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Computing the Cost of Typechecking

of Composition of Macro Tree Transducers
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Macro tree transducers are a classical formal model for structural-recursive
tree transformation with accumulative parameters. They have recently been ap-
plied to model XML transformations and queries. Typechecking a tree trans-
formation means checking whether all valid input trees are transformed into
valid output trees, for the given regular tree languages of input and output
trees. Typechecking macro tree transducers is generally based on inverse type
inference, because of the advantageous property that inverse transformations
effectively preserve regular tree languages. It is known that the time complex-
ity of typechecking an n-fold composition of macro tree transducers is non-
elementary. The cost of typechecking can be reduced if transducers in the
composition have special properties, such as being deterministic or total, or
having no accumulative parameters. In this paper, the impact of such proper-
ties on the cost of typechecking is investigated. Reductions in cost are achieved
by applying composition and decomposition constructions to tree transducers.
Even though these constructions are well-known, they have not yet been ana-
lyzed with respect to the precise sizes of the transducers involved. The results
can directly be applied to typechecking XML transformations, because type
formalisms for XML are captured by regular tree languages.

1. Introduction

Top-down tree transducers are a classical formal model of structural recursive
tree transformation invented by Rounds 18) and Thatcher 20). Originally, they
were introduced to model syntax-directed compilation. Engelfriet and Vogler5)

extended them with accumulative parameters by means of the concept of macro
grammars 8). Macro tree transducers have recently attracted considerable atten-
tion as a fundamental model of XML transformations. Most models of XML
transformations are realized by sequential composition of macro tree transduc-
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ers 4),14),16).
Typechecking macro tree transducers has become an increasingly hot topic

because it can directly be applied to typechecking XML transformations. Type-
checking tree transducers means checking whether all valid input trees are trans-
formed into valid output trees with respect to their types, which are given by the
regular tree languages of input and output trees. Let Lin and Lout be input and
output regular tree languages, respectively, and T a tree transformation. Type-
checking T with respect to Lin and Lout ensures that T (Lin) ⊆ Lout . It is well
known that T (Lin) is generally not captured by regular tree languages; hence,
we cannot exactly infer the output type 19). Therefore, we employ inverse type
inference based on the facts that the statement for typechecking is equivalent
to T−1(Lout

c) ∩ Lin = ∅ with the complement language Lout
c of Lout , and that

the inverse transformation of macro tree transducers effectively preserves regular
tree languages. Since regular tree languages are closed under complementation
and intersection, and the emptiness of regular tree languages is decidable, the
typechecking problem is decidable. The bottleneck in this method is to compute
T−1(L) for a given regular tree language L. The size of a tree automaton for the
inverse image is exponentially large, which would affect the time for computing
the intersection and deciding emptiness. In particular, sequential composition
of tree transformations will be harmful because we need to construct such expo-
nentially large tree automata for each transformation. It is well known that the
time complexity of typechecking an n-fold composition of macro tree transducers
is non-elementary 4),16) in the size of given tree automata.

The cost of inverse typechecking is characterized by the size of the constructed
tree automaton for the inverse image. The cost of typechecking can be reduced
according to the special properties of macro tree transducers in composition,
such as being top-down tree transducers, deterministic or total, or taking OI-
(call-by-name) or IO- (call-by-value) semantics. In this paper, we first give a
general algorithm for the inverse type inference of a single macro tree transducer
(in Section 3) to compute the upper bound for complexity and then investigate
the impact of such properties of mtts on the cost of typechecking in Section 4.
We have to be careful to look for pretexts that are often caused by composition
laws on tree transducers. For example, we have two facts:
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54 Computing the Cost of Typechecking of Composition of Macro Tree Transducers

• We can always effectively construct a deterministic macro tree transducer
equivalent to the composition of a deterministic macro tree transducer and
a total deterministic top-down tree transducer.

• We can typecheck all deterministic mtts in exponential time to the size of
output tree automaton.

These facts do not imply that the composition law that derives a single tree
transducer from two tree transducers reduces the cost of typechecking. The
constructed macro tree transducer is exponentially large. Therefore, the cost
of typechecking gets much worse before the composition law is applied. In Sec-
tion 4, we explore what kind of composition can improve the cost of typechecking
by precisely computing the size of tree automaton. We also demonstrate that
the top-yield decomposition 5) of macro tree transducers can reduce the cost of
typechecking. Combining composition and decomposition leads to reducing the
cost of typechecking for the composition of macro tree transducers.

