
IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009)

Regular Paper

Area Recovery under Depth Constraint

for Technology Mapping for LUT-based FPGAs �1

Taiga Takata†1 and Yusuke Matsunaga†2

This paper presents Cut Resubstitution; a heuristic algorithm for post-
processing of technology mapping for LUT-based FPGAs to minimize area
under depth constraint. The concept of Cut Resubstitution is iterating lo-
cal transformation of an LUT network with considering actual area reduction
without using Boolean matching. Cut Resubstitution iterates the following pro-
cess. At first, Cut Resubstitution substitutes several LUTs in current network
in such a way that another LUT is to be redundant. Then Cut Resubstitution
eliminates the redundant LUT from network. Experimental results show that a
simple depth-minimum mapper followed by Cut Resubstitution generates net-
work whose area is 7%, 7%, 10% smaller than that generated by DAOmap for
maximum number of inputs of LUT 4, 5, 6 on average. Our method is similar
or slightly faster than DAOmap.

1. Introduction

Recently, designs using LUT (LookUp-Table) based FPGAs (Field Pro-
grammable Gate Array) are becoming popular. LUT-based FPGAs require
common photomasks for multiple designs, while ASICs (Application Specific In-
tegrated Circuits) require specific photomasks for individual design. Once an
LUT-based FPGA is reconfigured for a design, it is available to use immediately.
For these reasons, LUT-based FPGAs are often used for prototypes or manufac-
tures required to be developed faster. Main drawbacks of LUT-based FPGAs are
performance and power consumption. Thus, technology mapping for LUT-based
FPGAs is required to generate high-quality network in short run-time.

Technology mapping for LUT-based FPGAs is a process to convert a given

†1 Graduate School of Information Science and Electrical Engineering, Kyushu University
†2 Faculty of Information Science and Electrical Engineering, Kyushu University
�1 This work is based on the presentation in the 13th Asia South Pacific Design Automation

Conference, Korea, January 2008 12).

Boolean network into a functionally equivalent network comprised of K-input
LUTs �2. Technology mapping to generate an area-minimal LUT network whose
depth is minimum is well studied 1)–6),9),11),13). Area of an LUT network means
the number of LUTs in the LUT network. Depth means the length of the longest
path �3. Because a problem for area-minimization has been shown to be NP-
hard 10), predicting accurately which LUTs are the best for minimizing area in
practical time is difficult. Thus, heuristics are likely to be necessary to generate
LUT network whose depth and area are minimum. Recent methods take a two-
step approach. At first, they generate a depth-minimum LUT network �4 with
considering area cost of each K-feasible cone �5 in Boolean network. Area cost
is a heuristic metric to indicate how good a K-feasible cone is for area. Then,
a post-processing recovers area of LUT network with keeping the depth. Some
methods 2),9),13) recover area by iterating global transformation of LUT network.
At first, they modify area cost for each K-feasible cone with using the structure of
current LUT network. Then, they generate new depth-minimum LUT network
with using the area cost. Because the area cost does not have direct relation
with actual area, they can fail to find good LUT network. Other methods 6),8),11)

recover area by iterating local transformation of LUT network. They iteratively
extract a large cone in LUT network, and remap it with fewer LUTs with using
Boolean matching. They are likely to be not suitable for large designs because
methods using Boolean matching tend to consume significantly long run-time �6.

This paper presents a heuristic algorithm for post-processing of technology
mapping; Cut Resubstitution. The concept of Cut Resubstitution is iterating
local transformation of LUT network without using Boolean matching. Cut
Resubstitution generates a local optimum solution because it does not consider

�2 In this paper, K-input LUT is denoted by LUT, and the network comprised of K-input
LUTs is denoted by LUT network.

�3 Most of existing literatures on technology mapping use depth to refer to delay.
�4 The problem for depth-minimization can be solved optimally in polynomial time using a

dynamic programming 3),7).
�5 A K-feasible cone is a cone with K-input. Technology mapping is often treated as a problem

to cover given Boolean network with K-feasible cones.

�6 For example, the most recent method based on Boolean matching 6) consumes 69 minutes
of run-time for a circuit “des” in MCNC benchmarks. For several larger circuits, it is
experimentally confirmed to consume several thousands of minutes in Ref. 6).

200 c© 2009 Information Processing Society of Japan

201 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

area cost, but does actual area to be reduced. Cut Resubstitution runs fast
because it uses only structures of Boolean network and LUT network without
using Boolean matching. For details, Cut Resubstitution iterates the following
process. At first, Cut Resubstitution extracts a LUT l and its fanout LUTs. Cut
Resubstitution substitutes the fanout LUTs with the same number of LUTs in
such a way that the LUT l is to be redundant. This substitution is executed
with keeping the depth of LUT network. Then Cut Resubstitution eliminates
the redundant LUT l. Experiments to compare Cut Resubstitution and one
of the state of the arts depth-minimum mapper; DAOmap 2) are performed.
LUT networks given for Cut Resubstitution are generated by a simple depth-
minimum mapper �1. Cut Resubstitution has generated LUT network whose
area is 7%, 7%, 10% smaller on average in the case of K = 4, 5, 6 than that
generated by DAOmap respectively. The depth of LUT network generated by
Cut Resubstitution and that by DAOmap are same. The run-time of the depth-
minimum mapper combined with Cut Resubstitution is only a few tens of seconds
even for large circuits as ITC’99 benchmarks, which is similar or slightly shorter
than that of DAOmap.

The rest of this paper is organized as follows. Section 2 presents some basic
definitions and formulation. Cut Resubstitution is presented in Section 3. Sec-
tion 4 presents overall technology mapping combined with Cut Resubstitution.
Section 5 presents experimental results. Section 6 concludes this paper.

2. Preliminaries

The inputs of technology mapping are a DAG which is called subject graph
and a natural number K. For each node v in subject graph, there is a constraint
where the number of inputs is up to K �2. The natural number K corresponds
to the maximum number of inputs of LUTs. The output of technology mapping
is a network whose nodes represent K-input LUTs. This network is called LUT

�1 Cut Resubstitution is not applicable to an LUT network generated by DAOmap in a simple
way because Cut Resubstitution needs an information which K-feasible cones are used for
covering a given Boolean network to generate the LUT network.

