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Binding Refinement for Multiplexer Reduction

Sho Kodama†1 and Yusuke Matsunaga†2

In behavioral synthesis for resource shared architecture, multiplexers are in-
serted between registers and functional units as a result of binding if necessary.
Multiplexer optimization in binding is important for performance, area and
power of a synthesized circuit. In this paper, we propose a binding algorithm
to reduce total amount of multiplexer ports. Unlike most of the previous works
in which binding is performed by a constructive algorithm, our approach is
based on an iterative improvement algorithm. Starting point of our approach
is initial functional unit binding and initial register binding. Both functional
unit binding and register binding are modified by local improvements based
on taboo search iteratively. The binding in each iteration is feasible, hence
actual value of total amount of multiplexer ports can be optimized. The smart
neighborhood which considers an effect of sharing of connection is used in the
proposed method for effective reduction of total amount of multiplexer ports.
Additionally, the massive modification of binding is performed by regular in-
tervals to achieve a further reduction of total amount of multiplexer ports and
further robustness for an initial binding. Experimental results show that our
approach can reduce total amount of multiplexer ports by 30% on an average
compared to a traditional binding algorithm with computation time of several
seconds to a few minutes. Also, results of robustness evaluation show that our
approach barely depends on initial binding.

1. Introduction

In recent years, cost and period for designing VLSI (Very Large Scale Integrated
Circuit) have risen due to advancement of integration. One of the solutions for
this problem is to use behavioral synthesis which generates RTL (Register Trans-
fer Level) description from abstract description called behavioral description,
automatically.

Meanwhile, in behavioral synthesis for resource shared architecture, multiplex-
ers (MUX) are inserted between registers and functional units (FU) as a result
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of binding if necessary. MUX should be optimized because of its significant effect
on area, performance, and power of a synthesized circuit.

Generally, four tasks are performed sequentially in behavioral synthesis: mod-
ule selection, module allocation, scheduling, and binding. Module selection and
module allocation determine types and the number of FUs which is used for each
operation; Scheduling determines the clock cycle at which each operation will
be executed; Binding assigns each operation and each variable to the instance
of FU and the register, respectively. Generally, FU binding and register binding
are performed separately in binding. FU binding assigns each operation to a
particular instance of FU. Register binding assigns each variable to a particular
register. Although each task of behavioral synthesis affects generation of MUX,
this paper assumes that module selection, module allocation and scheduling are
already finished. Focus of this paper is binding because it significantly affects
MUX optimization. The problem to find a binding which minimizes MUX is
proved to be NP-hard even if either FU binding or register binding is finished
and fixed 1).

Due to its computational complexity, practical solutions of this problem are
based on some heuristics. In earlier works, FU binding and register binding based
on clique partitioning or branch-and-bound search were proposed 2)–4). The min-
imum number of registers is not guaranteed in these methods. Later on, the FU
binding and the register binding based on weighted bipartite matching (LYRA
and ARYL) were proposed 5). The weight which corresponds to the probability
of generating MUX is assigned to each edge of bipartite graph. This approach
guarantees the minimum number of registers. The binding algorithm using min-
imal cost network flow algorithm instead of weighted bipartite matching was
also proposed 6). Register binding under the condition in which FU binding is
assumed to be finished was also solved by k-cofamily algorithm 7). Among the
above-mentioned previous works, FU binding and register binding are performed
sequentially, for example, register binding follows FU binding. MUXs are gen-
erated from correlation between FU binding and register binding, hence it is
difficult to optimize MUX globally with sequentially performed FU binding and
register binding. Kim and Liu proposed simultaneous scheduling, FU binding and
register binding by every clock cycle fashion to solve this issue 8). Experimental
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results show that the total amount of MUX ports is less than that of LYRA
and ARYL 5), however, the number of registers is increased. This method can
consider correlation between FU binding and register binding better than previ-
ous methods, but optimization of MUX remains to be limited to operations and
variables bound in each clock cycle. Simultaneous FU binding and register bind-
ing (SFR) which guarantee the minimum number of registers have been recently
proposed 9). SFR starts from the binding in which each FU and each register
are unshared, namely, the number of FUs and the number of registers equal to
the number of operations and the number of registers, respectively. Interleaved
FU binding and register binding are then performed iteratively with decreas-
ing the number of FUs and registers until resource constraint. FU binding and
register binding can optimize MUX globally with the probability of generating
MUX and information from previously performed FU binding and register bind-
ing. This method accomplishes better results than previous method 6) in total
area of MUX and clock period. The concern is that SFR is unable to apply the
behavioral description which includes a control such as conditional branching.

