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This paper proposes a behavioral synthesis system for asynchronous circuits
with bundled-data implementation. The proposed system is based on a be-
havioral synthesis method for synchronous circuits and extended on operation
scheduling and control synthesis for bundled-data implementation. The pro-
posed system synthesizes an RTL model and a simulation model from a behav-
ioral description specified by a restricted C language, a resource library, and a
set of design constraints. This paper shows the effectiveness of the proposed sys-
tem in terms of area and latency through comparisons among bundled-data im-
plementations synthesized by the proposed system, synchronous counterparts,
and bundled-data implementations synthesized by using a behavioral synthesis
method for synchronous circuits directly.

1. Introduction

Asynchronous circuits have several advantages such as average-case perfor-
mance, low power consumption, and so on. However, the design of asynchronous
circuits is difficult because designers must decide on a proper delay model, data
encoding scheme, and control protocol according to a given application. More-
over, a hazard-free circuit must be realized because the propagation of a hazard
results in circuit malfunction. Nevertheless, only a limited number of CAD tools
are available.

Behavioral synthesis synthesizes an RTL model from a behavioral description
specified by a programming language or its extension (e.g., C or SystemC 1)). A
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behavioral synthesis method generates an optimum RTL model through oper-
ation scheduling, resource allocation, and control synthesis while exploring the
design space under design constraints. In the domain of synchronous circuits,
many behavioral synthesis methods and their support tools have been developed
because of the requirement for system-level design 2),3).

This paper presents a behavioral synthesis system for asynchronous circuits
with bundled-data implementation. The proposed system is based on a behav-
ioral synthesis method for synchronous circuits. Operation scheduling and control
synthesis are extended for bundled-data implementation because the execution
of bundled-data implementation is different from synchronous circuits.

The proposed system synthesizes an RTL model from a behavioral description
specified by a restricted C language, a resource library, and a set of design con-
straints. This paper presents the effectiveness of the proposed system in terms
of area and latency through comparisons among bundled-data implementations
synthesized by the proposed system, synchronous counterparts, and bundled-
data implementations synthesized by using a behavioral synthesis method for
synchronous circuits directly.

The rest of this paper is organized as follows. Section 2 gives related work.
Section 3 gives background used in this paper. Sections 4 and 5 give the proposed
system and its evaluation. Finally, Section 6 gives conclusions.

2. Related Work

There exist many behavioral synthesis methods for synchronous circuits 2),3).
These methods schedule operations to a control step which implies a clock cycle.
However, the direct application of these methods for asynchronous circuits may
not synthesize optimum circuits. Let us explain the reason. Suppose we use a
behavioral synthesis method for synchronous circuits to asynchronous circuits.
In such a case, all operations are scheduled to a clock cycle. This ignores a char-
acteristic of asynchronous circuits in which operations are executed immediately
after the completion of previous operations. It may result in a performance loss
or an extra use of resources in synthesized circuits. Even if we adjust operations
so that each control step has an independent time interval using asynchronous
control circuits, it does not change the execution order of operations. It means
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65 A Behavioral Synthesis System for Asynchronous Circuits with Bundled-data Implementation

that a performance loss or an extra use of resources is not essentially solved
just by changing the control scheme. This motivates us to develop a scheduling
method dedicated for asynchronous circuits.

Several behavioral synthesis methods for asynchronous circuits have been also
proposed. The method described in Ref. 4) is based on a heuristic list scheduling
algorithm 2) which determines the start time of operations under resource con-
straints observing the availability of resources and the completion of direct prede-
cessor operations. Compared to this method, the proposed system approximates
a set of start time candidates for each operation and determine the start time
of operations from the candidates considering design optimization. The method
described in Ref. 5) explores resource sharing between operations by introducing
additional dependence. However, it has the huge computational complexity (i.e.,
O(3n(n−1)/2), where n is the number of operations).

On the other hand, the methods described in Refs. 6), 7) do not propose a new
scheduling and/or allocation algorithm. Instead, these methods use templates for
the control of registers derived from a synchronous or asynchronous behavioral
synthesis method. Different from these methods, the proposed system extends
operation scheduling and control synthesis.

The methods proposed by Venkataramani, et al. 8) and Bardsley and Edwards 9)

generate asynchronous circuits from a high-level language such as C language
or communicating sequential processes (CSP) 10). Different from the proposed
system where the design space is explored to generate an optimum circuit, these
methods generate a circuit by a direct translation from a given specification
without design space exploration.

We proposed a behavioral synthesis method for bundled-data implementation
in our former work 11). This paper extends our previous method so that control
constructs such as branches and loops in a given description can be synthesized.

3. Background

3.1 Control Data Flow Graph
The Control Data Flow Graph (CDFG) is a directed graph which represents

the data and control flow of an application. The CDFG is used as an intermediate
representation in the proposed system. The CDFG G is defined as follows.

G = 〈N,BB,E〉
N , BB, E are sets of nodes, basic blocks, and direct edges, respectively.

The node set N (N = {ni|i = 1, . . . , γ}) consists of operation nodes, variable
nodes, fork nodes, join nodes, the source node, and the sink node. γ represents
the number of nodes. An operation node represents a data operation labeled
by an operation type (e.g., addition), a variable node represents a variable (a
primary input, a primary output, or the result of an operation), a fork node
represents a branch, and a join node represents a merge of branched control
flows, respectively. The source and sink nodes represent the start and end of the
application, respectively.

A given behavioral description can be partitioned into a set of basic blocks BB

(BB = {bbk|k = 1, . . . , δ}). δ represents the number of basic blocks in a CDFG.
A basic block bbk is a sequence of consecutive statements in which control flow
enters at the beginning and leaves at the end without halt or branch except at
the end.

The edge set E consists of directed edges ei,j which represent dependencies
between nodes ni and nj . If nodes ni and nj are an operation node and a
variable node, the edge ei,j represents a data dependency. If either node ni or
nj is a fork node, a join node, the source node, or the sink node, the edge ei,j

represents a control dependency.
Figure 1 shows a CDFG. In Fig. 1, the rectangle nodes, circle nodes, triangle

node, and inverted triangle node are operation nodes, variable nodes, a fork node,
and a join node, respectively. For convenience, this paper denotes an operation
node, a variable node, a set of operation nodes, and a set of variable nodes as oi,
vi, O, and V ((O ∪ V ) ⊂ N).

