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Exploration of Schedule Space by Random Walk
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Scheduling, an important step in high-level synthesis, is essentially a search-
ing process in the solution space. Due to the vastness of the solution space and
the complexity of the imposed constraints, it is usually difficult to explore the
solution space efficiently. In this paper, we present a random walk based per-
turbation method to explore the schedule space. The method works by limiting
the search within a specifically defined sub-solution space (SSS), where sched-
ules in the SSS can be found in polynomial time. Then, the SSS is repeatedly
perturbed by using an N-dimension random walk so that better schedules can
be searched in the new SSS. To improve the search efficiency, a guided per-
turbation strategy is presented that leads the random walk toward promising
directions. Experiments on well-known benchmarks show that by controlling
the number of perturbations, our method conveniently makes tradeoff between
schedule quality and runtime. In reasonable runtime, the proposed method
finds schedules of better quality than existing methods.

1. Introduction

In high-level synthesis, the scheduling of multiple operations to appropriate
control steps in the presence of a set of constraints and objectives is an essential
but intractable task 1),2). The schedule quality greatly influences the synthesized
circuit on speed, delay, power consumption, etc. Therefore, there have been
constant efforts to improve the schedule quality.

Recently, scheduling algorithms based on bipartite graph matching have been
proposed 3)–6), which have the advantage of optimizing complex objectives with
more flexibility.3),4) were among the first to formulate scheduling as a match-
ing problem. Though some reduction techniques were proposed,3),4) used an
exact method that had unacceptable runtime on large cases.5) proposed a heuris-
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tic method that optimally schedules one path of operations each time. With a
wider view on the design objectives,5) tends to achieve better results than list
scheduling 7)–9) and force-directed scheduling 10),11). The max-flow scheduling 6)

is different from the iterative, path-based scheduling 5), which is capable of evalu-
ating and adjusting previous scheduling decisions at later stage and therefore has
greater flexibility. Nevertheless, the max-flow scheduling 6) heuristically restricts
the solution space to a sub-solution space (SSS), which may not cover the global
optimal schedule. Moreover, it only assumes unit operation delay 6).

In this paper, we improved the works of6) by proposing the random walk based
enhanced max-flow scheduling. The enhanced max-flow scheduling supports op-
eration delay of multiple clock cycles and is capable of searching better schedules
under the same latency. We incorporated random optimization technique into
scheduling and formulated the SSS perturbation as an N-dimension random walk
on graph. If the obtained schedule is unsatisfactory, current SSS is perturbed
and better schedules (either of lower latency or higher quality) are searched in
the new SSS. The SSS perturbation expands the exploration in the solution
space and consequently improves the schedule quality. Moreover, by controlling
the perturbation number, tradeoff between schedule quality and runtime can be
conveniently made. To improve the efficiency of searching the solution space, we
also present a guided perturbation strategy that leads the random walk toward
promising directions by utilizing the returned information of the max-flow algo-
rithm. Experimental results show that in reasonable runtime, our method finds
better schedules than existing methods.

The rest of the paper is organized as follows. Section 2 gives the overview
of the proposed scheduling method. Section 3 explains the concept of SSS and
the enhanced max-flow scheduling algorithm. Section 4 describes in detail the
perturbation of SSS. Section 5 shows the experimental results. And Section 6
draws the conclusion.

2. Overview of Random Walk Based Max-Flow Scheduling Algo-
rithm

Figure 1 shows the flow of the proposed scheduling algorithm. The original
max-flow scheduling 6) only consists of the first three steps: 1) set the schedule
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31 Exploration of Schedule Space by Random Walk

Fig. 1 Flow of random walk based max-flow scheduling.