The above-mentioned previous algorithms other than SFR 9) start FU binding
and register binding from the state in which none of operation and variable is
assigned to a FU and a register, respectively. The k-cofamily based algorithm 7)

starts from the situation in which FU binding is finished, but the register binding
is performed from the same state as the above. Feasible solutions of FU binding
and register binding are not achieved until these algorithms terminate. As a re-
sult, the number of input ports, the area, and the delay of each MUX generated
are not determined until they finally construct a feasible solution. Previous meth-
ods, therefore, have no alternative but to use local information which are likely
connected to MUX optimization. SFR can use information from the FU bind-
ing and the register binding constructed in previous iteration, but the solution
achieved in each iteration is not a feasible solution because the number of FUs
and the number of registers violate resource constraint. There is no guarantee
that the information for optimizing MUX produced by the previously constructed
FU binding and register binding provide desirable effect to final feasible solution.
Accordingly, MUX optimization remains to perform with local information even
in SFR.

One of alternative approaches to optimize MUX in binding is using an itera-
tive improvement algorithm. It starts from a feasible FU binding and a feasible
register binding. Local improvements are then applied to them iteratively to
optimize MUX. Specifically, a FU and a register to which each operation and
each variable are assigned, respectively are modified. This approach can optimize
MUX directly because the FU binding and the register binding in each iteration
is feasible, and MUXs generated are accurately observed. Few binding algorithms
based on an iterative improvement algorithm were proposed. Some binding algo-
rithms based on simulated annealing were proposed 10),11). The concern is their
long computation time. One of the most critical issues for using an iterative
improvement algorithm is a method of creating neighborhoods. A neighborhood
is the binding created with modification of the current binding. Generally, an
iterative improvement algorithm generates multiple neighborhoods in each iter-
ation except for probabilistic meta algorithms such as simulated annealing and
genetic algorithm. The neighborhood which has the best gain to an objective
function in all neighborhoods generated, is replaced with the current binding.
Consequently, the method of creating neighborhoods which leads to high quality
of MUX optimization, high robustness for initial binding, and short computation
time, is required.

In this paper, the binding method based on an iterative improvement algo-
rithm to minimize total amount of MUX ports (MUX Cost) is proposed. Both
FU binding and register binding are modified by local improvements based on
taboo search iteratively. The smart neighborhood, named connection driven-
neighborhood which considers an effect of sharing of connection is used in the
proposed method for effective reduction of MUX Cost. This neighborhood is
based on the fact that elimination of the connection for reducing MUX Cost can
be accomplished with generating the modified binding in which none of variable
uses the connection. The set of operations which consume, or generate variables
which share the same connection is moved or swapped to generate connection
driven-neighborhood. The set of variables which share the same connection is
also adopted to generate connection driven-neighborhood. The proposed method
can achieve significant reduction of MUX Cost, short computation time, and high
robustness for an initial binding with this neighborhood. Additionally, the mas-
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sive modification of FU binding and register binding based on weighted bipartite
matching is performed at regular intervals. The purposes of this procedure are
to achieve a further reduction of MUX Cost and further robustness for an initial
binding. Experimental results show that our approach is able to reduce MUX
Cost by about 30% on an average compared to a traditional binding algorithm
with computation time of several seconds to a few minutes. Also, results of
robustness evaluation in which our approach is applied to randomly generated
binding show that our approach barely depends on initial binding.

Structure of this paper is as follows: In Section 2, preliminaries and problem
definitions are introduced; In Section 3, proposed binding method is presented;
In Section 4, we show some experimental results, and Section 5 concludes this
paper.

2. Preliminaries and Definitions

In behavioral synthesis, behavioral description is transformed to CDFG (Con-
trol Data Flow Graph) which consists of single CFG (Control Flow Graph) and
one or more DFG (Data Flow Graph). DFG is directed acyclic graph which
represents data flow of a circuit. Each node of DFG represents operation, and
each edge between operations represents data dependency. CFG is directed graph
which represents control flow of a circuit. Each node of CFG corresponds to one
DFG. An input of binding is scheduled DFG. The set of all operations to be
assigned to FU is denoted as O, and the set of all variables generated by opera-
tions is denoted as V . The set of registers is denoted as R, and the set of FU is
denoted as F .