3.2 Bundled-data Implementation
Bundled-data implementation is one of data encoding schemes for asynchronous

circuits. In bundled-data implementation, N bit data transfer is represented by N
+ 2 signal wires. One bit data is represented by one signal wire. The two comes
from the handshake signals, a request signal req and an acknowledge signal ack.
Operations during a data transfer are initiated by a request signal req while
the completion of operations is acknowledged by an acknowledge signal ack. To
guarantee the completion of operations, a delay element is put on the req signal
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Fig. 1 Control data flow graph.

wire. The delay of a delay element is the sum of the maximum execution delays
of resources used to execute operations.

Figure 2 shows a circuit model of bundled-data implementation used in this
paper. The model consists of a data-path circuit and a control circuit. The data-
path circuit consists of functional units which execute an operation, registers
which store an input data or operation result, and multiplexers which select an
appropriate input for a functional unit or register. The control circuit consists of
Q-modules 12), glue logics, and delay elements which guarantee the control timing
to write data into registers. In the proposed system, a Q-module is mapped to
each state sh(h = 1, . . . , β) which is determined by the operation scheduling
result. β represents the number of states. The execution time of each state is
equal to the delay of a delay element on the corresponding request signal.

The control of bundled-data implementation is explained as follows. Q-module
qh for state sh is activated by a rising edge of input signal inh which comes
from the previous Q-module qh−1. When an operation is executed at a shared

Fig. 2 A circuit model of bundled-data implementation.

functional unit or the result of an operation is written into a shared register in
state sh, multiplexers for such shared resources are controlled by inh of Q-module
qh. As resources are shared at different states, the select signal selp for the p-
th multiplexer is generated from a combination of several inh signals. Then,
Q-module qh asserts reqh. reqh returns to Q-module qh as ackh through the
corresponding delay element. A register write signal writet for the t-th register
is generated from ackh. When the register is shared one at different states, writet

is generated from several ackh via an OR gate. As states are sequentially ordered,
no Q-modules control a shared register at the same time. It implies that an OR
gate is enough to control a shared register. A data is written into a register by
a falling edge of ackh. After ackh is deasserted, Q-module qh passes the control
to the next Q-module qh+1 with a rising edge of output signal outh.

4. The Proposed Behavioral Synthesis System

4.1 Synthesis Flow
The synthesis flow of the proposed system is shown in Fig. 3. The inputs of

the proposed system are a behavioral description of an application, a resource
library, and a set of design constraints as inputs.

The front-end analyzes a behavioral description of an application and generates
the CDFG of the application. After the CDFG is generated, the bit-width of op-
erations and variables is analyzed. After bit-width analysis, the initial allocation
is carried out. In the initial allocation, a functional unit is allocated for each
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Fig. 3 The flow of the proposed system.

operation to determine the execution time used in operation scheduling. Next,
operation scheduling is applied to determine the start time of operations. After
operation scheduling, a functional unit or register is allocated for each operation
and variable. If shared resources exist, multiplexers are allocated. A data-path
circuit is synthesized after resource allocation and binding. Before control syn-
thesis, the state space is decided from the operation scheduling result. In control
synthesis, mapping of Q-modules and generation of delay elements and glue log-
ics are carried out to synthesize a control circuit. Finally, the proposed system
generates a synthesizable RTL model and a simulation model in Verilog HDL.

The behavioral synthesis method in the proposed system is based on a behav-
ioral synthesis method in synchronous circuits as shown in Ref. 2). For bundled-
data implementation, we extend operation scheduling and control synthesis. In
the following sub-sections, this paper describes the detail of the behavioral syn-
thesis method in the proposed system. It is based on our former work 11). This
paper describes how behavioral descriptions not only data operations but also
control constructs such as branches and loops are synthesized.

4.2 Inputs and Output of the Proposed System
The inputs and output of the proposed system are listed below.
• Inputs

– A behavioral description of an application
– A resource library

Table 1 The C language syntax supported in the proposed system.

Integer type constants and variables
Assignments
if
switch
for
while
do-while

Table 2 Parameters in a resource library.

Parameters in a resource library
Area
The maximum execution delay
Executable operations
The bit-width of inputs and output

– A set of design constraints
• Output

– An RTL model and a simulation model of bundled-data implementation
The behavioral description of an application must be written by the C lan-

guage syntax shown in Table 1. Otherwise, the proposed system terminates the
synthesis process with an error. Input signals and output signals can be explic-
itly specified in the behavioral description using “pragma”. Each resource in a
resource library is parameterized with parameters shown in Table 2. Resource
parameters must be specified in an XML format and resources must be prepared
as synthesizable RTL models in Verilog HDL. A set of design constraints may
have a time constraint or a set of resource constraints used for operation schedul-
ing, a delay margin to generate delay elements. A set of design constraints must
be specified in an XML format.

Note that the proposed system is not restricted on to the C language. If we
can provide a proper front-end, the proposed system can synthesize bundled-data
implementation from other languages as well.

The proposed system generates two circuit models. One is a synthesizable RTL
model for implementation and the other is a simulation model for functional
verification. In the simulation model, arbitrary short delays are inserted for all
feedback loops. This is because logic simulators cannot generate correct values if
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there is no time difference between input signals and feedback loops. In addition,
the delays of delay elements are explicitly represented by exact times even though
delay elements in the synthesizable RTL model are represented by logic gates.
Designers can synthesize and simulate these models using a conventional logic
synthesis tool or an HDL simulator.

4.3 Front-end
The front-end analyzes and optimizes a given behavioral description using

COmpiler INfra Structure (COINS) 13). COINS supports optimization in com-
pliers such as common sub-expression elimination and generates an intermediate
format called High-level Intermediate Representation (HIR) which looks like a
syntax tree. The front-end generates a CDFG from a generated HIR.

4.4 Bit-width Analysis
The bit-width of operations and variables is analyzed using the method in

Ref. 11). In bundled-data implementation, bit-width analysis is one of the impor-
tant processes for optimization. Delay elements in bundled-data implementation
are generated so that the delays of delay elements are larger than the maximum
delays of used resources. Therefore, if we can use resources with short delays,
the performance of bundled-data implementation can be improved. In general,
the bit-width of a resource is shorter, the delay of the resource is shorter.

4.5 Initial Allocation
A functional unit is allocated for each operation node oi to decide the maximum

execution delay used in operation scheduling. The maximum execution delay of
operation oi is represented by d(oi).

In time constraint scheduling, the main objective is to minimize the number
of resources used in a data-path circuit. To maximize resource sharing, for the
same type of operations, the proposed system allocates the resource which can
execute the operation with the maximum bit-width. On the other hand, in
resource constraint scheduling, the main objective is to minimize the latency of
a data-path circuit. Therefore, for each operation, the resource whose bit-width
matches to the operation is allocated. If there is no suitable resource in a given
resource library, the proposed system asks designers to prepare such a resource
before synthesis.