latency; 2) prune solution space to SSS under given latency; 2) perform max-flow
scheduling in SSS without enhancement. In this study, we incorporate random
optimization techniques by adding two loops in the flow, as indicated within the
dashed line. In the outer loop, the schedule latency decreases from the upper
bound, which can be estimated by any heuristic (e.g. list scheduling), to the
lower bound. Under each schedule latency, the original solution space is firstly
pruned into a SSS. Then, the inner loop is triggered that iteratively explores the
entire solution space in search of schedules: 1) the max-flow scheduling algorithm
is executed to find schedules in current SSS. Different from the original max-flow
scheduling 6) that assume unit operation delay, the enhanced algorithm supports
multi-cycle operation delay; 2) if no schedule exists, current SSS is perturbed by
randomly walking to a neighboring SSS. In order to reduce the detoured walks
before reaching a SSS that contains satisfying schedules, the feedback of the max-

Fig. 2 Comparison of space-constrained scheduling with traditional scheduling.

flow algorithm is utilized, which guides the walk toward promising directions.

3. Sub-Solution Space and Enhanced Max-Flow Scheduling Algo-
rithm

Figure 2 compares the scheduling in confined solution space with the tra-
ditional methods. Traditional methods usually search schedules directly in the
entire solution space, which is an intractable problem. In contrast, the max-flow
scheduling method restricts the search within the sub-solution space, as indicated
by the grey area. The SSS, which is obtained by a force-directed heuristic 6), has
unique properties, such as the optimum schedule of SSS can be found in polyno-
mial time by using the enhanced max-flow scheduling algorithm.

3.1 Problem Formulation
Given an operation set of t types V = {Vj | j = 1, 2, ..., t} where each type

has n(j) operations Vj = {vji | i = 1, 2, ..., n(j)}, the scheduling task is to find
integer labels of all the operations CS : V → Z+, where CS (vji) ∈ Z+ is the
control step that operation vji is scheduled to. Therefore, the scheduling task
can be formulated as a matching problem between the operations and the control
steps on bipartite graphs in the presence of various constraints and objective. We
denote the bipartite graph of type j by BGj(Vj , Sj , Aj), where Vj is the operation
set of type j, Sj the control step interval set of type j, and Aj ∈ Vj × Sj the edge
set. There is an edge e(v, s) ∈ Aj if and only if the freedom of v has overlap with
interval s (in other word, v can be potentially scheduled in s). The following will
explain how to calculate the freedom of Vj and the control step interval set Sj
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32 Exploration of Schedule Space by Random Walk

respectively.
Two kinds of constraints are considered in this paper: the resource con-

straint and the dependency constraint. Typically, the dependency constraint
is represented by a polar, directed, acyclic graph G(V , E), called data flow
graph 6). The edge (vix, vjy) ∈ E defines the dependency constraint of CS (vjy)
≥ CS (vix)+D(i), where D(i) is the delay of the operation type of vix in term
of clock cycles. The resource constraint, {FU (j) | j = 1, 2, ..., t}, specifies the
number of functional units available for each operation type j. In this paper, we
assume non-pipelined functional units.

Definition 3.1 (operation freedom). The freedom of an operation v, FR(v),
is an integer set {i | CSe(v) ≤ i ≤ CSl(v)}, where CSe(v) and CSl(v) are the
earliest and the latest starting control steps of v without violating any dependency
constraint. FR(v) is also equivalently represented by [CSe(v), CSl(v)].

The operation freedom can be calculated by the as soon as possible (ASAP)
scheduling and the as late as possible (ALAP) scheduling. Figure 3 shows a
data flow graph (DFG) example with the freedom of each operation calculated.
In this example, we assume multiplication as type 1, addition as type 2, FU (1)
= FU (2) = 2, D(1) = D(2) = 1, and the schedule latency CS (sink) denoted by
L.