Two operations oi, oj ∈ O can be assigned to the same FU only if their executed
clock cycles are not overlapped. The lifetime of variable v is the interval of clock
cycle between v is generated and v is consumed. Two variables vi, vj ∈ V can
be assigned to the same register only if their lifetimes are not overlapped. This
paper assumes that each DFG is constructed such that operations which belong
to different DFGs are not executed concurrently. Two operations which belong
to different DFGs, therefore, can be assigned to the same FU. Additionally, two
variables which belong to different DFGs can be assigned to the same register.
If two operations oi, oj can be assigned to the same FU, this binary relation is

denoted as oi ≈ oj . If two variables vi, vj can be assigned to the same register,
this binary relation is denoted as vi ≈ vj . Consequently, FU binding go : O → F

and register binding gv : V → R must satisfy equations as follows:
∀fi ∈ F , ∀oj , ok ∈ Ob(fi) , j �= k , oj ≈ ok (1)
∀ri ∈ R , ∀vj , vk ∈ Vb(ri) , j �= k , vj ≈ vk (2)

Where Ob(fi) is the set of operations assigned to FU fi, and Vb(ri) is the set of
variables assigned to register ri. These sets can be defined as follows:

Ob(fi) = {o|o ∈ O , go(o) = fi} (3)
Vb(ri) = {v|v ∈ V , gv(v) = ri} (4)

The MUX Cost at FU binding go and register binding gv is denoted as
mux(go, gv). MUX Cost mux(go, gv) is defined as follows:

mux(go, gv) =
∑

ri∈R

∣∣ ⋃

vj∈Vb(ri)

psource(vj)
∣∣+

∑

fi∈F

∑

pj∈Pin(fi)

∣∣ ⋃

vk∈Vcons(pj)

gv(vk)
∣∣

(5)

Where psource(vi) represents the output port of FU which generates variable vi,
and Pin(fi) represents the set of input ports of FU fi. Vcons(pi) represents the
set of variables which is consumed by port pi.

To calculate psource(vi) and Vcons(pi) in Eq. (5), port assignment which deter-
mines correspondence relation between each variable and input or output port
of FU must be performed. Port assignment determines the input port of FU
which consumes each variable, and the output port of FU which generates each
variable. Port assignment affects MUX Cost, however, this paper assumes that
it is already finished and fixed in terms of computation time. An alteration of
port assignment in binding is our future work. Some refinement algorithms which
modify port assignment to improve MUX Cost can be applied after FU binding
and register binding are finally determined 7),12).

This paper assumes that the set of FU F and the set of registers R are already
determined and fixed. Hence, problem definition in this paper is as follows:
• Input: O, V , F , and R

• Objective: Find FU binding g′o and register binding g′v which minimize
mux(g′o, g

′
v) with satisfying Eq. (1) and Eq. (2)
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3. Binding Refinement

A local improvement based on taboo search is applied to given initial FU bind-
ing and initial register binding iteratively for N times in our approach. The flow
of our approach is shown in Fig. 1. The current FU binding and the current reg-
ister binding are alternately modified in the proposed method. Modifications of
the current FU binding and the current register binding are performed as follows:
first, multiple neighborhoods are generated from the current binding; the neigh-
borhood which has the best gain to MUX Cost is then selected from them; finally,
the current binding is replaced by the selected neighborhood. A neighborhood

Fig. 1 Flow of improvement.

is the FU binding g′o and the register binding g′v generated with modification of
the current binding (go, gv). Additionally, the massive modification for binding
based on weighted bipartite matching is applied every loopwb iterations. After
all iterations are finished, the best binding whose MUX Cost is minimal in all
iterations is output. In this section, each procedure of the proposed method is
introduced.

3.1 Neighborhood Enumeration
Neighborhoods enumerated in each iteration are generated with modification

of the current FU binding go or the current register binding gv, namely, either the
current FU binding or the current register binding is modified in each iteration.