As the use of only functional unit delays may violate a given time constraint

after synthesis due to the allocation of registers and multiplexers, the proposed
system adds one register delay and two multiplexer delays to each d(oi). Two
multiplexer delays correspond to a multiplexer used for a functional unit and a
multiplexer used for a register. A multiplexer delay is estimated from the average
number of functional unit sharing or register sharing in the As Late As Possible
(ALAP) schedule 2) where operations oi are scheduled to the latest start time
alapsi under a given time constraint.

4.6 Operation Scheduling
Operation scheduling determines the start time of each operation. The

proposed system supports time constraint scheduling and resource constraint
scheduling. The objective of time constraint scheduling is to decide start times
minimizing the number of resources while the objective of resource constraint
scheduling is to decide start times minimizing the latency. The proposed sys-
tem uses the Asynchronous Force-directed Scheduling (AFDS) algorithm 15) as a
time constraint scheduling algorithm while the Asynchronous Force-directed List
Scheduling (AFDLS) algorithm as a resource constraint scheduling algorithm.
Both algorithms are based on the FDS and FDLS algorithm 14) developed for
synchronous circuits.

In the FDS and FDLS algorithm, operations are assigned to one of control
steps which have a uniform time interval. These control steps represent clock
cycles. On the other hand, in the AFDS and AFDLS algorithms, control steps
are determined from sets of approximated start time candidates of operations. In
such a case, the time intervals among control steps are not uniform. The reason
why control steps are decided so is that operations in bundled-data implemen-
tation are executed immediately after the completion of a previous operation.
Note except the decision of control steps there is no big difference between the
FDS (FDLS) and the AFDS (AFDLS) algorithms. Therefore, other scheduling
algorithms which use control steps can also be extended in the similar way.

This sub-section describes the overview to determine control steps from sets of
approximated start time candidates of operations, the AFDS algorithm, and the
AFDLS algorithm.

4.6.1 Approximation of Start Times
Figure 4 shows the function ApproximateStep which is used in the proposed
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ApproximateStep(CDFG G, TimeConstraint tc)

1 Asap = ComputeASAP(G);

2 Alap = ComputeALAP(G, tc);

3 Frame = ComputeTimeFrame(G, Asap, Alap);

4 for ∀oi ∈ O do

5 Directi = GetPredecessorOp(oi, G);

6 Sharei = GetShareOp(oi, G);

7 Mutexi = GetMutexOp(oi, G);

8 Candi = ComputeStartTimeCandidate(oi, Directi, Sharei, Mutexi, Asap);

9 Cand = Cand ∪ Candi

10 end for

11 Step = ComputeStep(G, Cand);

12 return Step;

Fig. 4 The function ApproximateStep.

system to determine control steps from sets of start time candidates. The inputs
of the function ApproximateStep are a CDFG G and a time constraint tc and
the output of the function is a set of control steps denoted as Step (Step =
{stepw|w = 1, . . . , λ}). stepw is a positive integer and λ represents the number
of control steps.

Before the approximation of start time candidates, the As Soon As Possible
(ASAP) and ALAP schedules are calculated. The ASAP schedule determines the
earliest start time asapsi for each operation oi

2). The completion times in the
ASAP and ALAP schedules denoted as asapci and alapci are the sum of asapsi

or alapsi and d(oi).
From asapsi and alapsi for each operation oi, the time frame Framei where

operation oi can be scheduled without violating a given time constraint is calcu-
lated. The time frame Framei is defined as follows.

Framei = alapsi − asapsi

After time frames are calculated, a set of start time candidates for each op-
eration oi is approximated from the completion times of direct predecessor op-
erations, concurrent operations, and mutually exclusive operations. This paper
denotes a set of start time candidates, a set of direct predecessor operations, a
set of concurrent operations, and a set of mutually exclusive operations for oper-
ation oi as Candi, Directi, Conci, and Mutexi, respectively. Directi is defined
as follows.

Directi = {oj ∈ O|ej,i ∈ E}
A direct predecessor operation oj for operation oi is an operation that has a
directed edge ej,i.

For Mutexi and Conci, a set of transitive predecessors and successors for op-
eration oi is calculated. We represent a transitive relation i → j if there is a path
of edges (ei,x, . . . , ey,j) from node ni to node nj . A set of transitive predecessors
and successors for operation oi is denoted as Ti and calculated as follows.

Ti = {oj ∈ O|i → j ∨ j → i}
Mutexi and Conci are defined as follows.

Mutexi = {oj ∈ O|oj 	∈ Ti, oi ∈ bbk, oj ∈ bbl,

bbk, bbl ∈ BB, k 	= l}
An operation oj in Mutexi is neither a transitive successor nor a transitive pre-
decessor for operation oi and belonging to a different basic block from the basic
block of operation oi.

Conci = {oj ∈ O|oj 	∈ (Ti ∪ Mutexi),
asapsi ≤ asapcj ≤ alapsi}

An operation in Conci is neither a transitive successor, a transitive predecessor,
nor a mutually exclusive operation for operation oi and asapcj is a value between
asapsi and alapsi.

Finally, Candi for operation oi is calculated from Directi and Conci as follows.
Candi = {st|∀oj ∈ (Directi ∪ Conci),

st = asapcj}
A start time candidate st for operation oi is asapcj of oj ∈ Directi ∪ Conci

that satisfies asapsi ≤ st ≤ alapsi. Note we assume that st is a positive real
number. This paper calls oj as a previous operation. To calculate start time can-
didates more, Candi for operation oi is calculated recursively from the execution
sequences of previous operations.

After the approximation of start time candidates, the union set Cand (Cand =
st|st ∈ ⋃

Candi) of all Candi is calculated. Sorting start time candidates in Cand

in the ascending order, the proposed system decides Step by translating each
start time candidate in Cand to a positive integer which corresponds to stepw.
Similarly, Candi for each operation oi is translated into a set of schedulable steps
Stepi (Stepi ⊆ Step).
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AFDS(CDFG G, TimeConstraint tc)

1 repeat until all operations are scheduled;

2 Step = ApproximateStep(G, tc);

3 Prob = ComputeProbability(G, Step);

4 DG = ComputeDistributionGraph(G,

Step, Prob);

5 Sf = ComputeForce(G, Step, Prob, DG);

6 starti = GetMinForceOpAndStep(Sf , Start);

7 end repeat

8 return Start

Fig. 5 The AFDS algorithm.

