is the space of a cipher-text for (Gen,Enc,Dec) and k is a
sufficiently large security parameter.

For simplicity, we omit “(mod p)” in this paper when computing the modular
exponentiation. “v R← V ” means randomly choosing an element v of a set V .

4.2 Protocol Description
Here, we show the construction of our scheme. To guarantee resistance to

UDonDA, we apply public-key encryption for servers like PSAKE and the 3-party
PAKE scheme in the paper 15). A high-level overview of our protocol appears in
Fig. 1.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1949 Efficient and Strongly Secure Password-based Server Aided Key Exchange

Then, our protocol is described as follows:
Step 1. Clients A and B choose x, y ∈ Z∗

p randomly, compute X = gx and
Y = gy, and blind them as X∗ = X ·H1(pwA, A,B) and Y ∗ = Y ·H1(pwB , B,A)
respectively. Next, they generate CA ← EncpkS

((X∗, pwA);ωA) and CB ←
EncpkS

((Y ∗, pwB);ωB) by using their corresponding server’s public-key pkS with
randomness ωA and ωB respectively. Finally, A sends (A,B,CA) to the server S

and B sends (B,A,CB) to the server S. So, ephemeral private-keys of A and B

are (x,X,X∗, ωA) and (y, Y, Y ∗, ωB) respectively.
Step 2. The server S decrypts (˜X∗, p̃wA) ← DecskS

(CA) and (˜Y ∗, p̃wB) ←
DecskS

(CB) by using skS respectively. If p̃wA �= pwA or p̃wB �= pwB , then
S aborts the session. It is also crucial that the server rejects any value ˜X∗

or ˜Y ∗ whose underlying value X or Y is equal to 1. Otherwise, S computes
X̂ = ˜X∗/H1(pwA, A,B), blinds it as X̄ := X̂r where r is S’s first random
value from Z∗

p. S also computes Ŷ and Ȳ similarly. Next, S computes Ȳ ∗ =
Ȳ ·H2(N, pwA, ˜X∗) where N is S’s second random value from {0, 1}k. S performs
similar operations and obtains X̄∗. Finally, S sends (S,N,CB , X̄∗, Ȳ ∗) to A,
sends (S,N,CA, X̄∗, Ȳ ∗) to B, and deletes session-specific information (˜X∗, ˜Y ∗,
p̃wA, p̃wB , r, N, X̂, Ŷ , X̄, Ȳ). So, ephemeral private-keys of S are empty.
Step 3. A and B compute their Diffie-Hellman keys KA = (Ȳ ∗ / H2(N,

pwA, X∗))x and KB = (X̄∗ / H2(N, pwB , Y ∗))y respectively. Session keys are
generated from the Diffie-Hellman key and transcripts, SKA = H3(A, B, S, CA,

CB , X̄∗, Ȳ ∗, KA) and SKB = H3(A, B, S, CA, CB , X̄∗, Ȳ ∗, KB). When
session keys are honestly generated, SKA = SKB because KA = (gyr)x and
KB = (gxr)y.

4.3 Design Principles
Our protocol can be viewed as an extension of Abdalla-Pointcheval scheme 2).

The main difference consists in the use of public-key encryption.
First, upon receiving an input from a client, the corresponding server verifies

the validity of the encrypted password of the client and its identity. This proce-
dure prevents UDonDA as in the technique of Lin, et al. 15). Applying the server’s
public-key may put a burden on clients because they have to verify the server’s
public-key in advance, and the certificate infrastructure is needed. However, we

can easily resolve this problem by applying ID-based encryption for the server
instead of standard public-key encryption. Since clients can encrypt messages
only by matching the server’s ID in an ID-based encryption, they neither need
to keep nor verify the server’s public-key. If we replace the use of public-key
encryption by the use of ID-based encryption, the security of our scheme is not
changed. Note that when using the ID-based encryption, the Key Generation
Center can know all the client’s passwords because it knows the server’s private
key.