To make search process for optimizing MUX efficient, the neighborhood which
considers an effect of sharing of connection between FU and register is adopted
in the proposed method. This neighborhooed is named connection driven-
neighborhood (cd-neighborhood). A cd-neighborhood is based on the fact that
elimination of the connection for reducing MUX Cost can be accomplished with
generating the modified binding in which none of a variable uses the connection.
This means that to eliminate the connection shared by multiple variables with
modification of FU binding, operations which consume or generate these variables
need to be simultaneously moved to another FU. Similarly, to eliminate the con-
nection shared by multiple variables with modification of register binding, these
variables need to be simultaneously moved to another register. Otherwise, the
connection shared by multiple variables cannot be eliminated in single iteration
of an iterative improvement algorithm.

We will introduce it by using the binding example shown in Fig. 2 (a). In
this example, p1, p2 represent input ports of each operation, and ri(i ∈ [1, 5])
represent registers. oi(i ∈ [1, 3]) represent operations, and f1 represent FU. p′1,
p′2 represent input ports of FU f1. Variables consumed by input ports p1, p2

of each operation are assumed to be consumed by input ports p′1, p′2 of FU f1,
respectively. Two input MUXs mux1, mux2 are generated in the data path
structure of Fig. 2 (a), as shown in Fig. 2 (b). Let us discuss the situation in
which MUX mux1 need to be eliminated with modification of FU binding. In
this situation, connection r2 → p′2 or r3 → p′2 must be eliminated. To eliminate
connection r3 → p′2, operation o3 just must be moved to other FU. To eliminate
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Fig. 2 (a) A binding example for neighborhood enumeration, (b) data path of a binding
example.

connection r2 → p′2, however, operation o1 and o2 must be simultaneously moved
to other FU because this connection is shared by variables consumed by input
port p′2 of FU f1. Similar situation is occurred when connection f1 → r5 need to
be eliminated.

Consequently, in a modification of the current FU binding, the set of operations
OTOS ⊆ Ob(fi), called Targeted Operation Set (TOS) which satisfies Eq. (6) or
Eq. (7) is enumerated for each FU fi. The FU to which each operation in a TOS
assigned, is modified in generation of cd-neighborhoods.

∑

pj∈Pin(fi)

∣∣∣
⋂

ok∈OT OS

gv(Vexpend(ok) ∩ Vcons(pj))
∣∣∣ = numin(fi) (6)

∀oj , ok ∈ OTOS , gv(vgen(oj)) = gv(vgen(ok)) (7)

Where numin(fi) represents the number of input ports of FU fi. Vexpend(oi)
represents the set of variables which is consumed by operation oi, and vgen(oi)
represents the variable which is generated by operation oi. Each variable vi ∈
Vexpend(oj) is consumed by different input port of FU each other, hence element
count of the set Vexpend(oj) ∩ Vcons(pk) in Eq. (6) equals to one. Note that the
connection used by single variable can be eliminated with the cd-neighborhood

for TOS. Equations (6) and (7) also consider an unshared connection.
All TOSs enumerated for each FU fi are held in the list listTOS(fi) which

forbids duplication. In the case of Fig. 2 (a), the list of TOS listTOS(f1) is defined
as follows:

listTOS(f1) = {{o1, o2}, {o3}, {o2, o3}, {o1}} (8)
After the list of TOS of each FU fi is generated, all TOSs in each list are sorted in
ascending order according to their element count. Next, all elements are deleted,
except k elements from beginning of listTOS(fi) to reduce the number of cd-
neighborhoods generated. k is integer number defined as k = round(ratio ×
listTOS(fi).size), however, it is adjusted as k ≥ 1. Parameter ratio is positive
number, and it is decreased by deltaratio only if the best binding is updated. Also,
it is increased by deltaratio only if the best binding is not updated for loopratio

iterations. However, ratio is adjusted as minratio ≤ ratio ≤ 1.00. Initial value
of ratio is 1.00.

Finally, cd-neighborhoods for each TOS in listTOS(fi) are generated in which
each TOS is moved to other FU fj(i �= j) or two TOSs bound to different FUs
are swapped each other, if possible. At generating of each cd-neighborhood, the
gain to MUX Cost denoted as gain(g′o, g

′
v) is calculated as follows:

gain(g′o, g
′
v) = mux(go, gv) − mux(g′o, g

′
v) (9)

Where g′o, g′v are FU binding and register binding of the cd-neighborhood. Each
cd-neighborhood and its gain are held to the list.