4.6.2 The AFDS algorithm
Figure 5 shows the AFDS algorithm. The inputs of the AFDS algorithm

are a CDFG G and a time constraint tc. The output is a set of start times for
operations denoted as Start.

The following processes are repeatedly executed until all operations are sched-
uled. At first, the AFDS algorithm calls the function ApproximateStep to decide
control steps. Next, for each stepw ∈ Stepi, the probability Prob(i, w) that an
operation oi is scheduled to stepw is calculated. Then, for each operation type
(e.g., addition), Distribution Graphs (DGs) which represent the resource utiliza-
tion of each resource are calculated from Prob(i, w). DGs are calculated for each
basic block independently and then merged to generate the entire DGs for the
CDFG. After the calculation of DGs, the cost function called self force Sf(i, w)
is calculated for each stepw. The self force Sf(i, w) represents how resource uti-
lization is balanced through control steps when an operation oi is scheduled to
a control step stepw ∈ Stepi. Finally, the operation oi which has the minimum
Sf(i, w) is scheduled to the control step stepw. This paper represents the start
time of operation oi as starti(starti = stepw,∃stepw ∈ Stepi).

4.6.3 The AFDLS algorithm
Figure 6 shows the AFDLS algorithm. The inputs of the AFDLS algorithm

are a CDFG G, a resource library R, and a set of resource constraints RC.
Initially, currentstep which represents the current referenced control step is

set to 0. The following processes are repeatedly carried out until all operations
are scheduled. For each resource r ∈ R whose resource constraint rcr is more

AFDLS(CDFG G,

ResourceLibrary R, ResourceConstraint RC)

1 currentstep = 0;

2 repeat until all operations are scheduled;

3 for ∀r ∈ R do

4 if (rcr > 0)

5 Op = GetSchedulableOp(G, r, currentstep);

6 ExecutedOp = GetExecutedOps(G,

Start, r, currentstep);

7 if(|Op| + |ExecutedOp| ≤ rcr)

8 for ∀oi ∈ Op

9 starti = currentstep;

10 else

11 for i = 1 to rcr − |ExecutedOp| do

12 Step = ApproximateStep(G, asapssink);

13 Prob = ComputeProbability(G, Step, currentstep);

14 DG = ComputeDistributionGraph(G, Step, Prob, currentstep);

15 Sf = ComputeForce(G, Step, Prob, DG, currentstep);

16 starti = GetMinForceOp(Sf , currentstep);

17 end for

18 end if

19 end if

20 end for

21 currentstep = GetNextStep(G, Start);

22 end repeat

23 return Start

Fig. 6 The AFDLS algorithm.

than 0, a set of operations that can be scheduled to currentstep using resource
r and a set of executed operations that are already scheduled to a previous
step using resource r but not finished at currentstep are calculated. These sets
are denoted as Op and ExecutedOp. If the number of Op plus the number
of ExecutedOp is less than resource constraint rcr, all operations in Op are
scheduled to currentstep. Otherwise, operations less than rcr − |ExecutedOp|
are scheduled based on self forces. For the calculation of self forces, the same
processes as the AFDS algorithm are carried out. Only difference is that although
self forces in the AFDS algorithm are calculated for each schedulable step of all
operations, self forces in the AFDLS algorithm are calculated only for currentstep

of operations in Op.
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After the scheduling at currentstep, the next control step is decided from the
earliest completion time of scheduled operations.

4.7 Resource Allocation and Binding
The proposed system allocates a functional unit for each operation and then a

register for each variable. For shared functional units and registers, the proposed
system allocates multiplexers.

The proposed system uses an extension of the Left-Edge (LE) algorithm 2)

called the Extended Left-Edge (ELE) algorithm 11). The difference between the
LE algorithm and the ELE algorithm is that the ELE algorithm uses a prior-
ity for resource allocation calculated from the bit-width, inputs, and output of
operations. The objective of the ELE algorithm is to minimize the bit-width of
allocated resources and the number of allocated multiplexers.

Figure 7 shows the ELE algorithm for functional unit allocation and Fig. 8
shows the function AllocateResource called in the ELE algorithm. A set of op-
erations that can be bounded by a functional unit fuc(c = 1, . . . , θ) is denoted
as Op ⊆ O and a set of functional units that can execute operations in Op is
denoted as Fu(Fu ⊆ R). θ represents the number of functional units which is
determined by the scheduling result or a set of resource constraints. In the pro-
posed system, resource allocation is carried out without increasing the number
of resources. Another note is that the ELE algorithm is called for each resource
type in functional unit allocation. A set LT represents the life time of opera-
tions. The life time lifei of an operation oi is defined from the start time to the
completion time of oi.

The ELE algorithm initially sorts operations in Op by the ascending order of
start times. Op is set to a set Unalloc which represents unallocated operations
and 0 is set to Alloc. Alloci represents the index of the allocated functional unit
for operation oi ∈ Op.

Then, the following processes are carried out until Unalloc becomes the empty
set. For each control step stepw, a subset of operations whose lifetime intersects
to stepw is calculated. It means that operations are executed at stepw. This
subset is represented as SubO ⊆ Op. In addition, a set of available functional
units at stepw is calculated. This set is represented as Avail ⊆ Fu. Functional
units fuc ∈ Avail are allocated to operations oi ∈ SubO in the function Allo-

ELE(OperationSet Op, FunctionalUnitSet Fu,

LifeTimeSet LT )

1 Sort(Op, LT );

2 Unalloc = {Op}; Alloc = 0;

3 while Unalloc �= ∅ do

4 ∀stepw ∈ Step do

5 SubO = GetSubSet(Op, LT , stepw);

6 Avail = GetAvail(Fu, LT stepw);

7 AllocateResource(Op, SubO, Avail, Unalloc, Alloc);

8 end for

9 end while

10 return Alloc;

Fig. 7 The ELE algorithm for functional unit allocation.

AllocateResource(OperationSet Op,

OperationSet SubO, ResourceSet Avail

UnallocatedSet Unalloc, AllocationIndex Alloc)

1 Io = ComptueIONum(Op, SubO, Avail);

2 Bit = ComptueBitDiff(Op, SubO, Avail);

3 while(SubO �= ∅ ∨ Avail �= ∅) do

4 fuc = SelectResource(Io, Bit);

5 oi = SelectOperation(Io, Bit);

6 Alloci = index(fuc);

7 Unalloc = Unalloc \ {oi};
8 end while

Fig. 8 The function AllocateResource for functional unit allocation.

cateResource.
In the function AllocateResource, Io and Bit are calculated for each pair of

oi ∈ subO and fuc ∈ Avail. Io(i, c) represents the number of the same inputs
and output among operation oi and operations oj ∈ Op when the same functional
unit fuc as oj is allocated to oi.