The freedom of v, [CSe(v), CSl(v)], defines an interval in which v gives the
earliest and the latest scheduling requests. However, the requests may not be
satisfied, because the ASAP/ALAP scheduling assumes unlimited resources by

Fig. 3 A DFG example with operation freedom calculated.

only considering the dependency constraint.3),4) proposed a method of linear com-
plexity to limit the timing of the scheduling requests due to the resource limit.
A similar method is used in this study, as Algorithm 1 shows. The control step
interval set of type j, Sj = {[gji, hji] | i = 1, 2, ..., n(j)}, firstly records the n(j)
ASAP and ALAP requests respectively. Then, some earliest/latest scheduling
requests are delayed/advanced, based on the resources available.

Algorithm 1: Calculation of control step interval set Sj

{gji} and {hji} are two arrays of integers, with {hji} using the schedule latency
L. Obviously, for any interval [gji, hji], gji ≤ hji. This results in an estimation
of the schedule latency L. The estimated latency serves as the lower bound in
Fig. 1, because constraints are relaxed during the two-phase Sj calculation: 1)
the resource constraint is ignored during the ASAP/ALAP scheduling; 2) the
dependency constraint is ignored during the limiting of the scheduling requests
(step 3 and step 4 of Algorithm 1).

Table 1 and Table 2 show the control step interval set S1 and S2 of the
example DFG. The original interval set is based on the sorted ASAP/ALAP
scheduling requests. The narrowed interval set is calculated by Algorithm 1,
which takes the resource constraint into account. From the intervals colored in

Table 1 Control step interval set S1 = {[g1i, h1i]} of example DFG.

Table 2 Control step interval set S2 = {[g2i, h2i]} of example DFG.
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Fig. 4 Bipartite graphs. (a) BG1(V1, S1, A1). (b) BG2(V2, S2, A2).

grey (e.g. [1, L-4]), the schedule latency can be estimated as (1 ≤ L-4, or L ≥
5), which serves as the lower bound.

It should be emphasized that unlike freedom FR(vji), which is bound to vji,
interval [gji, hji] is not bound to any operation. [gji, hji] only indicates an interval
in which the resources allow a type j operation be scheduled. Also, {gji} and
{hji} respectively contain the modified n(j) earliest and n(j) latest scheduling
requests, which form exactly n(j) intervals. Thus, the number of control step
intervals |Sj | equals that of operations |Vj |, with one operation scheduled in one
interval 3),4).

Once the schedule latency L, the freedom of Vj , and the control step interval
set Sj are known, the bipartite graph of type j, BGj(Vj , Sj , Aj), can be built.
There is an edge e(v, s) ∈ Aj if and only if the freedom of v has overlap with
interval s. Figure 4 shows the bipartite graphs of the example DFG under the
schedule latency of (L = 5).

By introducing the control step interval [gji, hji], which contains arbitrary
clock cycles, we enhanced the scheduling method of6) by supporting multi-cycle
operation delay. However, for explanation convenience, we assume unit operation
delay in the example DFG.

3.2 Resource and Dependency Constraints
Once the bipartite graphs BGj(Vj , Sj , Aj), 1 ≤ j ≤ t, are built, the schedul-

ing task is transformed into finding perfect matching between the operations Vj

and the control step interval set Sj in the presence of various constraints. The
matching problem can be solved in polynomial time by many algorithms. This
paper uses the max-flow algorithm 12). If a perfect matching is found, the free-

Fig. 5 Finding perfect matching by the max-flow algorithm. (a) A max-flow network. (b) A
schedule that violates the dependency constraint.

dom of each operation shrinks to the common part of its original freedom and
the matched control step interval. It is possible that some operations still have
freedom of multiple control steps. So, a perfect matching is not a strict schedule,
but very close to it. A schedule can be easily obtained from a perfect matching.

The schedule based on a perfect matching always satisfies the resource con-
straint. The reason is that a perfect matching ensures each operation a control
step interval, which implicitly guarantees the resource for the matched opera-
tion. However, the dependency constraint cannot be satisfied easily, because in
the bipartite graph the operations of Vj are assumed independent of each other.