Next, the elimination of ephemeral states except the necessary states is needed
for resistance to LEP as in the technique of LaMacchia, et al. 14). Even if
EphemeralKeyReveal query is asked, information of passwords and the session
key is not leaked because all the critical states are deleted immediately after
being used.

Finally, when a client blinds X or Y with his password, we make the client
include the identities of both clients into the computation of the password-based
blinding factors. This procedure prevents KCI and UKS by a malicious client
insider as in the technique of Choo, et al. 8).

We show the comparison between previous schemes 1),2),9),19) and our scheme
in Table 2. The computational cost is measured by the time of exponentiations
because the time for hashes, MACs and symmetric key encryptions is generally
ignored. The communication cost is measured by the number of elements of
groups in the transcript. We suppose that the scheme of Abdalla, et al. 1) and
the scheme of Wang and Hu 19) use the KOY protocol 13) as the 2-party PAKE,
and our scheme uses the same encryption scheme as the scheme of Cliff, et al. 9).

Our scheme is more efficient than previous schemes 1),9),19) in both computa-
tional and communication costs. However, our scheme is less efficient than the
scheme of Abdalla and Pointcheval 2). That scheme 2) does not have any encryp-
tion because it cannot guarantee LEP. To guarantee LEP, our scheme needs an
additional encryption besides the elements which the scheme 2) needs.

There is an alternative construction which is more efficient than the proposed
construction in the computational cost. That is, we remove H1(pwA, A,B) and
add A,B as inputs to H2. By this simple modification, the time of 1 hash
evaluation for the client and the time of 2 hash evaluations for the server can be

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1950 Efficient and Strongly Secure Password-based Server Aided Key Exchange

Table 2 Comparison of the efficiency between previous schemes and our scheme.

Client computation cost Server computation cost Communication cost

[AFP05]

...KOY 1 signature verify 5 2 signature verify 10 20|G| + 2|V erKey|
+2|Signature|

2 exp. 2 6 exp. 6

2 double exp. 2.6 2 double exp. 2.6

2 multi exp. 5.3 4 multi exp. 10.6

...key dist. 1 symm. enc. 2 symm. enc. 2k bit

...other 2 exp. 2 4|G| + 2k bit

2 MAC evaluation

Total 16.9 Total 29.2 24|G| + 2|V erKey|
+2|Signature| + 4k bit

[AP05] 2 exp. 2 2 exp. 2

2 hash evaluation 4 hash evaluation

Total 2 Total 2 4|G|
[WH06]

...KOY 14.9 29.2 20|G| + 2|V erKey|
+2|Signature|

...other 2 exp. 2 8|G| + 4k bit

2 MAC evaluation

Total 16.9 Total 29.2 28|G| + 2|V erKey|
+2|Signature| + 4k bit

[CTB06] 2 exp. 2

2 PK enc. 8 4 PK dec. 12

Total 10 Total 12 14|G| + 4|CipherText| + 5k bit

Our scheme 2 exp. 2 2 exp. 2

1 PK enc. 4 2 PK dec. 6

3 hash evaluation 4 hash evaluation

Total 6 Total 8 4|G| + 4|CipherText| + 2k bit

reduced.

5. Security of Our Scheme

In this section, we show the security properties of our scheme.
5.1 Building Blocks
We recall the definition of the decisional Diffie-Hellman assumptions which we

use in the security proof of our scheme. Let p be a prime and let g be a generator
of a finite cyclic group G of order p.

5.1.1 Decisional Diffie-Hellman Assumption (DDH)
We can define the DDH assumption by defining two experiments,

Expddh−real
g,p (I) and Expddh−rand

g,p (I). For a solver I, inputs (gu, gv, Z) are pro-
vided, where u, v are drawn at random from Z∗

p. Z = guv in Expddh−real
g,p (I)

and Z = gw in Expddh−rand
g,p (I), where w is drawn at random from Z∗

p. We
define the advantage of I in violating the DDH assumption, Advddh

g,p (I), as
|Pr[Expddh−real

g,p (I) = 1] − Pr[Expddh−rand
g,p (I) = 1]|. The advantage function

of the group, Advddh
g,p (t), is defined as the maximum value of Advddh

g,p (I) over all
I with a time-complexity at most t.