Io(i, c) =
∑

Allocj==index(fuc)

IONum(oi, oj)

IONum(oi, oj) represents the number of the same inputs and output between
operations oi and oj . The same inputs mean that the sources of operations
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are the same while the same output means that the destination of operations is
the same. The outputs of operations become the same when mutually exclusive
assignments for the same variable exist in branches (e.g., o6 and o11 in Fig. 1).
A higher value in Io(i, c) implies that the number of inputs for the multiplexers
used for the functional unit fuc and a register to store the operation result is
reduced more.

Bit(i, c) represents the difference of the bit-width among operation oi and op-
erations oj ∈ Op when the same functional unit fuc as oj is allocated for oi.
Here, bi and bj represent the bit-width of operations oi and oj , respectively.

Bit(i, c) =
∑

Allocj==index(fuc),bj−bi≥0

(bi − bj)

If bj minus bi is more or equal to 0, the difference between bj and bi is accu-
mulated to Bit(i, c). A smaller value in Bit(i, c) means that the difference of the
bit-width among operation oi and operations oj is large. It implies that many
bits in the functional unit fuc are not utilized by operation oi. Such an allocation
is not suitable in the view of resource sharing.

After the calculation of Io and Bit, a functional unit is allocated for each
operation in SubO until SubO or Avail becomes the empty set. Resource alloca-
tion is carried out from the combination of operation oi ∈ SubO and functional
unit rc ∈ Avail where Io has the maximum value. If there are more than two
combinations, the combination that the value of Bit is 0 or the closest to 0 is
selected.

Figures 9 and 10 show the ELE algorithm and the function AllocateResource
for register allocation. Instead of Op and Fu in the ELE algorithm for func-
tional unit allocation, the variable set V and the register set Reg are given as
arguments. The procedure is mostly the same as functional unit allocation. For
each control step stepw, a subset of variables (SubV ) whose lifetime intersects
to stepw and a set of available registers (Avail) at stepw are calculated. Then,
registers regc are allocated based on the priority calculated from the number of
the same input/output and the difference of the bit-width among variables.

After functional unit and register allocation, multiplexers are allocated for
shared functional units and registers.

ELE(VariableSet V , RegisterSet Reg,

LifeTimeSet LT )

1 Sort(V , LT );

2 Unalloc = {V }; Alloc = 0;

3 while Unalloc �= ∅ do

4 ∀stepw ∈ Step do

5 SubV = GetSubSet(V , LT , stepw);

6 Avail = GetAvail(Reg, LT stepw);

7 AllocateResource(V , SubV , Avail, Unalloc, Alloc);

8 end for

9 end while

10 return Alloc;

Fig. 9 The ELE algorithm for register allocation.

AllocateResource(VariableSet V ,

VariableSet SubV , ResourceSet Avail

UnallocatedSet Unalloc, AllocationIndex Alloc)

1 Io = ComptueIONum(V , SubV , Avail);

2 Bit = ComptueBitDiff(V , SubV , Avail);

3 while(SubV �= ∅ ∨ Avail �= ∅) do

4 regc = SelectResource(Io, Bit);

5 vi = SelectVariable(Io, Bit);

6 Alloci = index(regc);

7 Unalloc = Unalloc \ {vi};
8 end while

Fig. 10 The function AllocateResource for reigster allocation.

Finally, resources in a given resource library are bound for allocated functional
units, registers, and multiplexers. During resource binding, resources which have
the enough bit-width are bound.

4.8 Control Synthesis
Before control synthesis, the proposed system calculates the state space of a

synthesized circuit from the scheduling result. Then, a control circuit is synthe-
sized through mapping of Q-modules and the generation of glue logics and delay
elements.

4.8.1 State Allocation
The proposed system extends the state allocation method proposed by Tseng,
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et al. 16) so that states are determined by the start times of operations. The
proposed system supports the following slicing methods.
• The local slicing
• The global slicing simple
• The global slicing complex
In the local slicing, states are determined from the set Start. An interval

between start times becomes a state sh. Different states are allocated for mutually
exclusive basic blocks. In the global slicing simple, several states in different basic
blocks are merged if the interval for the states is equivalent. The global slicing
complex is an extension of the global slicing simple in that not only start times
but also completion times are used for state allocation.

4.8.2 Mapping of Q-modules and generation of glue logics.
The proposed system maps a Q-module qh to each state sh. Then, glue logics

are generated. A multiplexer select signal selp for the p-th multiplexer is gen-
erated from a glue logic which comes from input signals inh of Q-modules qh.
A register write signal writet for the t-th register is generated from a glue logic
which comes from acknowledge signals ackh of Q-modules qh.

4.8.3 Insertion of Delay Elements
The delay sdh for state sh is the maximum path delay which is calculated

from the sum of the delays of used resources in the state. The proposed system
generates delay elements with buffers. As data are written into registers by a
falling edge of ackh, every delay element is passed to twice. The first is from a
rising edge of reqh to a rising edge of ackh and the second is from a falling edge
of reqh to a falling edge of ackh. It implies that the required delay of a delay
element is a larger value than sdh/2.

Usually, the delay in state sh becomes long after the physical design due to
wire delays. Moreover, the delay may be changed by technological or environ-
mental variations. Therefore, the proposed system generates delay elements with
a margin margin specified in a given constraint file. The number of buffers in
a delay element is decided so that the delay of the delay element is larger than
margin ∗ sdh/2.

5. Experimental Results

This section shows the effectiveness of the proposed system comparing the syn-
thesized RTL models of bundled-data implementations using the proposed system
with the synchronous counterparts and the bundled-data implementations using
a behavioral synthesis method for synchronous circuits. This paper calls latter
bundled-data implementations as direct implementations. For the experiments,
the proposed system is implemented in Java. The FDS and FDLS algorithms and
a finite state machine (FSM) generator are also implemented for the synthesis
of synchronous circuits. Note that in the experiments optimization techniques
such as pipelining and chaining are not concerned. They will be considered in
our future work. The experiments are carried out on a Windows machine which
has a dual-core processor (2.66 GHz) and a 2G memory.

Table 3 shows the statistics of benchmarks used in the experiments. These
benchmarks are downloaded from Refs. 17), 18) and modified to satisfy supported
syntaxes shown in Table 1. The columns in Table 3 represent the name, the
number of operations, the number of basic blocks, the number of branches, and
the number of loops in benchmarks, respectively.