In a modification of the current register binding, the set of variables VTVS ⊆
Vb(ri) called TVS (Targeted Variable Set), is enumerated by each register ri ∈
R, and then cd-neighborhood for each TVS is generated. TVS VTVS ⊆ Vb(ri)
satisfies Eq. (10) or Eq. (11).

∀vj , vk ∈ VTVS , psource(vj) = psource(vk) (10)
∀vj , vk ∈ VTVS , Psink(vj) ∩ Psink(vk) �= φ (11)

Where Psink(vi) is the set of input ports of FU which consume variable vi. A
TVS is the set of variables which share the same connection. The following of
process is the same as the case of modification for the current FU binding.

3.2 Massive Modification of the Current Binding
To avoid stagnation of search process, the massive modification of the current

binding based on weighted bipartite matching is performed by every loopwb iter-
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ations. The input binding of this modification is determined as the best binding
only if it was updated after this modification was previously performed. Other-
wise, the input binding is determined as the current binding. The input binding
is iteratively modified with following process for iterationwb times: first, register
binding is reset and all variables are assigned to register again by constructive
algorithm, called Register Binding Bipartite (RBB); FU binding is then reset
and all operations are assigned to FU again by constructive algorithm, called FU
Binding Bipartite (FBB). After that, the binding whose MUX Cost is minimal
in all binding generated by RBB or FBB of each iteration is recorded. Note that,
the input binding is never recorded.

RBB and FBB are based on weighted bipartite matching also used in some
previous works 5),13). RBB performs following process sequentially. First, all
variables are sorted in ascending order with their start clock cycle of lifetime, as
the primary key, and in descending order with their end clock cycle of lifetime,
as the secondary key. Sorted variables are then divided to the set of variables,
which cannot be assigned to the same register, called cluster, and then binding of
variables is performed by each cluster. By each cluster, weighted bipartite graph
G = (Vwb ∪ R,E) is constructed. Vwb is the set of variables included in cluster.
If variable vi ∈ Vwb can be assigned to register rj ∈ R, edge eij ∈ E exists.
The weight wij assigned to the edge eij is defined as increase of the MUX Cost
when the variable vi is assigned to the register rj . Next, minimal cost maximal
matching M of the weighted bipartite graph G is solved by Hungarian Method 14)

with O(|R|3) computational complexity. For each edge emn ∈ M , variable vm is
assigned to register rn. Process of FBB is the same as RBB.

The resultant binding depends on the input binding in this procedure because
FU binding is not reset in RBB and register binding is not reset in FBB. Also, this
procedure is constructed for optimizing MUX Cost, hence a massive modification
of FU binding and register binding can be achieved without great increase of
MUX Cost.

3.3 Neighborhood Selection
The current binding is replaced by the cd-neighborhood selected from enu-

merated cd-neighborhoods, called Accepted Neighborhood in each iteration. Ac-
cepted Neighborhood is determined as follows: the cd-neighborhood, which has

the best gain, and is not forbidden by taboo-list. If there are multiple cd-
neighborhoods which have the same gain, following value is used for the second
measure: average of times each operation or each variable which is moved or
swapped to generate these cd-neighborhoods, was used to generate previous Ac-
cepted Neighborhoods. Also, if the best binding will be updated by selection
of the cd-neighborhood neibi, neibi is certainly selected even if it is forbidden
by taboo-list. After Accepted Neighborhood is selected, the current binding is
replaced by it.

Taboo-list is a fixed size queue used to avoid cycling of search process. A
forbidden modification of binding, called taboo is pushed to taboo-list in each
iteration. The taboo is defined as follows in the proposed method: operations or
variables, which are moved or swapped for generating Accepted Neighborhood
are assigned to the FU or the register to which they are assigned in the current
binding. For example, if the set of variables {v1, v2} are moved from register r3

to other register to generate Accepted Neighborhood, the taboo is that variable
v1 or v2 is assigned to register r3. Also, taboo-list for operations and that for
variables are used because modification of FU binding and that of register binding
are interleaved. Sizes of these taboo-lists are the same.

4. Experimental Results

In Section 4.1, the results of a comparison between the proposed method and
previous work are presented. In Section 4.2, robustness for initial binding of the
proposed method is evaluated.