5.2 Main Theorems
Theorem 5.1 Assuming (Gen,Enc,Dec) is a semantically secure public-key

encryption scheme and the DDH problem is hard, our scheme satisfies the indis-
tinguishability in Section 3.2.
[Proof]

We define a sequence of hybrid experiments, starting with the real attack and
ending in an experiment in which the adversary has no advantage. Each experi-
ment addresses a different security aspect. For each experiment Expn, we define
an event Succn as Succind in Expn. The proof follows the one of Abdalla et al.’s
3-party PAKE 2).

5.2.1 Experiment Exp0.
This experiment corresponds to the real execution, in the random oracle model.

By definition, we have
Advind(A) = |2 · Pr[Succ0]− 1|. (1)

5.2.2 Experiment Exp1.
In this experiment, we simulate the random oracles H1, H2 and H3 as usual

by maintaining hash lists ΛH1 , ΛH2 , and ΛH3 as follows:
• On hash query H1(Q) (resp. H2(Q)) for which there exists a record (Q,R)

in the list ΛH1 (resp. ΛH2), return R. Otherwise, choose an element R ∈ G,
add the record (Q,R) to the list ΛH1 (resp. ΛH2), and return R.

• On hash query H3(Q) for which there exists a record (Q,R) in the list ΛH3 ,
return R. Otherwise, choose an element R ∈ {0, 1}k, add the record (Q,R)
to the list ΛH3 , and return R.

The Execute, SessionKeyReveal, SendClient, SendServer, StaticKeyReveal,
EphemeralKeyReveal, EstablishParty and Test oracles are also simulated as in the
real attack as follows:
• SendClient query
• On a query SendClient(U i

1, (U2, start)), assuming U i
1 is in the correct state,

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1951 Efficient and Strongly Secure Password-based Server Aided Key Exchange

we proceed as follows:
θ

R← Zp; Θ← gθ

Θ∗ ← Θ ·H1(pwU1 , U1, U2)
γU1 ← EncpkS

((Θ∗, pwU1);ωU1)
return (U1, U2, γU1)

• On a query SendClient(U i
1, (S,N, γU2 , Θ̄

∗, Φ̄∗)), assuming U i
1 is in the correct

state, S is the server and U2 is the intended partner, we proceed as follows:
KU1 ← (Φ̄∗/H2(N, pwU1 ,Θ

∗))θ

SKU1 ← H3(U1, U2, S, γU1 , γU2 , Θ̄∗, Φ̄∗, KU1)
• SendServer query
• On query SendServer(Si, ((U1, U2, γU1), (U2, U1, γU2))), we proceed as follows:

(˜Θ∗, p̃wU1)← DecskS
(γU1); (˜Φ∗, p̃wU2)← DecskS

(γU2)
p̃wU1

?= pwU1 ; p̃wU2

?= pwU2

Θ̂ := ˜Θ∗/H1(pwU1 , U1, U2); Φ̂ := ˜Φ∗/H1(pwU2 , U2, U1)
r

R← Zp

N
R← {0, 1}k

Φ̄← Φ̂r; Θ̄← Θ̂r

Φ̄∗ ← Φ̄ ·H2(N, pwU1 ,
˜Θ∗); Θ̄∗ ← Θ̄ ·H2(N, pwU2 ,

˜Φ∗)
return ((S,N, γU2 , Θ̄

∗, Φ̄∗), (S,N, γU1 , Θ̄
∗, Φ̄∗))

• SessionKeyReveal query
• On query SessionKeyReveal(U i), we proceed as follows:

if session key SK is defined for instance U i

then return SK,
else return ⊥.