Table 4 shows a part of a used resource library. Each resource is modeled by
Verilog HDL and synthesized by using Xilinx ISE WebPACK 9.2i 19) targeting
Virtex4 (xc4vlx15-12sfs623) FPGA. The columns of Table 4 represent the name,
bit-width, area, and delay of each resource. The unit of area is slice. A slice
consists of two flip-flops and two 4-to-1 look-up tables (LUTs). As multipliers can
be implemented on not slices but embedded multipliers in Vertex4, the number

Table 3 Benchmarks.

name # of ops # of bbs branch loop
usqrt 16 6 1 1
fdct 35 19 0 6
SNR 93 35 7 6
decoder 36 27 10 1
fht 172 13 0 4
pred1 158 43 19 2
mdct 173 4 0 1
quant 45 23 8 1
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Table 4 A part of resource library.

name bit-width area [slice] delay [ns]
mux2 32 9 0.2
mux4 32 30 0.4
register 32 32 0.5
adder 16 8 0.8
adder 32 16 1.4
multiplier 16 0 3.5
multiplier 32 0 7.3

of slices for multipliers is set to 0.
In the proposed system, the AFDS or AFDLS algorithm, the ELE algorithm,

and the global slicing simple are used for operation scheduling, resource allo-
cation, and state allocation. No time margin is assigned to generate delay ele-
ments. For the synchronous counterparts, the FDS or FDLS algorithm, the ELE
algorithm, and the global slicing simple are used. The control circuits in the
synchronous counterparts are generated by using the FSM generator. The direct
implementations are synthesized by using the FDS or FDLS algorithm, the ELE
algorithm, and the global slicing simple for data-path circuits and Q-modules for
control circuits.

The time interval of control steps when the FDS or FDLS algorithm is used
is decided as follows. First, we find two operations from the initial allocation
result. One has the minimum operation delay and the other has the maximum
operation delay. We synthesize benchmarks by changing the time interval 0.1
by 0.1 from the minimum operation delay to the maximum operation delay.
The time interval which synthesizes an optimum RTL model of the synchronous
counterpart is selected.

The first comparison shows the number of resources and the number of slices
for the synthesized RTL models under a time constraint. Table 5 shows the
experimental results. The rows in “async” represent the results in the proposed
system, the rows in “sync” represent the synchronous counterparts, and the rows
in “direct” represent the direct implementations. For each benchmark, behav-
ioral synthesis is carried out for three time constraints. The first constraint
corresponds to the critical path delay of each benchmark derived by the ASAP
algorithm. The second and third constraints correspond to the critical path delay

* 1.5 and the critical path delay * 2.0, respectively. The column “tstep” repre-
sents the time interval of control steps when the FDS algorithm is used. The
columns “FUs”, “Regs”, and “Muxs” in “resource usage” represent the numbers
of functional units, registers, and multiplexers in the synthesized RTL models,
respectively. The column “states” represents the number of states in the synthe-
sized RTL models. The column “area” represents the number of slices when logic
synthesis is carried out for the synthesized RTL models using ISE. The columns
“S”, “RA”, “CS”, and “others” in “run-time” represent the times for scheduling,
resource allocation, control synthesis, and other processing. The column “total”
represents the total behavioral synthesis time.

Note the symbol “-” in area means that ISE cannot synthesize logic circuits
because of their substantial large state space. Logic synthesis by ISE is frozen
after the whole memory space on our environment is utilized. Another note,
for benchmarks usqrt and fdct, we verify the functional correctness using the
generated simulation models and an HDL simulator ModelSim 20).

The second comparison in Table 6 shows the latency of the synthesized RTL
models under a set of resource constraints. For each benchmark, we synthesize
RTL models two times by changing the number of functional units arbitrary.
The number of functional units is shown in the column “rc”. Similar to the first
comparison, the rows in “async” represent the results in the proposed system,
the rows in “sync” represent the synchronous counterparts, and the rows in “di-
rect” represent the direct implementations. The column “latency” represents the
latency of the synthesized RTL models. The values in “async” and “direct” are
the sum of the state delays while the values in the synchronous counterparts are
the product of tstep by the number of states.

5.1 Discussion
Area. As the main objective of time constraint scheduling is to minimize area,

we discuss the impact of area in the proposed system referring to Table 5.
Compared to the synchronous counterparts, the area of synthesized circuits

using the proposed system is slightly large. As a buffer of delay elements is
implemented by one slice in FPGAs, the large portion of the area overhead is
occupied by delay elements. To reduce the area overhead, one may consider
the optimization of delay elements. It can be realized by utilizing the delays
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Table 5 Synthesis results under a time constraint.

name circuit tc tstep resource usage states area run-time [s]
[ns] [ns] FUs Regs Muxs [slice] S RA CS others total

usqrt async 43.0 8 10 17 12 881 0.16 0.05 0.03 0.14 0.38
64.5 6 10 13 15 782 0.33 0.05 0.02 0.19 0.59
86.0 6 10 14 14 788 0.31 0.05 0.03 0.14 0.53

sync 43.0 1.0 8 10 17 43 765 0.08 0.27 0.03 0.19 0.57
64.5 1.0 7 9 14 57 732 0.13 0.05 0.02 0.17 0.37
86.0 1.0 7 10 15 49 778 0.13 0.05 0.03 0.19 0.40

direct 43.0 1.0 8 10 17 13 843 0.06 0.06 0.03 0.94 1.09
64.5 1.0 7 9 14 14 801 0.09 0.05 0.03 0.38 0.55
86.0 1.0 7 10 15 13 850 0.11 0.05 0.03 0.39 0.58

fdct async 76.5 5 16 17 20 888 0.36 0.08 0.03 0.16 0.63
104.5 5 16 17 22 855 0.33 0.06 0.05 0.17 0.61
140.4 4 17 14 29 875 0.53 0.06 0.05 0.17 0.81

sync 76.5 4.5 5 16 18 32 875 0.20 0.08 0.03 0.22 0.53
104.5 1.7 5 16 19 104 926 0.41 0.08 0.08 0.25 0.82
140.4 2.7 5 17 19 76 873 0.38 0.06 0.05 0.17 0.66

direct 76.5 4.5 5 16 18 19 960 0.19 0.06 0.05 0.50 0.80
104.5 1.7 5 16 19 20 911 0.39 0.19 0.05 0.55 1.18
140.4 2.7 5 17 19 23 952 0.39 0.11 0.06 0.59 1.15