Figure 5 (a) shows an example of finding a perfect matching in BG2(V2, S2,
A2) by the max-flow algorithm, as indicated by the thick edges. Fig.5 (b) shows
the corresponding schedule. Obviously, the resource constraint is satisfied but
the dependency of (v8, v9) is violated.

Definition 3.2 (overlapped freedom). For dependency constraint (vix, vjy)
∈ E, if CSe(vjy) < CSl(vix) + D(i), vix and vjy are called an overlapped pair.
[CSe(vjy), CSl(vix) + D(i) - 1] is the freedom of vjy that overlaps with vix.
[CSe(vjy) - D(i) + 1, CSl(vix)] is the freedom of vix that overlaps with vjy.

The overlapped freedom between two operations represents the possibility that
the dependency between them be violated. This possibility can be eliminated by
partitioning the overlap.

Definition 3.3 (overlap partition).The partition of an overlapped operation
pair (vix, vjy) is decreasing the freedom of vix and vjy to [CSe(vix), k] and [k +
D(i), CSl(vjy)] respectively, where k is an integer between (CSe(vjy) - D(i)) and
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Fig. 6 Freedom distribution in the DFG example. (a) With overlap. (b) Overlap removed
through partition.

CSl(vix).
Figure 6 (a) shows the freedom distribution of Fig. 3 under schedule latency (L

= 5). Each rectangle stands for an operation with the vertical span representing
its freedom. The grey area indicates the overlapped freedom. Fig. 6 (b) shows
one possible partition of the overlaps.

After partitioning all the overlaps, the freedom of the involved operations is
decreased, which reduces the edge set Aj of BGj(Vj , Sj , Aj). Consequently, the
original solution space is pruned into a sub-solution space (SSS). Within SSS,
every perfect matching corresponds to schedules that satisfy both the resource
and the dependency constraints.

One of the advantages of the max-flow scheduling is that it can conveniently
optimize some complex objectives. Edges of Aj , which represent potential assign-
ment between operations and control steps, can be evaluated by assigning weight
to them. The edge weight helps find better schedules by using the min-cost
max-flow algorithm 6),12).

3.3 Enhanced Max-Flow Scheduling Algorithm
It is well known that the resource-constrained scheduling is an NP-complete

problem 13). Therefore, it is difficult to optimally partition all overlapped pairs.
In this study, a force-directed heuristic method 6) is used to partition the overlaps.
The enhanced max-flow scheduling under given schedule latency is described in
Algorithm 2:

4. Perturbation of SSS by Random Walk

As mentioned in Section 3.3, a heuristic method is used to prune the original
solution space into the sub-solution space (SSS). Therefore, it is possible that the

Algorithm 2: Max-flow scheduling under given latency

Fig. 7 Exploring schedule space. (a) SSS perturbation. (b) SSS perturbation as random
walk on graph GSSS .

global optimum schedule is not contained in the SSS. If the optimum schedule of
SSS, which can be found in polynomial time by the max-flow scheduling algorithm
of Section 3, does not exist or is not satisfactory, it is desirable to perturb current
SSS and search better schedules in the new SSS.

Figure 7 (a) illustrates the perturbation of SSS: the outer rectangle represents
the entire solution space and the dot stands for an acceptable schedule. SSS1
and SSS2 contain no schedules. So, perturbation goes on. Finally, SSS3 covers
the schedule and the max-flow scheduling method assures finding it out.

4.1 Formulation of SSS Perturbation as Random Walk on Graph
Assume there are N overlapped operation pairs to be partitioned: p1, p2, ...,

pN . The i-th pair pi has overlap of (ki - 1) control steps. Then, there are ki
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Fig. 8 Example of infeasible state. (a) related operation pairs (v7, v8) and (v8, v9). (b)
Improper partition that causes freedom inconsistency.

different partitions of pi. Define the SSS state space X, in which each state x

∈ X represents a SSS, or one partition scheme of the N overlapped pairs. x

is encoded as: (u1, u2, ..., uN ). The i-th dimension ui, 1 ≤ i ≤ N , takes the
value among {0, 1, 2, ..., ki - 1} that stands for the ki different partitions of pi.