• Execute query
• On query Execute(U i1

1 , U i2
2 , Si3), we proceed as follows:

(U1, U2, γU1)← SendClient(U i1
1 , (U2, start))

(U2, U1, γU2)← SendClient(U i2
2 , (U1, start))

((S,N, γU2 , Θ̄
∗, Φ̄∗), (S,N, γU1 , Θ̄

∗, Φ̄∗))
← SendServer(Si3 , ((U1, U2, γU1), (U2, U1, γU2)))

SendClient(U i1
1 , (S,N, γU2 , Θ̄

∗, Φ̄∗))
SendClient(U i2

2 , (S,N, γU1 , Θ̄
∗, Φ̄∗))

return ((U1, U2, γU1), (U2, U1, γU2), (S,N, γU2 , Θ̄
∗, Φ̄∗),

(S,N, γU1 , Θ̄
∗, Φ̄∗))

• EstablishParty query
• On query EstablishParty(U i, pwU), we proceed as follows:

if there is U i then do nothing
else establish instance U i with the static secret pwU .

• StaticKeyReveal query
• On query StaticKeyReveal(P), we proceed as follows:

if P is a client then return pwP ,
else P is a server then return the static secret of the corresponding

client of P .
• EphemeralKeyReveal query
• On query EphemeralKeyReveal(P i), we proceed as follows:

if the ephemeral key of P i is already generated then return it.
(i.e., output (θ,Θ,Θ∗, ωU1) (resp. (φ,Φ,Φ∗, ωU2)) if P = U1

(resp. P = U2), otherwise output an empty symbol)
• Test query
• On query Test(U i), we proceed as follows:

SK ← SessionKeyReveal(U i)
if SK = ⊥ then return ⊥
else

b
R← {0, 1}

if b = 1 then SK ′ ← SK else SK ′ R← {0, 1}k
return SK ′

The term “ ?=” means check of equation. One can easily see that this experiment
is perfectly indistinguishable from the real experiment. Hence,

Pr[Succ1] = Pr[Succ0]. (2)
5.2.3 Experiment Exp2.
In this experiment, we simulate all oracles as in Experiment Exp1, except that

we halt all executions in which a collision occurs in the output of the H1 and H2

oracles or in the transcript ((U1, U2, γU1), (U2, U1, γU2), (S, N, γU2 , Θ̄∗, Φ̄∗), (S,

N, γU1 , Θ̄∗, Φ̄∗)). According to the birthday paradox, the probability of collisions

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1952 Efficient and Strongly Secure Password-based Server Aided Key Exchange

in the output of the Hi oracle is at most q2
Hi

/(2p) for i = 1, 2 where qHi
denotes

the maximum number of queries to Hi. Similarly, the probability of collisions in
the transcripts is at most (qstart + qexe)2/(2p) where qstart represents the number
of queries to the SendClient oracle used to initiate a client oracle instance and
qexe represents the number of queries to the Execute oracle, because either γU1

or γU2 was simulated and thus chosen uniformly at random. Consequently,

|Pr[Succ2]− Pr[Succ1]| ≤
q2
H1

+ q2
H2

+ (qstart + qexe)2

2p
. (3)

5.2.4 Experiment Exp3.
In this experiment, we change the simulation of queries to the SendClient

oracles. This time, we select at random a matching session for (U i
1, U

j
2) exe-

cuted by some honest parties U1 and U2. When SendClient(U i
1; (U2; start))

and SendClient(U j
2 ; (U1; start)) are asked, we compute Θ = gθ and Φ =

gφ normally but set Θ = gu and Φ = gv where u, v are drawn at ran-
dom from Z∗

p. Also, when SendClient(U i
1, (S,N, γU2 , Θ̄

∗, Φ̄∗)) and SendClient

(U j
2 , (S,N, γU1 , Θ̄

∗, Φ̄∗)) are asked, we compute KU1 = (Φ̄∗/H2(N, pwU1 ,Θ
∗))θ

and KU2 = (Θ̄∗/H2(N, pwU2 ,Φ
∗))φ normally but set KU1 = KU2 =

(guv)r. Since the selected session is matching, (Φ̄∗/H2(N, pwU1 ,Θ
∗))θ and

(Θ̄∗/H2(N, pwU2 ,Φ
∗))φ have to be equivalent to (guv)r by the definition of match-

ing session in Section 2.1.
So, one can easily see that this experiment is perfectly indistinguishable from

the real experiment. Hence,
Pr[Succ3] = Pr[Succ2]. (4)