2. Preliminaries

We denote the set of non-negative integers including 0 by N, and sets {1, . . . , n}
by [n] for n ∈ N, in particular, [0] = ∅. The power set of a set S is denoted by
2S . The Cartesian product of two sets S and T , denoted by S × T , is given by a
set {〈s, t〉 | s ∈ S, t ∈ T}. The set of functions from set S to set T is denoted by
S → T .

Let Σ be a ranked alphabet, i.e., a finite set Σ together with a mapping that
associates a natural number, the rank, to each σ ∈ Σ. We write Σ(n) to denote
the set of symbols in Σ that have rank n, and write σ(n) to mean that σ’s
rank equals n. We denote the rank of a symbol σ by rank(σ). For ranked
alphabet Σ, the maximum rank of symbols in Σ is denoted by maxr(Σ), i.e.,
maxr(Σ) = max{rank(σ) | σ ∈ Σ}. The set of all ranked trees over Σ is denoted
by TΣ. We fix the sets of input variables X = {x1, x2, . . . } and context parameters
Y = {y1, y2, . . . }, and assume that any ranked alphabet Σ is always disjoint with
X and Y . In trees, the symbols of X and Y always appear at the leaves, i.e., they
are all assumed to have rank 0. The set of ranked trees over Σ with a set V of
variables is denoted by TΣ(V )(= TΣ∪V ). We denote by t[v := s], the substitution
of all occurrences of variable v in t by s.

A tree transformation from TΣ to TΔ is represented by a function τ : TΣ → 2TΔ .
Function τ is naturally extended to τ : 2TΣ → 2TΔ as τ(S) = ∪t∈Sτ(t). We define
the inverse function τ−1 : 2TΔ → 2TΣ by τ−1(S) = {t ∈ TΣ | τ(t) ∩ S 
= ∅}. We
denote the composition of tree transformations f and g by f � g, i.e., (f � g)(t) =
g(f(t)) for every tree t. For two classes F and G of tree transformations, F � G

denotes the class of their composition, i.e., F � G = {f � g | f ∈ F, g ∈ G}.
A deterministic bottom-up tree automaton (dbta) is specified as A =

(B,Σ, β,Bf ), where B is a finite set of states, Σ is a ranked alphabet of in-
put symbols, β : Σ(n) ×Bn → B, n ≥ 0 is the transition function, and Bf ⊂ B is
the set of final states. We extend transition function β to trees in TΣ by recur-
sively defining β(σ(t1, . . . , tk)) = β(σ, β(t1), . . . , β(tk)) for any tree σ(t1, . . . , tk)
with σ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ TΣ. The language L(A) recognized by A is
then defined as {t ∈ TΣ | β(t) ∈ Bf}. We assume that readers are familiar with
the basic notions of tree automata 2).

3. Typechecking Macro Tree Transducers

This section introduces macro tree transducers and explains their classification
categorized by their special properties through examples. We also review results
on the cost of typechecking macro tree transducers.

3.1 Macro Tree Transducers
Macro tree transducers 5) are a formal model of tree transformation with con-

text parameters. They can be seen as functional programs based on structural
recursion over input trees with accumulative parameters. A function can store
arbitrary output trees in accumulative parameters, which may be used as part of
the final output trees. For example, a macro tree transducer Mexp has the rules

main(x) → exp(x,Zero),
exp(Succ(x), y) → exp(x, exp(x, y)), and
exp(Zero, y) → Succ(y),

which give a definition of the exponentiation function with base 2, i.e.,
main(Succn(Zero)) = Succ2n

(Zero). These rules define a transformation from
TΣ to TΣ with Σ = {Succ(1),Zero(0)}. Function symbols are called states in the
terminology of tree transducers. An expression on the right-hand side of the rule
of main(x) is an axiom tree, which represents an entry point in the functional
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55 Computing the Cost of Typechecking of Composition of Macro Tree Transducers

program. The accumulative parameter y is called a context parameter . A macro
tree transducer is called a top-down tree transducer 18),20) if there are no context
parameters.

There may exist more than one applicable rule, i.e., the tree transformation is
nondeterministic. For example, the rules

main(x) → ndet(x),
ndet(Succ(x)) → A(ndet(x)),
ndet(Succ(x)) → B(ndet(x)), and
ndet(Zero) → E

specify a transformation from arbitrary natural numbers (represented by trees)
to monadic trees of the same length whose nodes are either A or B. For example,
there are four possible output trees for main(Succ(Succ(Zero))), i.e., A(A(E )),
A(B(E )), B(A(E )), and B(B(E )).