Apparently, there are
N∏

i=1

ki states (SSSs) in X. Note that partitioning pi reduces

the freedom of not only the overlapped pair but also the operations along the
same path in the DFG. Thus, some operation pairs may relate to each other. In
other words, there might be infeasible states in X, where freedom inconsistency
is caused by improper partition of related pairs.

Figure 8 shows an example of infeasible state: assume a path of v7 → v8 →
v9 in the DFG, where (v7, v8) and (v8, v9) originally overlap in interval [2, 3] and
[3, 4] respectively. The partition scheme of Fig. 8 (b) changes CS e(v8) to 4 and
CS l(v8) to 2. Thus, FR(v8) becomes [4, 2], which is infeasible.

Next, we define the GSSS graph as a set of vertices X, equipped with a symmet-
ric neighborhood relation (a subset of X × X). Vertices x, y ∈ X are neighbors
if and only if the Euclidean distance between x and y is one. The degree of vertex
x, deg(x), is its number of neighbors. Since the GSSS is an N -dimension lattice,
each vertex of X (except the ones on GSSS boundary) has 2N neighbors.

The SSS perturbation can be formulated as an N -dimension random walk 14),15)

on GSSS , which is a sequence of X-valued random variables {Xt: t = 0, 1, 2,
...} such that Xi neighbors Xi−1. Xt represents the random position in X at
time t. X0 is the starting state obtained by the force-directed overlap partition
heuristic 6). The walk ends at t = n, when Xn is the first visited state that
contains schedules of acceptable quality.

Figure 7 (b) shows an example of random walk on a 2 × 2 × 2 GSSS . (2, 1,
0) is the initial overlap partition scheme. After 8 perturbations, (0, 0, 1), the
desired partition scheme, is reached.

Random walk can be described by a discrete-time irreducible Markov chain (X,
P ), where X is the defined state space and P = (p(x, y))x,y∈X is the stochastic
transition matrix 14). We firstly assume the transition between neighboring states
with equal probability:

p(x, y) =

{
1/deg(x), if y neighbors x
0, otherwise

(1)

Markov chain has a good property of remembering the previous state. New
state can be obtained by modifying the previous state. For SSS perturbation, this
property means the force-directed overlap partition algorithm is performed only
once to calculate the initial SSS (state X0). New SSS is obtained by modifying
the partition position of an operation pair by one clock cycle.

Assume state j, j ∈ X, is the SSS that contains acceptable schedules. Hitting
time on state j is defined as:

Tj = min{t > 0 : Xt = j} (2)
Once the state space X, the transition matrix P , and the starting state i = X0 are
known, the expectation of hitting time on state j can be calculated by Eq. (3)14):

EiTj = (Zjj − Zij)/πj (3)
where π is the stationary distribution of the Markov chain, Zij =

∞∑
t=0

p
(t)
ij − πj ,

and p
(t)
ij the t-step transition probability.

Equation (3) shows that the transition matrix P has great influence on the
hitting time. Therefore, optimizing matrix P is an effective way to shorten
the hitting time on an acceptable state. The following subsections will present
some heuristic techniques to improve the perturbation efficiency by modifying
the transition matrix P .

4.2 Techniques to Improve Perturbation Efficiency
The equalized transition of Eq. (1) generally suffers a long hitting time. This

is because during the perturbation (i.e. randomly select a pair and modify its
partition position by one clock cycle), the equalized transition may 1) frequently
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select a correctly partitioned pair that should not be perturbed; 2) frequently
walk into an infeasible state caused by freedom inconsistency among related pairs.
Here, we present two techniques to improve the perturbation efficiency: 1) narrow
the selection of operations for next perturbation by using the schedule search
result in current SSS, which decreases the probability of perturbing correctly
partitioned pairs; 2) reduce the chance of entering infeasible states by keeping
the dependency consistent between related pairs.