5.2.5 Experiment Exp4.
In this experiment, we once again change the simulation of queries to the

SendClient oracle for the selected session. This time, we change the way we
compute the values KU1 and KU2 so that KU1 and KU2 become independent with
passwords and ephemeral keys. When SendClient(U i

1, (S,N, γU2 , Θ̄
∗, Φ̄∗)) and

SendClient(U j
2 , (S,N, γU1 , Θ̄

∗, Φ̄∗)) are asked, we compute KU1 = KU2 = (guv)r

in Exp3 but set KU1 = KU2 = (gw)r, where w is drawn at random from Z∗
p.

As the following lemma shows, the difference between the current experiment
and the previous one is negligible as long as the DDH assumption holds.

Lemma 5.1 |Pr[Succ4]− Pr[Succ3]| ≤ qexe · Advddh
g,p (t).

[Proof]
By assuming a successful distinguisher (an adversary) against Exp3 and Exp4,

we construct a DDH solver. The only difference between Exp3 and Exp4 is in the
way to generate KU1 and KU2 for a session.

First, the DDH solver obtains a DDH tuple (g, gu, gv, Z). As Exp3 and Exp4,
the DDH solver selects a matching session for (U i

1, U
j
2) executed by some honest

parties U1 and U2. Then, when SendClient(U i
1; (U2; start)) and SendClient(U j

2 ;
(U1; start)) are asked, the DDH solver sets Θ = gu and Φ = gv. Also, when
SendClient(U i

1, (S, N, γU2 , Θ̄∗, Φ̄∗)) and SendClient (U j
2 , (S, N, γU1 , Θ̄∗, Φ̄∗)) are

asked, the DDH solver sets KU1 = KU2 = Zr. For all other queries, the DDH
solver returns as Exp3 and Exp4.

With probability 1/qexe the distinguisher picks the selected session as the test
session, i.e., the distinguisher asks Test(U i

1) or Test(U j
2). By Definition 3.2, the

distinguisher is allowed to reveal static keys (pwU1 , pwU2 , skS) and ephemeral
keys of the server (empty) but it is not allowed to reveal ephemeral keys of clients
((u,Θ,Θ∗, ωU1), (v,Φ,Φ∗, ωU2)). So, the DDH solver simulates all oracle queries
without knowing u and v. From the obtained information, the distinguisher can
compute (Θ = gu, Φ = gv) but cannot compute (KU1 ,KU2). In the case of
Z = guv, this environment for the distinguisher is equivalent to Exp3. In the case
of Z = gw, this environment for the distinguisher is equivalent to Exp4.

Finally, if the distinguisher decides that he interacted with Exp3, then the DDH
solver outputs 1. And, if the distinguisher decides that he interacted with Exp4,
then the DDH solver outputs 0. Since the distinguisher can distinguish with a
non-negligible probability, Advddh

g,p (t) is also non-negligible.
�

In Exp4, Diffie-Hellman keys KU1 and KU2 are random and independent with
passwords and ephemeral keys. So, there are three possible cases where the
adversary distinguishes the real session key and the random key as follows:
Case 1. the adversary queries (U1, U2, S, γU1 , γU2 , Θ̄∗, Φ̄∗, gw) to H3.
Case 2. the adversary asks SendClient query except SendClient(U j

2 ,m) query,
and successfully impersonates U1 to U2.