4.1 Comparison to Previous Work
To evaluate the efficiency of our approach, comparison between the proposed

method and LYRA 5) were performed with some benchmarks shown in Table 1.
Although, comparison between the proposed method and SFR 9) is also desirable,
we could not do the fair comparison due to the following reasons. First, it was
difficult to handle experiments under the same condition as SFR. Second, the
cost function used in binding was not specified in SFR.

Two parameters mainly affect the MUX Cost of finally achieved binding in the
proposed method. One is the number of iterations denoted as N , and the other
is loopwb which determines repetition interval of the massive modification of the
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Table 1 Benchmark.

|V | |O| |R|
jpeg dct 116 98 21

blowfish encrypt 325 243 19
sobel filter 56 45 10

jacobi 304 270 73
diff eq 24 11 6

Table 2 Parameters of the proposed method.

Size of taboo-list 10
minratio 0.3
deltaratio 0.05
loopratio 100

iterationwb 2

current binding. Value of N directly affects MUX Cost and computation time.
Large value of N generally achieves significant reduction of MUX Cost, but a
great deal of computation time will be required. Value of N must be determined
by considering trade-off between reduction of MUX Cost and computation time.
Value of loopwb also affects MUX Cost and computation time because repetition
of the massive modification of the current binding is determined by it. For these
reasons, we evaluated multiple combinations of different values of N and loopwb.

Other parameters of the proposed method are shown in Table 2. The initial
binding of the proposed method was generated with LYRA. The number of
each type of FU was defined as round(0.7 × NumASAP ), where NumASAP is
the number of FU derived from ASAP (As Soon As Possible) scheduling. Each
operation in CDFG was scheduled by list scheduling. The proposed method
and LYRA were implemented in C++ language, and evaluated in Xeon 5140
(2.33 GHz Dual Core), 8 GB main memory server.

Experimental results of MUX Cost and computation time under loopwb = 1,000
are shown in Table 3. Value of sixth column is the normalized MUX Cost of
the proposed method based on LYRA. The proposed method reduces MUX Cost
by 28% on an average and 40% tops compared to LYRA. Also, computation
time of the proposed method is several seconds to a few minutes, and it is well
within utility. Table 3 shows trade-off between reduction of MUX Cost and
computation time. The MUX Cost and the computation time of the proposed
method evaluated in multiple combinations of different values of N and loopwb

Table 3 MUX Cost and computation time under loopwb = 1,000.

Benchmark
LYRA LYRA+Proposed

MUX Cost run time [s] N MUX Cost Norm. run time [s]

jpeg dct 132 0.1

2,500 92 0.70 3.3
5,000 92 0.70 12.6
7,500 91 0.69 22.0

10,000 91 0.69 31.3

blowfish encrypt 112 0.5

2,500 88 0.79 6.0
5,000 88 0.79 13.0
7,500 88 0.79 21.0

10,000 88 0.79 28.5

sobel filter 61 0.0

2,500 48 0.79 1.2
5,000 47 0.77 2.4
7,500 47 0.77 3.8

10,000 47 0.77 5.2

jacobi 421 4.1

2,500 272 0.65 54.6
5,000 259 0.62 134.1
7,500 253 0.60 306.8

10,000 253 0.60 510.3

diff eq 24 0.0

2,500 18 0.75 0.4
5,000 18 0.75 0.7
7,500 18 0.75 1.1

10,000 18 0.75 1.5
Ave. − − − − 0.72 −

Table 4 MUX Cost of jpeg dct under combination of N and loopwb.

MUX Cost
N

250 500 1,000 2,500 5,000 7,500 10,000

loopwb

100 93 93 90 88 88 88 88
250 − 94 93 88 88 88 88
500 − − 92 89 89 89 89

1,000 − − − 92 92 91 91
2,000 − − − 91 91 91 91

are shown in Table 4, Table 5, Table 6, and Table 7. Used benchmarks
were jpeg dct and jacobi. These results show that the proposed method tends
to achieve better MUX Cost at a small value of loopwb than at a large value
of loopwb. This is attributed to high repetitions of the massive modification of
the current binding. Computation time, however, tends to increase at a small
value of loopwb. This is caused by the increase of the number of times weighted
bipartite matching algorithm is performed. The value of N and loopwb cannot
be determined uniquely. They need to be determined by considering trade-off
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Table 5 Computation time of jpeg dct under combination of N and loopwb.

run time [s]
N

250 500 1,000 2,500 5,000 7,500 10,000

loopwb

100 0.3 0.7 1.5 6.4 16.7 26.4 36.8
250 − 0.5 1.2 5.1 14.0 23.5 32.9
500 − − 1.1 5.2 15.9 27.2 38.6

1,000 − − − 3.3 12.6 22.0 31.3
2,000 − − − 4.3 12.1 20.0 27.9

Table 6 MUX Cost of jacobi under combination of N and loopwb.