�2 This constraint guarantees that there is at least one LUT network derived by a subject
graph.

Fig. 1 (1) The transitive fanin graph of q. (2) An example of a realizable set.

network.
A node of a subject graph (V,E) represents a Boolean function and has up to

K inputs. If a node i ∈ V is an input of a node j ∈ V , there is an edge (i, j) ∈ E.
The fanin of a node v, denoted by FI(v), is the set of immediate predecessors
of v. The fanin of v is defined by FI(v) = {u | ∃(u, v) ∈ E}. The fanout of a
node v, denoted by FO(v), is the set of immediate successors of v. The fanout of
v is defined by FO(v) = {w | ∃(v, w) ∈ E}. A node v where FI(v) = φ is called
a primary input. A node v where FO(v) = φ is called a primary output.
PI and PO denote the set of primary inputs and the set of primary outputs
respectively. The transitive fanin of a node v is the set of all nodes which lie
on all paths from any PI to v. More exactly, a transitive fanin of v, denoted by
TFI(v), is defined by the following expression.

TFI(v) = {v} ∪
⋃

u∈FI(v)

TFI(u)

The transitive fanin graph of a node v is the subgraph induced by TFI(v),
denoted by TFIG(v). Figure 1 (1) is the example of a subject graph and a
transitive fanin graph. The circles and arrows represent nodes and edges in the
subject graph respectively. The dashed line in Fig. 1 (1) illustrates the transitive
fanin graph of node q. The transitive fanout of a node v is the set of all nodes
which lie on all paths from v to any PO. More exactly, a transitive fanout of v,
denoted by TFO(v), is defined by the following expression.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

202 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

TFO(v) = {v} ∪
⋃

u∈FO(v)

TFO(u)

A separator s for TFIG(v) is a set of nodes where any path from any primary
input to v includes one or more nodes in s. For example, nodes {g, h, i, j} in
subject graph in Fig. 1 (1) is a separator for TFIG(q). A minimal separator s for
TFIG(v) is a separator for TFIG(v) which does not contain any other separator
for TFIG(v). For example, nodes {g, h, i} in Fig. 1 (1) is a minimal separator for
TFIG(q). {g, h, i, j} is not minimal separator for TFIG(q) because {g, h, i, j}
contains the separator {g, h, i}. A cut (s, v) is a pair of node v and set of nodes
s where s is a minimal separator for TFIG(v). For a node v, the cut (v, {v})
is called the trivial cut of v. For a cut (v, s), v is called the root of the cut,
denoted by RT ((v, s)). For a cut (v, s), s is called the leaf of the cut, denoted by
LEAF ((v, s)). For a cut c, |LEAF (c)| is called the cut-size of c. A K-feasible
cut c is a cut where |LEAF (c)| is up to K. Because only K-feasible cuts are
considered, a K-feasible cut is simply called as a cut in the rest of this paper.
ΦK(v) denotes the set of all of cuts whose roots are v. For a set of cuts C and a
cut c ∈ C, the cut fanin CFI(c, C) and cut fanout CFO(c, C) are defined by
the following equations.

CFI(c, C) = {c′|c′ ∈ C,RT (c′) ∈ LEAF (c)}
CFO(c, C) = {c′|c′ ∈ C,RT (c) ∈ LEAF (c′)}

For a feasible cut c, the feasible cone KFC(c) is the subgraph induced by
the nodes between RT (c) and LEAF (c). A K-feasible cone is exactly defined
as the subgraph induced by the set of nodes Vinterv(RT (c), LEAF (c)), where
Vinterv(v, V) is derived by the following equation.

Vinterv(v, V) = {v} ∪
⋃

u∈FI(v)−V

Vinterv(u, V)

For example, (q, {g, h, i}) in Fig. 1 (1) is a 3-feasible cut at q. 3-feasible cone of
(q, {g, h, i}) is a subgraph induced by the nodes {j, k, l, o, q}. For the K-feasible
cone KFC(c), the root of c is also called the root of KFC(c), and denoted by
RT (KFC(c)). In above case, the leaf LEAF (c) is called the inputs of K-feasible
cone KFC(c), and denoted by INPUT (KFC(c)).

For a K-feasible cone C, INPUT (C) is up to K. Thus, a K-input LUT
can implement the Boolean function of any K-feasible cone. If a K-input LUT
L implement the Boolean function of a K-feasible cone KFC(c), the output
signal of L corresponds to RT (KFC(c)), i.e. RT (c), and the input signals of L

correspond to INPUT (KFC(c)), i.e. LEAF (c). If a set S of cuts meets below
three conditions, S is called as the realizable set.
• ∀i ∈ PO, (∃c ∈ S, i = RT (c)) ∨ i ∈ PI

• ∀c ∈ S, ∀i ∈ LEAF (c), (∃c′ ∈ S, i = RT (c′)) ∨ i ∈ PI

• There is no trivial cut in S.
An LUT network can be generated from a realizable set S by below operations.
• For each primary input v in the subject graph, generate a primary input

which corresponds to v in the LUT network.
• For each cut c in S, generate an LUT which implements the Boolean function

of KFC(c).
• For each c ∈ S, for each i ∈ CFI(c, S), generate the edge (b, a) where a is

the LUT which implements the function of KFC(c) and b is the LUT which
implements the function of KFC(i).

The technology mapping problem can be defined as DAG covering problem which
is the problem to find a realizable set of cuts.

For a node L in an LUT network, the level of L is the length of the longest
path from any primary input to L. For a realizable set S and a cut c ∈ S, the
cut level LEV (c, S) denotes the level of LUT which implement the function of
KFC(c). LEV (c, S) can be calculated by the following equation.

LEV (c, S) =

{
maxc′∈CFI(c,S) LEV (c′, S) + 1 (CFI(c, S) �= φ)
1 otherwise

The depth of an LUT network is the longest path from any primary input to
any primary output. The depth of an LUT network is equal to the largest level
in the LUT network. For a realizable set S, the depth D(S) is calculated by the
following equation.