Overlap partition essentially allocates the overlapped freedom to the involved
operations. Improper partition gives some operations too much freedom, while
overpruning others. In the max-flow network, like Fig. 5 (a), an overpruned op-
eration v does not have enough outgoing edges to the control step intervals of S,
which therefore cannot find a path to node R. We use the push-relabel algorithm
to find perfect matching (details can be found in Ref. 12)):

Algorithm: Push-relabel based max-flow

If any node’s height exceeds a threshold of 2U, where U is the number of nodes
in the flow network, perfect matching does not exist. Thus, by monitoring the
first operation v ∈ V whose height exceeds the threshold, we easily obtain an op-
eration whose freedom is quite possibly overpruned. With this information, the
SSS perturbation can be improved by expanding the freedom of the overpruned
operation by one control step rather than perturbing a randomly selected pair.
This heuristic technique greatly reduces the chance of perturbing a correctly par-
titioned pair and is more likely the direction toward SSSs that contain schedules,
avoiding the random walks in irrelevant directions.

The second technique tries to solve the freedom inconsistency encountered in
the equalized transition of Eq. (1): when an operation’s freedom is changed during

Fig. 9 Perturbation using max-flow feedback and operation dependency. (a) SSS before
perturbation. (b) SSS after perturbation.

the perturbation, the freedom of any other related operations, which can be
efficiently found by the upward and downward topological search on the DFG, is
updated accordingly. In this way, the chance of entering infeasible states of X is
avoided and the related pairs are virtually grouped into one pair.

Consider the DFG in Fig. 9 (a). Operation o1 and o2 (in grey) are additions.
Others are multiplications. Two adders and two multipliers are available. Obvi-
ously, no schedule exists under such overlap partition, as o15 ∼ o18 are congested
in control step 4. Assume o15 is the first operation whose height exceeds the
threshold (failure of finding a perfect matching). SSS can then be perturbed by
expanding the freedom of o15 (rather than a randomly selected operation). If
FR(o15) is expanded downward from [4, 4] to [4, 5], the freedom of sink will be
changed from [5, 5] to [6, 5], which is infeasible. Thus, o15 is expanded upward
from [4, 4] to [3, 4]. Meanwhile, the related ancestors {o1, o13, o14} found by
upward topological search are pushed upward as well. The rise of o1 further
enables o16 be expanded to [3, 4]. The new SSS (partition), shown in Fig. 9 (b),
apparently contains schedules. By utilizing the max-flow algorithm feedback and
keeping the dependency constraint between related pairs, a feasible SSS is reached
within one perturbation.

As mentioned previously, the heuristic overlap partition method 6) may erro-
neously partition some operation pairs. However, correcting these errors is not
easy. Thus, expanding the operation returned by the max-flow algorithm is a sim-
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ple, effective heuristic to correct partition errors. The corresponding probability
of expanding v ∈ V is shown in Eq. (4):

Algorithm 3 shows how to expand the freedom of a specified operation without
causing freedom inconsistency. Obviously, by using Eq. (4) and Algorithm 3,
the perturbation directions for a SSS that does not contain perfect matching
is reduced from 2N in the equalized transition of Eq. (1) to two: expand the
returned operation either upward or downward. In essence, Eq. (4) and Algorithm
3 reduce the N -D random walk to 1-D walk.

Algorithm 3: Expand the freedom of specified operation o

4.3 Guided SSS Perturbation Method
Equation (4) narrows the selection of operations for next perturbation by us-

ing the feedback of the max-flow algorithm. It virtually changes the transition
matrix P , as transition between some neighboring states becomes prohibited. It
should be emphasized that though Eq. (4) is an efficient heuristic, as proved by
experiment, it may potentially make GSSS disconnected.

Fig. 10 Improper modification of P makes GSSS disconnected. (a) Original GSSS . (b)
GSSS after modifying P .