MUX Cost
N

250 500 1,000 2,500 5,000 7,500 10,000

loopwb

100 275 267 264 260 253 250 250
250 − 285 278 273 254 249 249
500 − − 288 270 260 257 256

1,000 − − − 272 259 253 253
2,000 − − − 273 260 258 258

Table 7 Computation time of jacobi under combination of N and loopwb.

run time [s]
N

250 500 1,000 2,500 5,000 7,500 10,000

loopwb

100 7.9 14.7 29.6 99.1 310.1 505.1 734.5
250 − 11.6 23.8 73.6 197.4 351.4 543.3
500 − − 22.9 67.1 198.9 407.8 615.9

1,000 − − − 54.6 134.1 306.8 510.3
2,000 − − − 52.6 131.7 311.7 518.8

between reduction of MUX Cost and computation time, and robustness for initial
binding.

4.2 Robustness Evaluation
Our approach is based on taboo search, which does not guarantee that optimal

solution can be achieved, hence robustness of the proposed method for initial
binding need to be evaluated. Each operation and each variable were randomly
assigned to a FU and a register, respectively in this experiment. These random
binding were then used for initial binding of the proposed method.

Also, naive taboo search (NTS) was implemented to evaluate efficiency of the
proposed method. A cd-neighborhood is not adopted in NTS. The neighborhoods
used in NTS are generated as follows.
• A modification of the current FU binding: for each FU fi ∈ F , move each

Fig. 3 Distribution of MUX Cost.

operation oj ∈ Ob(fi) to other FU fk(i �= k) or swap every two operations
bound to different FUs, if possible.

• A modification of the current register binding: for each register ri ∈ R,
move each variable vj ∈ Vb(ri) to other register rk(i ∈ k) or swap every two
variables bound to different registers, if possible.

Additionally, the massive modification of the current binding is not executed.
Number of trials was five hundreds. Parameters N and loopwb were set to

(5,000, 1,000), respectively. Other assumptions were the same as Section 4.1, and
a benchmark was jpeg dct.

The distribution of the MUX Cost for all trials is shown in Fig. 3. The Sum-
mary of the MUX Cost and computation time for all trials is shown in Table 8.
Trials in which MUX Cost is up to minimum plus 5% cover 97% of all trials in
the proposed method. In contrast, those of NTS cover only 46%. Also, difference
between the minimum and the maximum of MUX Cost in the proposed method
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Table 8 Summaries of MUX Cost and computation time.

MUX Cost run time [s]
Min. Ave. Max. Max./Min. Min. Ave. Max

Initial binding 235 255.6 275 − − − −
proposed 88 89.7 94 1.07 5.7 10.3 13.6

NTS 89 95.4 112 1.26 28.5 33.0 37.9

is 7%, while that of NTS is 26%. Furthermore, computation time of the proposed
method is about one third of that of NTS on average. These results show that
the proposed method barely depends on initial binding. Table 8 also shows that
search process can be efficient by cd-neighborhood and the massive modification
of the current binding.

5. Conclusions and Future Work

In this paper, we propose binding method based on an iterative improvement
algorithm to optimize MUX Cost. The proposed method applies local improve-
ment based on taboo search to FU binding and register binding iteratively. Search
process can be efficient due to connection driven-neighborhoods which focus on
an effect of sharing of connection. Also, stagnation of search process is avoided
by the massive modification of the current FU binding and the current regis-
ter binding. Experimental results show that proposed method can reduce MUX
Cost by 30% on an average compared to a traditional binding algorithm. Also,
computation time of the proposed method is well within utility. Additionally,
the proposed method barely depends on initial binding. Advancement of ro-
bustness for initial binding and reduction of computation time, and combining
modification of port assignment with binding refinement are our future work.
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