D(S) = max
c∈S

(LEV (c, S))

The area of an LUT network is the number of nodes in LUT network. For a

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

203 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

realizable set S, the area is calculated by |S|. The technology mapping problem to
generate an area-minimum LUT network under depth constraint can be defined
as the problem to find a realizable set S where |S| is the minimum and D(S) is
equal or under the depth constraint d. For a realizable set S and a cut c ∈ S,
the cut required level RLV (c, S) denotes the level of LUT which implement
the function of KFC(c) required to make the depth minimum. RLV (c, S) can
be calculated by the following equation.

RLV (c, S) =

{
minc′∈CFO(c,S) RLV (c′, S) − 1 (CFO(c, S) �= φ)
d otherwise

(1)

For example, Fig. 1 (2) shows a realizable set where K = 3. For each cut c in the
realizable set, KFC(c) is illustrated by the dashed trapezoid. LEV (g, {c, d}),
LEV (h, {c, d}) and LEV (i, {e, f}) are 1. LEV (j, {g, h}) and LEV (p, {a, g, h})
are 2. LEV (q, {h, i, j}) is 3. Thus, D(S) is 3 in Fig. 1 (2).

3. Cut Resubstitution; a Method for Area Recovery under Detph
Constraint

Technology mapping algorithm often consists of the following four phases.
(1) Cut Enumeration
(2) Cut Ranking
(3) Covering
(4) Post-processing
Cut enumeration enumerates cuts in given subject graph. Cut ranking examines
how good each cut is for depth and area in a topological order from PI to PO.
Covering picks a good cut for each node in a reverse topological order from PO

to PI, and generate a depth-minimum LUT network. Post-processing recovers
the area with keeping the depth.

Proposed method is a heuristic post-processing which is called as Cut Resub-
stitution. Figure 2 (1) is a motivational example for Cut Resubstitution for
K = 3. Cuts (w, {q, v}) and (x, {s, v, q}) are selected as a part of realizable set.
If cuts (w, {q, y}) and (x, {s, y}) are selected as shown in Fig. 2 (2), cuts (v, {r, s})
would not be needed. Substituting (w, {q, v}) and (x, {s, v, q}) with (w, {q, y})
and (x, {s, y}) makes (v, {r, s}) be redundant without changing the area and the

Fig. 2 A motivational example for Cut Resubstituion.

depth. Then, if (v, {r, s}) is removed from current realizable set, (r, {q, u, p}) can
also be removed because it is also redundant. Therefore, area reduction is 2 in
this example.

Cut Resubstitution recovers the area of an LUT network under a depth con-
straint �1. Inputs of Cut Resubstitution are a subject graph, a depth constraint,
all of cuts and a realizable set. Cut Resubstitution generates a realizable set
whose size is local optimum based on iterative elimination of cuts. Cut Resub-
stitution iterates the following process. At first, Cut Resubstitution identifies
potentially redundant cuts in current realizable set S. A potentially redundant
cut is such a cut c which can be redundant with substituting CFO(c, S). Then,
potentially redundant cuts are ranked with using a metric gain that denotes
how good a cut is to be eliminated for area reduction. Then, for such a poten-
tially redundant cut cbest whose gain is the maximum, Cut Resubstitution sub-
stitutes CFO(cbest, S), and eliminates cbest. If the substitution of CFO(cbest, S)
or elimination of cbest make other cuts to be redundant, Cut Resubstitution also

�1 The depth of an LUT network must be equal or smaller than the depth constraint to apply
Cut Resubstitution.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

204 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

Cut Resubstitution((V, E), Call, S0, d){
CR := RCE(Call, S0);
Si := S0;
while (1) {

CBEC((V, E), CR, Si, d);
S := CE(Si, CR);
if (S = Si) {

break;
}
Si := S;

}
return S;

}
Fig. 3 Pseudo code for Cut Resubstitution.

eliminates them.
Figure 3 provides the pseudo code of Cut Resubstitution. In Fig. 3, (V,E)

represents a subject graph. Call represents the set of all cuts enumerated in
(V,E). S0 represents given realizable set. CR represents the sets of cuts which
are replaceable for each cut in S0. A replaceable cut for a cut c means a candidate
for substitution of c. Si and S represent realizable sets of cuts. d represents a
depth constraint. RCE enumerates replaceable cuts for each cut in S0. CBEC
examines each cut c in Si whether c is a potentially redundant cut. Potentially
redundant cuts are ranked with using gain. For a potentially redundant cut c

whose gain is the maximum, CE substitutes cuts in CFO(c, Si) with other cuts
in CR, and eliminates c and other redundant cuts from Si. Then the size of new
realizable set S is at least one smaller than that of Si. If there is no potentially
redundant cut in Si, the process of Cut Resubstitution finishes.

3.1 Enumeration of Replaceable Cuts
At this phase, the set of all replaceable cuts are enumerated. A cut c′ ∈ Call is

a replaceable cut of c ∈ S0 (c �= c′) if c′ meets the following conditions.
RT (c) = RT (c′) ∧ (∀i ∈ LEAF (c′),∃c′′ ∈ S0, RT (c′′) = i) (2)

3.2 Enumeration of Potentially Redundant Cuts and Ranking
At this phase, each cut c ∈ Si is examined whether c is a potentially redundant

cut. Each potentially redundant cut is ranked by an indicator gain. The gain of
cut c means an estimated number of cuts to be redundant if c is redundant.

For a cut c ∈ Si, a substitutable set of cuts is defined. A substitutable set C

for c ∈ Si is a subset of CR which meets the following three conditions. At first,
there is only a cut c′′ ∈ C which meets the condition RT (c′′) = RT (c′) for each
c′ ∈ CFO(c, Si). At second, SW (c, C, Si) is a realizable set, where SW (c, C, Si)
denotes a set which is obtained by removing CFO(c, Si) from Si, and adding C

to Si. Finally, D(SW (c, C, Si)) must be equal or smaller than d. For example in
Fig. 2 (1), {(w, {q, y}), (x, {y, s})} is a substitutable set for (v, {r, s}).