SNR async 1609.5 12 32 33 67 2993 13.55 0.61 0.25 1.78 16.19
2280.0 12 32 30 63 2583 12.75 0.59 0.25 1.75 15.34
3121.8 12 32 30 63 2583 12.83 0.59 0.25 1.73 15.40

sync 1609.5 8.7 11 32 31 1018 2509 3.24 0.63 0.41 2.14 6.42
2280.0 3.2 12 32 32 1947 – 6.50 0.66 0.74 2.34 10.24
3121.8 4.3 12 32 36 2083 – 6.36 0.61 0.75 2.19 9.91

direct 1609.5 8.7 11 32 31 66 2412 4.03 0.59 0.22 2.11 6.95
2280.0 3.2 12 32 32 67 2791 8.05 0.66 0.23 2.19 11.13
3121.8 4.3 12 32 36 62 2810 8.19 0.63 0.27 2.39 11.48

decoder async 186.3 5 28 17 33 1155 1.38 0.56 0.23 8.52 10.69
279.4 5 28 17 33 1155 1.31 0.55 0.23 8.38 10.47
404.8 5 28 17 33 1155 1.33 0.55 0.24 8.42 10.54

sync 186.3 2.7 6 28 16 71 975 1.08 0.61 0.06 8.92 10.67
279.4 2.7 5 28 16 75 957 1.24 0.58 0.06 8.78 10.66
404.8 4.6 5 28 17 49 957 1.30 0.61 0.06 8.75 10.72

direct 186.3 2.7 6 28 16 30 1140 1.06 0.59 0.22 9.77 11.64
279.4 2.7 5 28 16 31 1134 1.19 0.56 0.22 9.33 11.30
404.8 4.6 5 28 17 32 1138 1.24 0.66 0.22 9.64 11.76

fht async 170.1 21 48 76 94 6993 184.02 0.28 0.22 0.38 184.90
263.2 18 48 71 103 4121 183.84 0.28 0.20 0.41 184.73
347.6 18 46 70 106 4023 182.91 0.33 0.16 0.41 183.81

sync 170.1 0.7 21 47 84 621 7095 19.03 0.30 0.38 0.59 20.30
263.2 1.5 19 46 78 421 4178 28.78 0.33 0.31 0.55 29.97
347.6 2.2 20 51 81 237 4165 28.50 0.31 0.23 0.47 29.51

direct 170.1 0.7 21 47 84 70 6929 18.36 0.30 0.14 0.78 19.58
263.2 1.5 19 46 78 76 3911 28.34 0.31 0.20 0.84 29.69
347.6 2.2 20 51 81 63 4204 29.42 0.31 0.19 0.86 30.78

pred1 async 3135.6 22 64 48 107 4405 145.69 1.75 0.98 3.20 151.62
4914.0 16 63 52 108 4120 163.55 1.52 0.80 3.20 169.07
6286.8 15 64 52 110 4476 179.88 1.77 0.97 3.36 185.98

sync 3135.6 2.6 28 65 59 1919 – 9.13 1.86 0.66 3.81 15.46
4914.0 6.0 19 65 55 944 3961 19.92 1.67 0.34 3.47 25.40
6286.8 3.1 21 64 59 1889 – 26.41 1.86 0.64 3.66 32.57

direct 3135.6 2.6 28 65 59 89 4532 9.00 1.70 0.73 4.39 15.82
4914.0 6.0 19 65 55 90 4484 19.56 1.86 0.66 4.22 26.30
6286.8 3.1 21 64 59 98 4740 26.80 1.78 0.66 4.25 33.49

mdct async 112.5 27 67 71 59 4008 176.47 0.38 0.16 0.28 177.29
207.9 15 62 76 86 4240 183.52 0.36 0.16 0.33 184.37
290.4 17 70 73 95 4327 184.16 0.38 0.17 0.30 185.01

sync 112.5 2.5 26 66 74 63 4540 16.14 0.41 0.16 0.36 17.07
207.9 2.1 24 69 74 79 4565 26.06 0.41 0.17 0.52 27.16
290.4 2.2 25 71 71 91 4574 25.23 0.39 0.17 0.38 26.17

direct 112.5 2.5 26 66 74 22 4058 15.44 0.39 0.13 0.69 16.65
207.9 2.1 24 69 74 63 4215 25.44 0.38 0.17 0.81 26.80
290.4 2.2 25 71 71 68 4401 26.05 0.47 0.24 0.83 27.59

quant async 2059.2 8 26 23 38 1828 1.31 0.17 0.13 0.47 2.08
3088.8 8 26 23 38 1829 1.50 0.16 0.13 0.47 2.26
4118.4 8 26 23 38 1829 1.55 0.14 0.14 0.44 2.27

sync 2059.2 7.8 8 26 24 399 1502 0.34 0.16 0.14 0.52 1.16
3088.8 7.8 8 26 22 264 1354 1.25 0.19 0.09 0.66 2.19
4118.4 7.8 8 26 22 264 1354 1.34 0.17 0.11 0.55 2.17

direct 2059.2 7.8 8 26 24 32 1748 0.33 0.16 0.13 0.77 1.39
3088.8 7.8 8 26 22 34 1765 1.25 0.17 0.14 0.83 2.39
4118.4 7.8 8 26 22 34 1772 1.50 0.19 0.16 0.84 2.69
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Table 6 Synthesis results under a set of resource constraints.

name circuit rc tstep resource usage states latency area run-time [s]