Case 3. the adversary asks SendClient query except SendClient(U i
1,m) query,

and successfully impersonates U2 to U1.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1953 Efficient and Strongly Secure Password-based Server Aided Key Exchange

(Case 1) The probability that this event occurs is qH3/p.
(Case 2) By Definition 3.2, the distinguisher is allowed to reveal the static
key pwU2 of U2 and ephemeral keys of the server (empty) but it is not allowed
to reveal static keys (pwU1 , pwU2 , skS) of S (and U1), and ephemeral keys of
clients ((u,Θ,Θ∗, ωU1), (v,Φ,Φ∗, ωU2)). Thus, in order to impersonate U1, i.e.,
the adversary has to compute a valid ciphertext to S1, the adversary has to obtain
some information of the password pwU1 of U1 from the ciphertext of U1. However,
by semantic security of (Gen,Enc,Dec) the adversary can obtain no information
with respect to pwU1 from the ciphertext of U1. Therefore, the probability that
this event occurs is lower than 1/|D|+AdvSS(t′), where the advantage function of
the attack to the semantic security, AdvSS(t), is defined with a time-complexity
at most t′.
(Case 3) By similar reason, the probability that this event occurs is lower than
1/|D|+ AdvSS(t′).

Hence,
Pr[Succ4] = 1/2 + max{qH3/p, 1/|D|+ AdvSS(t′)}. (5)

From (1), (2), (3), (4), (5) and Lemma 5.1, Theorem 5.1 is proven.
�

Theorem 5.2 Assuming (Gen,Enc,Dec) is a semantically secure public-key
encryption scheme, our scheme satisfies the password protection in Section 3.3.
[Proof]

For each experiment Expn, we define an event Succn as Succpw in Expn.
Experiment Exp0. This experiment corresponds to the real execution, in the
random oracle model. By the definition, we have

Advpw(A) = Pr[Succ0]. (6)
Experiment Exp1. In this experiment, we simulate the random oracles H1,
H2 and H3 as usual by maintaining hash lists ΛH1 , ΛH2 , and ΛH3 as the proof
of Theorem 5.1. Also, the Execute, SessionKeyReveal, SendClient, SendServer,
StaticKeyReveal, EphemeralKeyReveal and EstablishParty oracles are simulated as
in the real attack as the proof of Theorem 5.1. So, we describe only the simulation
of TestPassword oracle as follows:
� TestPassword query
• On query TestPassword(U, pw′), we proceed as follows:

pw ← StaticKeyReveal(U)
if pw′ = pw then return 1
else return 0.

One can easily see that this experiment is perfectly indistinguishable from the
real experiment. Hence,

Pr[Succ1] = Pr[Succ0]. (7)
Experiment Exp2. In this experiment, we change the simulation of
queries to the SendClient, SendServer, StaticKeyReveal, EphemeralKeyReveal and
TestPassword oracles. This time, we select at random a honest client A which
has the corresponding server S. When SendClient(Ai; (U2; start)) is asked,
we choose a random value z ← Z∗

p and compute γA ← EncpkS
(gz;ωA).

And, when StaticKeyReveal(A), StaticKeyReveal(S), EphemeralKeyReveal(Ai) or
EphemeralKeyReveal(Si) for any i is asked, we finish the simulation as failed.
Moreover, when TestPassword(U, pw′) where U is not A is asked, we finish the
simulation as failed.

Also, when SendServer(Si1 , ((A,U2, γ′
A), (U2, A, γ′

U2
))) is asked, we verify γ′

A
?=

γA instead of verifying p̃wA
?= pwA, and let Θ̂ := ˜Θ∗.

As the following lemma shows, the difference between the current experiment
and the previous one is negligible as long as semantic security for (Gen,Enc,Dec)
holds where the advantage function of the attack to the semantic security,
AdvSS(t), is defined with a time-complexity at most t′.

Lemma 5.2 |Pr[Succ2]− Pr[Succ1]| ≤ |U| · AdvSS(t′).
[Proof]

By assuming a successful distinguisher (an adversary) against Exp2 and Exp1,
we construct a semantic security (SS) attacker. The only difference between Exp2

and Exp1 is in the way to generate γA for a client A.
First, as Exp2, the SS attacker selects a honest client A which has the cor-

responding server S. Then, when SendClient(A; (U2; start)) is asked, the SS
attacker sends messages (m0,m1) to the challenge oracle for the SS game
where m0 is computed as Exp1 and m1 is computed as Exp2. Upon receiving
γ∗ ← EncpkS