A cut c ∈ Si is a potentially redundant cut if there is a substitutable set for
c. Each cut c ∈ Si is checked whether there is a substitutable set for c. But
examining all combinations to select a repleceable cut for each c′ ∈ CFO(c, Si)
may consume large run-time because the number of all combinations can increase
exponentially with |CFO(c, Si)|. For example, if the number of replaceable cuts
for each c ∈ CFO(c, Si) are the same with s, and if |CFO(c, Si)| = t, then the
number of all combinations is st. To avoid this problem, a heuristic technique
is introduced to check whether there is a substitutable set of c ∈ Si. At first,
each c′ ∈ CFO(c, Si) is sorted in such a way that roots of cuts are in topological
order from PI to PO, and copy Si to S′

i. Then, each c′ ∈ CFO(c, Si) is checked
whether c′ can be substituted with any replaceable cut of c′ in the sorted order.
If c′ and a replaceable cut c′′ meet the following condition (3) (4), c′ can be
substituted with c′′.

RT (c′) = RT (c′′) ∧ (∀j ∈ LEAF (c′′), (j ∈ PI ∨ (j �= RT (c) ∧
(∃p ∈ S′

i, RT (p) = j)))) (3)
max

j∈CFI(c′′,S′
i
)
LEV (j, S′

i) + 1 ≤ RLV (c′, S′
i)) (4)

If the condition (3) is met, the set of cuts obtained with substituting c′ in S′
i

with c′′ is a realizable set. The condition (4) is for holding the depth constraint.
If c′ can be substituted by c′′, update S′

i = SW (c′, {c′′}, S′
i). If there is a cut

which can substitute c′ for each c′ ∈ CFO(c, Si), c is determined as a potentially
redundant cut.

An example in Fig. 4 shows how to check whether there is a substitutable set
of c. Current realizable set S′

i is illustrated in the solid trapezoids. FI(q), FI(t),
FO(x), FO(z) are omitted in Fig. 4. The pair of numbers (α, β) beside a node
v means the pair of cut level and cut required level for cuts whose roots are v.
In this example, CFO(c, Si) is {(x, {q, t, s}), (y, {q, t, s})}. At first, CFO(c, Si)

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

205 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

Fig. 4 Checking a substitutable set for a cut c.

are sorted in such a way that roots of cuts are in topological order from PI

to PO, and the order ((y, {q, t, s}), (x, {q, t, s})) is obtained. Then, (y, {q, t, s})
is checked whether (y, {q, t, s}) can be substituted with any replaceable cut of
(y, {q, t, s}). Let c′ and c′′ denote (y, {q, t, s}) and (y, {q, r, s}). c′′ is a reaplace-
able cut of c′. s ∈ LEAF (c′′) is in PI. q ∈ LEAF (c′′) �= RT (c) and there is a cut
whose root is q. r ∈ LEAF (c′′) is similar to q. Thus, c′ and c′′ meets Eq. (3).
maxj∈CFI(c′′) LEV (j, S′

i) + 1 is 7. RLV (c′, S′
i) is 7. Thus, c′ and c′′ meets

Eq. (4). Then, S′
i is updated with substituting c′ with c′′. Next, (x, {q, t, s}) is

checked in a similar way. The replaceable cuts of (x, {q, t, s}) are (x, {q, r, s})
and (x, {y, s}). Although the pair of (x, {q, t, s}) and (x, {y, s}) meets Eq. (3),
it does not meet Eq. (4). That is because LEV ((y, r, s), S′

i) is 7, and cut level
for (x, {y, s}) is 8, while the cut required level for (x, {y, s}) is 7. On the other
hand, the pair of (x, {q, t, s}) and (x, {q, r, s}) meets Eqs. (3) and (4). Therefore,
{(y, {q, r, s}), (x, {q, r, s})} is a substitutable set of c.

In Eq. (4), maxj∈CFI(c′′,S′
i
) LEV (j, S′

i) + 1 is the same with the cut level for
c′′ after substituting CFO(c, Si). That is because a cut to substitute each
j ∈ CFO(c, Si) is decided in such an order that roots of cuts are in a topo-
logical order from PI to PO, and cut fanin of c′′ have already been decided. On

the other hand, RLV (c′, S′
i) in Eq. (4) might be different from cut required level

for c′′ after substituting CFO(c, Si), because the cuts to substitute CFO(c′, S′
i)

have not decided yet. Thus, Cut Resubstitution might fail to find some few sub-
stitutable sets. But it is guaranteed that Cut Resubstitution does not substitute
CFO(c, Si) with other cuts in such a way that violates the depth constraint. That
is because RLV (c′, S′

i) is the same with cut required level for c′′ after substituting
CFO(c, Si) if the following condition for c′ is met.

(TFO(RT (c′)) − {RT (c′)}) ∩
⎛
⎝ ⋃

j∈CFO(c,Si)

RT (j)

⎞
⎠ = φ

A cut which meets the above condition is called a rearmost cut in CFO(c, Si).
There are one or more rearmost cuts in CFO(c, Si). For example in Fig. 4,
(x, {q, t, s}) is the rearmost cut in CFO(c, Si). Because RLV (c′, S′

i) is accurate
cut required level for c′′ after substituting a rearmost c′ with c′′, if a pair of
c′ and c′′ meets Eq. (4), substituting CFO(c, Si) with the current set of cuts
does not violate the depth constraint. Cut Resubstitution avoids to examine all
combinations to select a replaceable cut for each c′ ∈ CFO(c, Si) with employing
the above heuristic approach �1.

For each cut c ∈ Si, gain is calculated. The cut whose gain is the maximum
among potentially redundant cuts is called best-gain cut. One of best-gain cuts
is recorded. The gain GAIN(c, Si) for each c ∈ Si is calculated by the following
equation in topological order from PI to PO in linear time �2.

GAIN(c, Si) = 1 +
∑

j∈CFI(c,Si)

GAIN ′(c, j, Si)

GAIN ′(c, j, Si) =

{
GAIN(j, Si) (CFO(j, Si) = {c})
0 otherwise

(5)

For example in Fig. 2 (1), (v, {s, r}) is a potentially redundant cut. If (v, {s, r})

�1 For all curcuits used in experiments in this paper, there is no difference for the area of an
LUT network between using the above heuristic approach and using exact substitutable
sets.

�2 The computing complexity for gain for each cut c ∈ Si is O(|LEAF (c)|). The computing
complexity for gain of all cuts in Si is O(|Si|) because |LEAF (c)| ≤ K.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

206 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

is eliminated, (r, {q, t}) can also be eliminated because (r, {q, t}) becomes redun-
dant. Thus, the gain of (v, {s, r}) is 2.