Figure 10 shows an example of disconnected GSSS . The dotted edge in
Fig. 10 (b) represents reducing the transition probability between two neighboring
states to zero. Apparently, GSSS is divided into two connected components.

Disconnected GSSS greatly deteriorates the quality of SSS perturbation. No
matter how many times SSS is perturbed, the SSS containing the optimum sched-
ule cannot be reached if the random walk starts from a different component. To
solve this problem, we propose the guided SSS perturbation strategy (as shown in
Eq. (6)): if current SSS does not contain any perfect matching, Eq. (4) is selected
with high priority α (typically α = 90%) and random perturbation, as shown in
Eq. (5), is selected with low probability (1 - α). Apparently, the guided pertur-
bation strategy greatly reduces the possibility of making GSSS disconnected.

Finally, we give the complete description of the random walk based max-flow
scheduling in Algorithm 4.

During the exploration of the entire schedule space, a large number of SSSs may
be visited. Therefore, Algorithm 4 adopts simple operation expansion strategies
(e.g., Eqs. (5) and (6)) in order to reduce the perturbation complexity. Based
on the specific optimization objective, it is possible to devise more sophisticated
strategies and integrate them into the framework of Algorithm 4, however, at the
cost of increasing runtime.
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Algorithm 4: Random walk based max-flow scheduling

5. Experiment

All the experiments are carried out by a Core Duo CPU of 2.00 GHz (T7300).
The DFGs that are used in the experiments are extracted from the C programs
in the SPEC CPU2006 benchmark suite 16), generated by the TGFF tool 17), or
obtained from the Internet 18),19). Table 3 lists the details of the DFGs.

Table 4 shows the resource constraint for each DFG. ‘mult’ has a delay of 2
clock cycles. Other functional units have unit operation delay.

Table 3 DFGs used in experiment.

Table 4 Resource constraint of benchmark DFGs.

5.1 Experiment 1: Reduction of Schedule Latency
Experiment 1 compares the proposed method with the list scheduling and the

exact scheduling (using an ILP solver MOSEK 20)) on minimizing schedule la-
tency. The fundamental objective of resource-constrained scheduling is mini-
mizing schedule latency. Therefore, we set schedule latency as the optimization
objective of the ILP solver. Meanwhile, we use the length of the longest path
from operation to sink node in the DFG as the operation priority during list
scheduling. Such a priority function tends to generate schedules of low latency.
The lower bound estimation of schedule latency 3),4) is given as well. As Table 5
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Table 5 Reduction of schedule latency.

shows, the proposed method based on ‘guided perturbation’ finds schedules of
shorter latency than list scheduling in all DFGs. The reduction on latency ranges
from 1 ∼ 58 control steps. On the other hand, the exact method using ILP can-
not find schedules for DFGs that have more than 150 nodes within an hour. The
experiment proves the effectiveness of the proposed scheduling method.

We also tested the two SSS perturbation strategies proposed: the ‘1-D per-
turbation’ that only uses Eq. (4) and the ‘guided perturbation’ of Eq. (6) that
accepts random perturbation of Eq. (5) with low probability (10%). Experiment
on gromacs, rand1, and rand2 shows that the ‘guided perturbation’ is capable
of finding schedules shorter than the ‘1-D perturbation’. This proves the impor-
tance of Eq. (5) to keep GSSS connected. Therefore, in the following experiment,
‘guided perturbation’ is used as the default perturbation strategy with α set at
90%.

5.2 Experiment 2: Importance of Guided Perturbation
Experiment 2 is designed to show how the max-flow algorithm feedback re-

duces the hitting time. The ‘guided perturbation’ utilizes the feedback, while
the ‘equalized perturbation’ uses the random perturbation of Eq. (5). For every
DFG, the number of perturbations performed under each perturbing strategy
to find a schedule is listed respectively. If the schedule of specified latency (as
indicated in Table 5) cannot be found within 10000 perturbations, it is marked
with ‘F’. As Table 6 shows, all DFGs require performing perturbations to get
a schedule shorter than the list scheduling. This justifies our effort to integrate
random walk into the max-flow scheduling. Moreover, the ‘Equalized perturba-

Table 6 Hitting time with/without using Max-flow feedback.