(mb) where b = 0 or b = 1 from the challenge oracle, the SS attacker
sets γA = γ∗. For all other queries, the SS attacker returns as Exp1 and Exp2.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1954 Efficient and Strongly Secure Password-based Server Aided Key Exchange

With probability 1/|U| the distinguisher picks the selected client as the client
to guess the password, i.e., the distinguisher asks TestPassword(A). By Definition
3.3, the distinguisher is allowed to reveal static keys except A’s and S’s (pwU2)
and ephemeral keys except A’s and S’s (φ,Φ,Φ∗, ωU2) but it is not allowed to
reveal static and ephemeral keys of A’s and S’s. Thus, the SS attacker simulates
all oracle queries without knowing skS . In the case of b = 0, this environment
for the distinguisher is equivalent to Exp1. In the case of b = 1, this environment
for the distinguisher is equivalent to Exp2.

Finally, if the distinguisher decides that he interacted with Exp1, then the SS
attacker outputs 0. And, if the distinguisher decides that he interacted with
Exp2, then the SS attacker outputs 1. Since the distinguisher can distinguish
with a non-negligible probability, AdvSS(t′) is also non-negligible.

�
Experiment Exp3. In this experiment, we once again change the simula-
tion of queries to the SendClient and SendServer oracle for the selected client
and server. This time, we change the way we compute the values Φ̄∗ and KA

so that Φ̄∗ is independent from A’s password. When SendServer(Si1 , ((A,U2,

γ′
A), (U2, A, γ′

U2
))) is asked, we compute Φ̄∗ = Φ̄ · H2(N, ˜Θ∗) instead of

Φ̄∗ = Φ̄ ·H2(N, pwA, ˜Θ∗). And, when SendClient(A, (S,N, γ′
A, Θ̄∗, Φ̄∗)) is asked,

we compute KA ← (Φ̄∗/H2(N,Θ∗))z.
As the following lemma shows, this experiment is perfectly indistinguishable

from the previous one.
Lemma 5.3 Pr[Succ3] = Pr[Succ2].

[Proof]
The only difference between Exp3 and Exp2 is in the way to generate Φ̄∗ for a

client A.
By Definition 3.3, the distinguisher is allowed to reveal static keys except A’s

and S’s (pwU2) and ephemeral keys except A’s (θ,Θ,Θ∗, ωA) but it is not allowed
to reveal the static and ephemeral key of A’s. So, ˜Θ∗ is an unknown value for the
distinguisher. Therefore, Φ̄ · H2(N, ˜Θ∗) and Φ̄ · H2(N, pwA, ˜Θ∗) are perfectly
indistinguishable for the distinguisher.

Also, though the way to compute KA is changed, the final session key is not

changed. So, Exp3 and Exp2 are indistinguishable.
�

In Exp3, all transcripts are random and independent with A’s password. So,
the only way that the adversary guesses the password is by random guessing. If
the adversary fails, the message is declared as “invalid”. Thus, the adversary
can try to guess only qsend times. The probability that the adversary succeeds is
qsend/|D|. Hence,

Pr[Succ3] = qsend/|D|. (8)
From (6), (7), (8), Lemma 5.2 and Lemma 5.3, Theorem 5.2 is proven.

�

6. Conclusion

Firstly, we pointed out that previous security definitions of the 3-party PAKE
cannot capture all desirable security requirements. Next, we proposed a new
stronger definition of the 3-party PAKE which captures all desirable security re-
quirements. Finally, we introduced a 3-party PAKE protocol in the same setting
as PSAKE with optimal rounds for the client and proved its security in the sense
of our stronger definition.

Our scheme use the public-key encryption as a building block in order to guar-
antee the resistance to UDonDA. However, public-key encryption schemes are
time-consuming. Thus, a remaining problem of further researches is an efficient
construction which satisfies stronger security requirements.

References

1) Abdalla, M., Fouque, P.-A. and Pointcheval, D.: Password-Based Authenticated
Key Exchange in the Three-Party Setting, Public Key Cryptography 2005, pp.65–84
(2005).