3.3 Elimination of the Best Potentially Redundant Cut
At this phase, the best-gain cut c is eliminated. At first, Si is copied to S. If

there is no potentially redundant cut found in the previous phase, return S to
finish Cut Resubstitution. Otherwise, each cut in CFO(c, Si) is deleted from S.
For each c ∈ CFO(c, Si), the substitutional cut calculated in the immediately
preceding phase is added to S. Then, each cut c′ in S where CFO(c′, S) = φ is
deleted from S. The set S is returned.

The set of the replaceable cuts CR is not needed to be updated after elimination
of the best-gain cut. For a cut c /∈ CR, LEAF (c) contains a node v which meets
the condition ∀s ∈ S0, v �= RT (s). In above case, if and only if a cut s whose
root is v is added to S0 for each v ∈ LEAF (c) where ∀s ∈ S0, v �= RT (s), c

becomes a replaceable cut for a cut s′ ∈ S0 + {s} where RT (c) = RT (s′). No cut
c whose root is v where ∀s ∈ S0, v �= RT (s) is added to current realizable set S in
any step of Cut Resubstitution. Thus, any cut which is not a replaceable cut for
any cut in current realizable set never become a replaceable cut. On the other
hand, there is a case where a replaceable cut c for a cut in current realizable set
S becomes no-replaceable for any cut in next realizable set S′. But such cut c is
not used to substitute any cut in S′ because c does not meet Eq. (3). Therefore,
the set of the replaceable cuts CR is not needed to be updated after elimination
of the best-gain cut.

4. Overall Technology Mapping combined with Cut Resubstituion

Overall Technology mapping combined with Cut Resubstitution consists of cut
enumeration, cut ranking, covering and Cut Resubstitution. In this section, cut
enumeration, cut ranking and covering are described. The algorithms described in
this section are classic. They are introduced to make clear the overall technology
mapping and help to understand the experiments following this section.

4.1 Cut Enumeration
All of cuts are enumerated with using an existing technique shown in Ref. 5).

The computing complexity for calculating each ΦK(v) is proportional to the size
of Cartesian products of ΦK(u1) and ΦK(u2), where FI(v) = {u1, u2}. If K

is 4, 5 or 6 �1, ΦK(v) for each node v is not so large in most cases. Thus, the
run-time of the cut enumeration is practical as far as K is up to 6.

4.2 Cut Ranking
Cut Ranking examines how good each cut is for such objectives as depth and

area. Depth-cost and area-cost of each cut are calculated. Depth-cost of a cut
c means the minimum cut level in cut levels LEV (c, S) for all of realizable sets
S which include c. Depth-cost can be calculated exactly in polynomial time in
topological order from PI to PO based on dynamic programming 3). For a cut c

at v, the depth-cost DC(c) is calculated by the following expression (6), where
BD(v) denotes the minimum depth-cost of all cuts at v. BD(v) of each PI is 0.

DC(c) = max
i∈LEAF (c)

BD(i) + 1 (6)

BD(i) =

{
0 (i ∈ PI)
minj∈ΦK(i) DC(j) otherwise

Area-cost of a cut c means the minimum size of realizable set S for TFIG(v)
where S includes c. Because area minimization for DAG covering problem has
been shown to be NP-hard 10), it is likely that there is no efficient way to compute
area-cost accurately. The difficulty of area estimation before covering is mainly
due to the existence of nodes with multiple fanout and their reconvergence. For
example in Fig. 1 (1), it is difficult to make a decision during cut ranking whether
the nodes i, h, j, k, r would be better to be duplicated in covering. The node j

may be covered by a single LUT. On the other hand, duplicating j in covering,
j may be covered by 2 ∼ 3 LUTs. In Fig. 1 (2), j is covered by 2 LUTs.

Several existing algorithms 1),2),5),9),13) calculate approximate area-cost based
on a heuristic technique; area flow. The key idea of area flow is to distribute
the area-cost of each node to its fanout nodes with taking into account the effect
of input sharing. For a cut c, area-cost ACaf (c) based on area flow is calculated
by Eq. (7), where BA(v) denotes the minimum area-cost of all cuts of v and U(c)
denotes the area contributed by c itself �2.

�1 4, 5 and 6 are popular numbers for the maximum number of inputs of LUT in commercial
FPGAs.

�2 U(c) is usually 1.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

207 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

Fig. 5 An example of two realizable sets.

ACaf (c) = U(c) +
∑

i∈LEAF (c)

BA(i)/|FO(i)| (7)

BA(i) =

{
0 (i ∈ PI)
minj∈ΦK(i) AC(j) otherwise

(8)

Equation (7) is based on the heuristics dividing BA(v) by |FO(v)| to avoid
summing up BA(v) redundantly.

Area-cost based on area flow is accurate if there is no duplication of any node.
But if not so, area-cost based on area flow can be inaccurate. Figure 5 shows an
example of two realizable sets. Graphs by dashed lines illustrate subject graphs,
and circles in solid lines illustrate the K-feasible cones corresponding to a cuts
in the realizable set. The predecessors of a and b are omitted, and assume that
BA(i) for each i ∈ FI(a) ∪ FI(b) is 0. In Fig. 5 (a), the area for TFIG(f) is 1,
and both areas estimated for TFIG(h) and that for TFIG(i) are 3/2. The area
estimated for TFIG(k) is 4. Therefore the area based on area flow is accurate in
Fig. 5 (a). In Fig. 5 (b), both areas estimated for TFIG(h) and that for TFIG(i)
are 3. The area estimated for TFIG(k) is 6. Therefore the area estimated based
on area flow is inaccurate because the correct area is 5 in Fig. 5 (b).

weighted area flow is another heuristic which is implemented in Magus �1.
The key idea of weighted area flow is to avoid that an area-cost is redundantly

�1 Magus is a Logic Synthesis system developed in Kyushu University

summed along the reconvergent paths with considering the effect of fanouts from
nodes in K-feasible cone KFC(c) to other nodes not in KFC(c). Area-cost
ACwaf (c) of cut c is calculated by Eq. (9).