Table 7 The number of states in state space.

tion’ needs much more perturbations than the ‘Guided perturbation’ to achieve
the same schedule latency. This result confirms our claim that feedback from the
max-flow algorithm is essential for guiding the walk toward promising directions.

Table 7 shows the number of overlapped pairs (pair no) and the averaged
overlap length (o length) in each DFG. Thus, the number of states in the state
space can be roughly estimated by (o length) ^ (pair no). As is shown, the state
space (which includes infeasible states) is vast. It verified the importance of the
2nd technique proposed in Section 4.2. By “keeping the dependency consistent
between related pairs”, the chance of entering infeasible states is eliminated,
which greatly improves the perturbation efficiency. Table 7 also justified the
1st technique of Section 4.2 - the ‘guided perturbation’. Comparing the huge
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state number of Table 7 to the perturbation number of Table 6 (no more than
10000), the ‘guided perturbation’ strategy is really efficient to lead the random
walk through the vast state space.

5.3 Experiment 3: Comparison of Runtime
Table 8 compares the runtime of the enhanced max-flow scheduling with the

list scheduling and the exact scheduling. As expected, runtime of the ILP solver
increases sharply as the DFG grows. For DFGs of more than 150 nodes, none
can be scheduled within 1 hour by the exact method due to the equation ex-
plosion. This explains why exact method is seldom used in practice. For the
proposed method, the average runtime is 133 seconds, which is slower than the
list scheduling but much faster than the exact method. Considering the reduc-
tion on schedule latency (1 ∼ 58 cycles shorter) and the time used on solution
space exploration, the runtime is reasonable. There are several ways to shorten
the runtime. Improving the lower bound estimation of the schedule latency is
one approach. Decreasing the max perturbation number is another, however,
at the cost of possibly deteriorating the schedule quality. In the extreme case
when perturbation is not performed, the random walk based scheduling method,
as Algorithm 4 shows, is reduced to list scheduling. Therefore, by controlling
the perturbation number, tradeoff between schedule quality and runtime can be
conveniently made, as the next experiment will show.

Table 8 Comparison of runtime (second).

5.4 Experiment 4: Tradeoff between Schedule Latency and Runtime
Experiment 4 is designed to reveal the relationship between runtime/schedule

quality (latency in this experiment) and the perturbation numbers. Figure 11
show the latency of the optimal schedules found under different perturbation
numbers. Meanwhile, Fig. 12 gives the corresponding runtime. Experiment on

Fig. 11 Schedule latency drops as perturbation number increases. (upper) DFG gromacs.
(lower) DFG lbm.

Fig. 12 Relation between runtime and perturbation number. (upper) DFG gromacs.
(lower) DFG lbm.
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DFG lbm shows that as the allowed perturbation number increases gradually from
0 to 3000, the schedule latency drops steadily and the runtime becomes longer.
Similar pattern can be observed on DFG gromacs. This result confirms our
claim that more perturbations find better schedules but require longer runtime.
Therefore, users can conveniently control the schedule quality and runtime by
adjusting the perturbation number.

6. Conclusion

In high-level synthesis, searching schedules in the vast solution space is an
important but intractable task. We proposed an efficient method to explore the
solution space by using the random walk technique. Our main contributions are
the formulation of SSS perturbation as random walk on graph and an efficient SSS
perturbation heuristic that utilizes the search result of current SSS. Experimental
results show that the proposed method effectively enhances the original max-flow
algorithm. Meanwhile, users are given greater control over the schedule quality
and runtime. Compared with existing methods, our method generally finds better
schedules in reasonable runtime.
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