2) Abdalla, M. and Pointcheval, D.: Interactive Diffie-Hellman Assumptions with
Applications to Password-Based Authentication, Financial Cryptography 2005,
pp.341–356 (2005).

3) Bellare, M., Pointcheval, D. and Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks, EUROCRYPT 2000, pp.139–155 (2000).

4) Bellovin, S.M. and Merritt, M.: Encrypted Key Exchange: Password-Based Pro-
tocols Secure Against Dictionary Attacks, IEEE S&P 1992, pp.72–84 (1992).

5) Boyko, V., MacKenzie, P.D. and Patel, S.: Provably Secure Password-

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

1955 Efficient and Strongly Secure Password-based Server Aided Key Exchange

Authenticated Key Exchange Using Diffie-Hellman, EUROCRYPT 2000, pp.156–
171 (2000).

6) Canetti, R. and Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels, EUROCRYPT 2001, pp.453–474 (2001).

7) Chang, Y.-F. and Chang, C.-C.: Password-authenticated 3PEKE with Round Ef-
ficiency without Server’s Public Key, CW 2005, pp.340–344 (2005).

8) Choo, K.-K.R., Boyd, C. and Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols, ASIACRYPT 2005, pp.585–604
(2005).

9) Cliff, Y., Tin, Y.S.T. and Boyd, C.: Password Based Server Aided Key Exchange,
ACNS 2006, pp.146–161 (2006).

10) Diffie, W., van Oorschot, P.C. and Wiener, M.J.: Authentication and Authenti-
cated Key Exchanges, Des. Codes Cryptography, Vol.2, No.2, pp.107–125 (1992).

11) Ding, Y. and Horster, P.: Undetectable On-line Password Guessing Attacks, Op-
erating Systems Review, Vol.29, No.4, pp.77–86 (1995).

12) Jablon, D.P.: Strong Password-Only Authenticated Key Exchange, Computer
Communication Review, ACM SIGCOMM, Vol.26, No.5, pp.5–26 (1996).

13) Katz, J., Ostrovsky, R. and Yung, M.: Efficient Password-Authenticated Key
Exchange Using Human-Memorable Passwords, EUROCRYPT 2001, pp.475–494
(2001).

14) LaMacchia, B., Lauter, K. and Mityagin, A.: Stronger Security of Authenticated
Key Exchange, Provsec 2007 (2007).

15) Lin, C.-L., Sun, H.-M. and Hwang, T.: Three-party Encrypted Key Exchange:
Attacks and A Solution, ACM Operating Systems Review, Vol.34, No.4, pp.12–20
(2000).

16) Lomas, T.M.A., Gong, L., Saltzer, J.H. and Needham, R.M.: Reducing Risks from
Poorly Chosen Keys, SOSP 1989, pp.14–18 (1989).

17) Steiner, J.G., Neuman, B.C. and Schiller, J.I.: Kerberos: An Authentication Ser-
vice for Open Network Systems, USENIX Winter 1988, pp.191–202 (1988).

18) Steiner, M., Tsudik, G. and Waidner, M.: Refinement and Extension of Encrypted
Key Exchange, ACM Operating Systems Review, Vol.29, No.3, pp.22–30 (1995).

19) Wang, W. and Hu, L.: Efficient and Provably Secure Generic Construction
of Three-Party Password-Based Authenticated Key Exchange Protocols, IN-
DOCRYPT 2006, pp.118–132 (2006).

(Received December 1, 2008)
(Accepted June 4, 2009)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.17, pp.202–215.)

Kazuki Yoneyama was born in 1981. He received the
B.E., M.E. and Ph.D. degrees from University of Electro-
Communications, Tokyo, Japan, in 2004, 2006 and 2008, respec-
tively. He has been a postdoctoral research fellow at University
of Electro-Communications since 2008. He is presently engaged
in research on cryptography. He is a member of the International
Association for Cryptologic Research, IEICE and JSIAM.

IPSJ Journal Vol. 50 No. 9 1942–1955 (Sep. 2009) c© 2009 Information Processing Society of Japan