[ns] Regs Muxs [ns] [slice] S RA CS others total

usqrt async 10 10 12 11 41.4 663 0.06 0.05 0.02 0.20 0.33

8 10 12 13 52.3 677 0.08 0.03 0.03 0.14 0.28

sync 10 0.9 10 12 45 40.5 586 0.13 0.05 0.03 0.20 0.41

8 1.8 10 11 30 54.0 552 0.06 0.09 0.02 0.14 0.31

direct 10 0.9 10 12 11 31.0 668 0.11 0.06 0.02 0.41 0.60

8 1.8 10 11 12 39.4 694 0.09 0.09 0.03 0.45 0.66

fdct async 7 16 18 23 102.3 994 0.11 0.06 0.03 0.17 0.37

6 17 20 26 111.4 972 0.13 0.06 0.05 0.16 0.40

sync 7 2.7 16 19 44 118.8 901 0.13 0.08 0.03 0.24 0.48

6 1.7 16 21 76 129.2 814 0.16 0.06 0.03 0.17 0.42

direct 7 2.7 16 19 16 95.8 956 0.16 0.09 0.05 0.52 0.82

6 1.7 16 21 21 119.6 864 0.25 0.08 0.06 0.56 0.95

SNR async 15 32 35 46 1648.9 2497 1.09 0.61 0.19 1.77 3.66

11 32 35 51 3009.3 2706 2.33 0.59 0.22 1.80 4.94

sync 15 0.9 32 35 1789 1610.1 – 3.27 0.59 0.97 2.41 7.24

11 0.9 32 34 3335 3001.5 – 168.09 0.59 1.44 2.64 172.76

direct 15 0.9 32 35 45 1624.5 3031 3.80 0.70 0.25 2.39 7.14

11 0.9 32 34 59 3128.7 2820 173.59 0.73 0.30 2.22 176.84

decoder async 8 28 18 31 147.2 1176 1.00 0.56 0.19 8.36 10.11

7 28 18 33 148.5 1171 1.00 0.55 0.22 8.37 10.14

sync 8 1.0 28 17 190 190.0 1052 1.19 0.58 0.09 8.63 10.49

7 1.6 28 17 124 198.4 983 1.08 0.56 0.06 8.41 10.11

direct 8 1.0 28 17 31 152.8 1132 1.30 0.58 0.25 10.14 12.27

7 1.6 28 17 32 156.1 1128 1.11 0.61 0.23 9.83 11.78

fht async 24 47 83 57 191.1 4160 14.89 0.27 0.17 0.38 15.71

21 46 73 65 243.5 3919 20.31 0.25 0.16 0.36 21.08

sync 24 0.7 47 85 286 200.2 4364 1.17 0.33 0.34 0.52 2.36

21 1.1 46 80 221 243.1 4008 1.17 0.31 0.30 0.45 2.23

direct 24 0.7 47 85 58 250.3 4413 1.34 0.34 0.19 0.94 2.81

21 1.1 46 80 68 281.2 4451 1.11 0.42 0.23 0.92 2.68

pred1 async 27 65 57 89 3175.3 4482 12.38 1.45 0.64 3.23 17.70

23 65 59 100 4156.0 4327 15.88 1.53 0.70 3.19 21.30

sync 27 3.3 66 69 1476 4870.8 – 26.00 1.92 0.52 3.66 32.10

23 1.4 65 60 4715 6601.0 – 343.63 1.55 1.28 4.47 350.93

direct 27 3.3 66 69 72 3228.8 4439 26.84 2.05 0.55 4.36 33.80

23 1.4 65 60 93 3704.1 4248 342.70 1.70 0.73 4.35 349.48

mdct async 30 76 94 49 242.8 7811 11.05 0.38 0.19 0.39 12.01

27 75 87 49 275.0 7251 13.97 0.38 0.14 0.31 14.80

sync 30 2.3 75 94 68 156.4 7993 0.49 0.52 0.20 0.41 1.62

27 3.1 75 91 49 151.9 7241 0.45 0.48 0.20 0.34 1.47

direct 30 2.3 75 94 37 287.1 7225 0.52 0.52 0.24 0.75 2.03

27 3.1 75 91 33 327.3 6792 0.63 0.55 0.22 0.78 2.18

quant async 11 26 21 34 1973.7 1563 0.28 0.16 0.13 0.45 1.02

10 25 22 35 1977.0 1590 0.30 0.16 0.13 0.47 1.06

sync 11 2.6 26 22 780 2028.0 1611 1.42 0.17 0.27 0.78 2.64

10 2.6 25 22 780 2028.0 1589 1.44 0.16 0.23 0.69 2.52

direct 11 2.6 26 22 34 1532.1 1530 1.45 0.16 0.16 0.92 2.69

10 2.6 25 22 34 1536.7 1509 1.47 0.19 0.16 0.88 2.70
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of control circuits and the wire delays of delay elements in addition to the logic
delays of delay elements in the generation of delay elements. If delay elements are
optimized well, we may obtain better circuits than the synchronous counterparts.
Circuits where the number of resources is less than the synchronous counterpart
are such candidates. For example, in the case of usqrt with time constraint
86.0 ns, the number of slices used in the delay elements is 42. If we can reduce
more than 10 slices in the delay elements, the area of the synthesized circuits
by the proposed system becomes less than the synchronous counterpart. This
optimization will be considered in our future work.

Compared to the direct implementations, the experimental results may not
show a large difference between the synthesized circuits by the proposed system
and the direct implementations. The proposed system synthesizes better circuits
or worse circuits which depends on the number of resources. This is because
the heuristic nature of the proposed system. However, the proposed system has
much more possibility to synthesize the best circuit. mdct is such a case. As a
different data-path circuit is synthesized by using non-uniform control steps, the
difference in the number of resources results in less area. On the other hand, in
the direct implementations, it is difficult to synthesize a better circuit than the
synchronous counterpart. This is because the data-path circuit is the same as
the synchronous counterpart, but the control circuit has delay elements.

Latency. As the main objective of resource constraint scheduling is to minimize
latency, we discuss the impact of latency in the proposed system referring to
Table 6.

Compared to the synchronous counterparts and the direct implementations,
the proposed system synthesizes the best circuits in many cases (e.g., all cases of
fdct, decoder, and pred1). Operations are scheduled so that they are executed
immediately after the completion of previous operations using non-uniform con-
trol steps. In addition, the use of non-uniform control steps results in different
schedules compared to the synchronous counterparts. On the other hand, the
latency improvement of the direct implementations for the synchronous coun-
terparts is restricted. This is because the same scheduling results are utilized
although the control schemes are different.

Synthesis time. In behavioral synthesis under time constraints, the proposed

system takes more time for scheduling because control steps are updated when-
ever an operation is scheduled. On the other hand, there is no big difference in
behavioral synthesis under resource constraints. This is because the proposed
system approximates start time candidates at control steps where the number of
available functional units is less than the number of schedulable operations.

From the experimental results, we can say that the proposed system is prefer-
able for behavioral synthesis of bundled-data implementations in that in many
cases the proposed system synthesizes better circuits in terms of area and la-
tency than direct implementations. Moreover, in several cases, the proposed
system synthesizes better circuits than synchronous counterparts not only in la-
tency but also in area. It is the effect of non-uniform control steps used in the
proposed system.

6. Conclusions

This paper proposes a behavioral synthesis system for asynchronous circuits
with bundled-data implementation. The proposed system is implemented in
Java and evaluated through the experiments. The experimental results show
the effectiveness of the proposed system in that the synthesized bundled-data
implementations are superior to the synchronous counterparts and the direct
implementations in many cases.

As our future work, we are going to extend the proposed system to synthesize
a behavioral description with arrays and floating point operations. Moreover,
pipelining, chaining, and other optimization techniques will be implemented.
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