ACwaf (c) = 1 +
∑

i∈LEAF (c)

BA(i) × NW (i, v) (9)

NW (i, v) is an inverse number of times that mean how many the area for
TFIG(i) distributed to v is summed up redundantly. The weight w((v, w)) for
an edge (v, w) is defined as w((v, w)) = 1/|FO(v)|. NW (i, v) for a pair of node v

and i ∈ TFI(v) is calculated by summing up each product w((j, v)) × NW (i, j)
for each j ∈ FI(v) where j is in any path from i to v and NW (i, i) is 1. Area esti-
mated based on weighted area flow is accurate in Fig. 5 (b). w((e, h)), w((b, f))
and w((a, f)) are 1, and w((f, h)) is 1/2. NW (b, h) and NW (a, h) are both
1/2. NW (e, h) is 1. The area estimated for TFIG(h) is 2. Then, NW (f, i) is
1/2, and NW (b, i), NW (a, i) are both 1/2. NW (g, i) is 1. The area estimated
for TFIG(i) is 2. Then, the area estimated for TFIG(k) is 5. Therefore, the
area-cost based on weighted area flow is correct in Fig. 5 (b).

4.3 Covering
Covering selects the best cuts to cover each node. A best cut is the cut whose

area-cost is the minimum where the depth-cost is not up to the cut required level.
Covering is executed as follows. At first, the set of cut S = φ is prepared. At
each o ∈ PO, a best cut c is selected and added to S. Next, the best cut of
each node in LEAF (c) is selected and added to S �2. Above process executed
iteratively in reverse topological order from PO to PI.

5. Experimental Results

Experiments are performed to compare Cut Resubstitution with one of the
state of the arts depth-minimum mapper; DAOmap 2). DAOmap generates a
depth-minimum LUT network with using area cost based on area flow, and
recovers area by iterating global transformation of LUT network with modifying

�2 The set S may be not realizable set yet. But the cut require level RLV (c, S) can be calcu-
lated by the equation (1) because all nodes in FO(RT (c)) has been covered and CFO(c, S)
has been determinate.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

208 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

area cost. Cut Resubstitution has been implemented using C++ within the
Magus. Subject graphs are generated by decomposing each node of networks
on MCNC benchmark set and ITC’99 benchmark set to nodes whose number of
inputs are up to 2. The maximum number of inputs of LUT K is assumed to
be 4, 5 or 6. A machine whose CPU is Intel Xeon 3.00 GHz and memory size is
16 GB is used.

The initial LUT networks given for Cut Resubstitution are generated by FMap
and WMap those are simple depth-minimum mappers implemented in Magus �1.
FMap and WMap are based on the method described in section 4 to generate
LUT network. FMap calculates area-cost based on area flow. WMap calculates
area-cost based on weighted area flow. The depth constraints given for Cut
Resubstitution are the depths of LUT networks derived by FMap and WMap.
The combination of FMap and Cut Resubstitution is called as FRmap, and the
combination of WMap and Cut Resubstitution is called as WRmap. If given
subject graph and K are the same, the depths generated by DAOmap and FRmap
and WRmap are the same because they are guaranteed to generate a depth-
minimum LUT network. Area of LUT network and run-time for each algorithm
are evaluated.

Table 1, Table 3 and Table 5 show the results on MCNC benchmark set
in K = 4, 5, 6, respectively. Table 2, Table 4 and Table 6 show the results
on ITC’99 benchmark set in K = 4, 5, 6, respectively. The results for small
benchmarks are omitted. DAOmap cannot generate an LUT network for “des”
in MCNC benchmark set in the case of K = 6 in 4 days. Thus, the result for
“des” in the case of K = 6 is also omitted. “D” in tables means DAOmap. “F”
and “FR” means FMap and FRmap, respectively. “W” and “WR” means WMap
and WRmap, respectively. “AVG” means average.

Area of LUT network generated by FRmap is 5%, 7%, 8% smaller for K = 4, 5, 6
respectively than that generated by DAOmap on average. Area of LUT network

�1 The experiments do not include applying Cut Resubstitution to LUT networks generated by
DAOmap. That is because the realizable set used to generate an LUT network in DAOmap
is not known. If functionally equivalent points between each node in an LUT network and
nodes in a subject graph are specified, the realizable set can be derived with using the
functionally equivalent points and the set of all cuts.

Table 1 The results for MCNC benchmark set in the case of K = 4.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
C5315 580 588 568 98% 590 568 98% 0.2 0.3 0.3
C6288 554 676 537 97% 605 508 92% 0.5 0.9 0.7
C7552 773 791 747 97% 779 731 95% 0.3 0.4 0.4
att10 1190 1163 1161 98% 1230 1161 98% 0.2 0.3 0.3
att15 868 794 791 91% 801 790 91% 0.2 0.2 0.2
att16 560 554 548 98% 574 541 97% 0.1 0.2 0.2
att21 5481 5346 5346 98% 5348 5346 98% 3.0 1.2 1.2
att6 547 520 518 95% 544 528 97% 0.1 0.2 0.2
att8 858 832 832 97% 832 832 97% 0.2 0.2 0.2
des 2807 2623 2615 93% 2702 2649 94% 0.9 0.7 0.7
rot 520 496 489 94% 503 486 93% 0.1 0.1 0.1
vda 547 520 518 95% 544 528 97% 0.1 0.2 0.1
AVG 96% 95% 0.5 0.4 0.4

Table 2 The results for ITC’99 benchmark set in the case of K = 4.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
b14 3097 3033 2945 95% 3248 2394 77% 1.1 1.2 1.2

b14 1 2289 2169 2089 91% 2261 2076 91% 0.7 0.8 0.8
b15 3586 3571 3393 95% 3715 3355 94% 1.0 1.1 1.1

b15 1 4260 4185 4110 96% 4298 4026 95% 1.5 1.3 1.3
b17 11796 11548 11139 94% 12139 10995 93% 3.7 3.7 3.6

b17 1 13032 12676 12447 96% 13075 12228 94% 4.6 4.1 4.1
b20 6255 6049 5874 94% 6321 5776 92% 2.2 2.4 2.4

b20 1 4468 4313 4161 93% 4484 4067 91% 1.5 1.7 1.7
b21 6437 6200 6043 94% 6428 5932 92% 2.3 2.5 2.5

b21 1 4586 4430 4283 93% 4614 4228 92% 1.5 1.7 1.7
b22 9291 8944 8735 94% 9413 8588 92% 3.4 3.6 3.6

b22 1 6802 6560 6362 94% 6859 6229 92% 2.3 2.6 2.6
AVG 94% 91% 2.2 2.2 2.2

generated by WRmap is 7%, 7%, 10% smaller for K = 4, 5, 6 respectively than
that generated by DAOmap on average. For all of the circuits but att15 and
att16 for K = 6, FRmap generated LUT networks with less area than those
generated by DAOmap. For all of the circuits but C6288 for K = 5, WRmap
generated LUT networks with less area than those generated by DAOmap. Cut
Resubstitution generates better LUT network than DAOmap, because Cut Re-
substitution performs local transformations with considering actual area reduc-

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

209 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

Table 3 The results for MCNC benchmark set in the case of K = 5.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
C5315 438 445 428 98% 448 425 97% 0.5 0.5 0.5
C6288 560 659 540 96% 894 632 113% 2.1 4.0 3.1
C7552 634 652 605 95% 662 608 96% 1.0 1.0 1.2
att10 935 886 884 95% 932 882 94% 0.5 0.4 0.4
att15 651 523 522 80% 533 522 80% 0.4 0.3 0.4
att16 436 437 428 98% 439 404 93% 0.3 0.3 0.3
att21 4391 4207 4207 96% 4204 4202 96% 5.1 1.4 1.4
att6 455 424 424 93% 455 422 93% 0.2 0.2 0.3
att8 619 598 598 97% 598 598 97% 0.2 0.2 0.2
des 2079 1975 1967 95% 2140 1971 95% 1.5 1.3 1.3
rot 385 359 358 93% 379 359 93% 0.2 0.2 0.2
vda 455 424 424 93% 455 422 93% 0.2 0.2 0.2
AVG 94% 95% 1.0 0.8 0.8

Table 4 The results for ITC’99 benchmark set in the case of K = 5.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
b14 2265 2260 2163 95% 2390 2097 93% 3.0 3.2 3.1

b14 1 1749 1721 1653 95% 1824 1633 93% 1.9 2.1 2.1
b15 2944 3021 2788 95% 3175 2693 91% 2.4 3.1 3.0

b15 1 3571 3339 3264 91% 3438 3145 88% 4.4 3.1 3.3
b17 9457 9410 8993 95% 10206 8726 92% 9.9 9.9 9.7

b17 1 10747 10250 10018 93% 10576 9676 90% 12.9 9.8 10.4
b20 4932 4562 4366 89% 4825 4276 87% 6.5 6.8 6.8

b20 1 3437 3275 3138 91% 3486 3087 90% 4.3 4.8 4.9
b21 5069 4788 4560 90% 5067 4499 89% 6.6 7.0 7.0

b21 1 3553 3415 3247 91% 3605 3219 91% 4.3 5.0 5.0
b22 6860 6740 6489 95% 7151 6310 92% 9.2 10.1 10.1

b22 1 5084 5029 4815 95% 5366 4731 93% 6.4 7.5 7.5
AVG 93% 91% 6.0 6.0 6.1

tion while DAOmap performs only global transformations with considering area
cost. For LUT network generated based on area cost, local transformations with
considering actual area reduction is likely to work well to reduce area. Cut Re-
substitution has been experimentally found to work better in the case of large
K. Cut Resubstitution reduced 3%, 3%, 6% area of LUT network generated by
FMap on average for K = 4, 5, 6. Cut Resubstitution reduced 7%, 9%, 10% area
of LUT network generated by WMap on average for K = 4, 5, 6. WMap is consid-

Table 5 The results for MCNC benchmark set in the case of K = 6.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
C5315 315 325 312 99% 320 305 97% 1.9 1.9 2.0
C6288 568 741 523 92% 718 504 89% 16.8 21.4 18.3
C7552 510 521 478 94% 523 449 88% 4.6 3.8 4.6
att10 837 765 759 91% 823 773 92% 1.3 0.8 0.8
att15 490 538 513 105% 486 460 94% 1.2 0.6 0.6
att16 352 358 355 101% 369 339 96% 0.6 0.4 0.4
att21 3900 3683 3679 94% 3679 3678 94% 8.1 2.0 2.0
att6 396 359 353 89% 372 363 92% 0.6 0.5 0.5
att8 525 480 480 91% 480 480 91% 0.3 0.3 0.3
rot 326 310 297 91% 315 295 90% 0.3 0.3 0.4
vda 396 359 353 89% 372 363 92% 0.6 0.4 0.4
AVG 94% 93% 3.3 2.7 2.5

Table 6 The results for ITC’99 benchmark set in the case of K = 6.

Area Run Time (sec)
Name D F FR FR/D W WR WR/D D FR WR
b14 1925 1797 1706 89% 1966 1705 89% 14.3 12.4 12.4

b14 1 1445 1487 1365 94% 1520 1331 92% 9.3 8.5 7.8
b15 2423 2437 2178 90% 2576 2144 88% 11.2 12.8 12.5

b15 1 3173 2724 2590 82% 2838 2569 81% 20.4 11.5 15.6
b17 8127 7937 7304 90% 8457 7127 88% 45.6 39.7 42.0

b17 1 9319 8354 7958 85% 8681 7894 85% 57.8 35.9 48.4
b20 3887 3839 3568 92% 4089 3476 89% 31.6 29.9 29.4

b20 1 2938 2844 2650 90% 3001 2590 88% 22.0 20.6 20.7
b21 3980 3983 3698 93% 4131 3566 90% 33.3 30.8 30.1

b21 1 2979 2908 2701 91% 3078 2656 89% 23.0 21.7 21.7
b22 5795 5670 5316 92% 6003 5113 88% 48.1 45.7 44.3

b22 1 4386 4339 4040 92% 4585 3939 90% 32.9 32.8 31.8
AVG 90% 88% 29.1 25.2 26.4

ered to fit together with Cut Resubstitution better than FMap in most case. For
example in Table 6, WMap generated LUT networks with more area than those
generated by DAOmap or FMap for almost all of the circuits. Cut Resubstitu-
tion reduced 13% area of LUT network generated by WMap on averages, and the
generated LUT network has 12% less area than that generated by DAOmap and
2% less area than that generated by FRmap on average. Furthermore, Cut Re-
substitution with WMap works better for large circuit. The networks in ITC’99
benchmark set tend to be larger compared to the networks in MCNC benchmark

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

210 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

set. For LUT networks generated by WMap, the average rate of area reduction
of Cut Resubstitution in ITC’99 benchmark set is 6%, 4%, 6% larger than that
in MCNC benchmark set for K = 4, 5, 6, respectively. On the other hand, for
FMap, there is no great difference in the average rate of area reduction between
MCNC benchmark set and ITC’99 benchmark set. Both the run-time of FRmap
and that of WRmap are only a few tens of seconds even for large circuits as
ITC’99 benchmarks, which is similar or slightly shorter than that of DAOmap.

6. Conclusions

In this paper Cut Resubstitution which is a heuristic post-processing of tech-
nology mapping to minimize area under depth constraint is proposed. Cut Re-
substitution generates a local optimum solution because it considers not area
cost but actual area to be reduced. Cut Resubstitution runs fast because it uses
only structures of Boolean network and LUT network without using Boolean
matching. For details, Cut Resubstitution iterates the following process. At
first, Cut Resubstitution substitutes several LUTs in current network in such a
way that another LUT is to be redundant. Then Cut Resubstitution eliminates
the redundant LUT from network. Experimental results show that Cut Resubsti-
tution fits together with a mapper using area-cost based on weighted area flow

better than that using area-cost based on area flow. A simple depth-minimum
mapper using weighted area flow followed by Cut Resubstitution generated net-
work whose average area is 7%, 7%, 10% smaller than DAOmap 2) for K = 4, 5, 6
respectively. The depth of LUT network generated by Cut Resubstitution and
that by DAOmap are the same if given Boolean network and K are the same.
The run-time of Cut Resubstitution is similar or slightly shorter than that of
DAOmap. In conclusion, Cut Resubstitution is efficient to reduce area of LUT
network generated with considering only area cost.

Our future work is to find initial LUT network which work well with Cut
Resubstitution. Examinations of area of LUT networks generated by Cut Resub-
stitution combined with DAOmap or other algorithms are necessary.

Acknowledgments This work has been partially supported by CREST-
DVLSI of JST and Grant-in-Aid for Scientific Research (B) (20300020) of Min-
istry of Education, Culture, Sports, Science and Technology (MEXT). We are

grateful for their support.

References

1) Chatterjee, S., Mishchenko, A. and Brayton, R.: Factor cuts, Proc. ICCAD ‘06,
pp.143–150 (2006).

2) Chen, D. and Cong, J.: DAOmap: A depth-optimal area optimization mapping
algorithm for FPGA designs, Proc. ICCAD ‘04, pp.752–759 (2004).

3) Cong, J. and Ding, Y.: FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs, IEEE Trans. CAD, Vol.13,
pp.1–12 (1994).

4) Cong, J. and Ding, Y.: On area/depth trade-off in LUT-based FPGA technology
mapping, IEEE Trans. VLSI Systems, Vol.2, pp.213–218 (1994).

5) Cong, J., Wu, C. and Ding, Y.: Cut ranking and pruning: Enabling a general and
efficient FPGA mapping solution, Proc. FPGA ‘99, pp.29–35, ACM Press (1999).

6) Hu, Y., Shih, V., Majumdar, R. and He, L.: FPGA Area Reduction by Multi-
Output Function Based Sequential Resynthesis, Proc. 45th Design Automation
Conference, pp.24–29 (2008).

7) Kukimoto, Y., Brayton, R.K. and Sawkar, P.: Delay-Optimal Technology Mapping
by DAG Covering, Proc. 35th Design Automation Conference, pp.348–351 (1998).

8) Ling, A., Singh, D.P. and Brown, S.D.: FPGA technology mapping: A study of
optimality, Proc. 42nd Design Automation Conference, pp.427–432 (2005).

9) Mishchenko, A., Cho, S., Chatterjee, S. and Brayton, R.: Combinational and se-
quential mapping with priority cuts, Proc. ICCAD ‘07, pp.354–361 (2007).

10) Rudell, R.: Logic synthesis for VLSI design, PhD Thesis, University of California,
Berkeley (1989).

11) Safarpour, S., Veneris, A., Baeckler, G. and Yuan, R.: Efficient SAT-based Boolean
Matching for FPGA Technology Mapping, Proc. 43rd Design Automation Confer-
ence, pp.466–471 (2006).

12) Takata, T. and Matsunaga, Y.: Area recovery under depth constraint by Cut
Substitution for technology mapping for LUT-based FPGAs, Proc. ASP-DAC ‘08,
pp.144–147 (2008).

13) Teslenko, M. and Dubrova, E.: Hermes: LUT FPGA technology mapping algorithm
for area minimization with optimum depth, Proc. ICCAD ‘04, pp.748–751 (2004).

(Received November 17, 2008)
(Revised February 20, 2009)

(Accepted April 13, 2009)
(Released August 14, 2009)

(Recommended by Associate Editor: Kiyoharu Hamaguchi)

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

211 Area Recovery under Depth Constraint for Technology Mapping for LUT-based FPGAs

Taiga Takata received the B.E. and M.E. degrees from Kyushu
University, Japan in 2005 and 2007 respectively. He is currently
a Ph.D. candidate at the Graduate School of Information Science
and Electrical Engineering, Kyushu University. His current re-
search interests include CAD algorithms and design methodology
for VLSI. He is a member of IPSJ.

Yusuke Matsunaga received the B.E., M.E. and Ph.D. degrees
in Electronics and Communications Engineering from Waseda
University, Tokyo, Japan, in 1985, 1987 and 1997, respectively.
He joined Fujitsu Laboratories in Kawasaki, Japan, in 1987 and
he has been involved in research and development of the CAD for
digital systems. From October 1991 to November 1992, he has
been a visiting Industrial Fellow at the University of California,

Berkeley, in the department of Electrical Engineering and Computer Sciences. In
2001, he joined the faculty at Kyushu University. He is currently an associate
professor of Department of Computer Science and Communication Engineering.
His research interest includes logic synthesis, formal verification, high-level syn-
thesis and automatic test patterns generation. He is a member of IEICE, IEEE,
ACM and IPSJ.

IPSJ Transactions on System LSI Design Methodology Vol. 2 200–211 (Aug. 2009) c© 2009 Information Processing Society of Japan