In contrast, no applicable rules may exist i.e., the tree transformation is partial .
For example, the rules

main(x) → half (x),
half (Zero) → Zero,
half (Succ(x)) → Succ(aux (x)), and
aux (Succ(x)) → half (x)

specify a partial function that outputs half of a number only if the input is even,
i.e., for n ≥ 0, main(Succ2n(Zero)) is Succn(Zero) and main(Succ2n+1(Zero)) is
undefined.

Definition 3.1 A macro tree transducer (mtt) is a tuple (Q,Σ,Δ, E,R),
where
• Q is a finite set of ranked states whose rank is more than 0,
• Σ and Δ are ranked alphabets with Q ∩ (Σ ∪ Δ) = ∅, called the input and

output alphabets, respectively,
• E ⊂ TQ∪Δ({x}) is a set of axiom trees in which the first child of q ∈ Q is x;

for all e ∈ E, we write main(x) → e for readability,
• R is a set of rules such that R = ∪q∈Q,σ∈ΣRq,σ with finite sets Rq,σ of

(q, σ)-rules of the form q(σ(x1, . . . , xn), y1, . . . , ym) → e with q ∈ Q(m+1),
σ ∈ Σ(n), input variables xi(i ∈ [n]), and context parameters yj(j ∈ [m]); the
right hand side expression e ranges over the following syntax:

e ::= q′(xi, e1, . . . , em′) | yj | δ(e1, . . . , en′)
with q′ ∈ Q(m′+1), δ ∈ Δ(n′), i ∈ [n], and j ∈ [m]. We write rhsM (q, σ) for
the set of right-hand side expressions of all (q, σ)-rules in M .

An mtt M is a top-down tree transducer (tdtt) if Q = Q(1) is a ranked alphabet
of states, i.e., there are no context parameters. An mtt M is deterministic if E

is a singleton and there exists at most one (q, σ)-rule for every q ∈ Q and σ ∈ Σ.
Otherwise, M is called nondeterministic. An mtt M is total if there exists at
least one (q, σ)-rule for every q ∈ Q and σ ∈ Σ. Otherwise, M is called partial .
An mtt M is linear if the right-hand side of every rule is linear in the input
variables X. An mtt M is (input) non-deleting if the right-hand side of every
rule contains all input variables in X that occur on the left-hand side. �

Let us consider two different evaluation orders for mtts, outside-in (OI) and
inside-out (IO). Transformation in OI-semantics corresponds to call-by-name
evaluation, while transformation in IO-semantics corresponds to call-by-value
evaluation. OI- and IO-semantics generally give different results (they coincide
only if the mtt is total and deterministic as shown by Theorem 4.1 of Ref. 5)).
For example, consider a nondeterministic mtt whose rules are

main(x) → dup(x,ndet(x)),
ndet(Zero) → A,
ndet(Zero) → B, and
dup(Zero, y) → C (y, y).

The computation of main(Zero) = dup(Zero,ndet(Zero)) depends on the evalu-
ation order. In OI-semantics, dup(. . . ) is evaluated first. We obtain four results,
C (A,A), C (A,B), C (B,A), and C (B,B), through C (ndet(Zero),ndet(Zero)). In
IO-semantics, ndet(. . . ) is evaluated first, which gives two output trees C (A,A)
and C (B,B) through dup(Zero,A) and dup(Zero,B), respectively.

The next example demonstrates that differences between OI and IO can be
found even for deterministic mtts. Consider a deterministic mtt whose rules are

main(x) → const(x, part(x)),
const(Zero, y) → A, and
part(Succ(x)) → B.

For main(Zero) = const(Zero, part(Zero)), OI-semantics gives output A, while
IO-semantics gives no result.
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In the following formal semantics of mtts, we use power sets of trees to represent
nondeterminism. In IO-semantics, the domains of context parameters do not have
to be power sets so that two occurrences of the same context parameter should
be synchronized.

Definition 3.2 Let M = (Q,Σ,Δ, E,R) be an mtt. The OI-semantics of a
state q(m+1) ∈ Q is a function [[q]]oi : TΣ × (2TΔ)m → 2TΔ defined by

[[q]]oi(σ(t1, . . . , tn), S1, . . . , Sm) = ∪e∈rhsM (q,σ)〈|e|〉ρ
for σ(n) ∈ Σ, where 〈| |〉ρ denotes the evaluation of a right-hand side expression
with respect to mapping ρ = [xi 
→ ti]i∈[n] ∪ [yj 
→ Sj ]j∈[m], which is defined by

〈|q′(xi, e1, . . . , em′)|〉ρ = [[q′]]oi(ρ(xi), 〈|e1|〉ρ, . . . , 〈|em′ |〉ρ),
〈|yj |〉ρ = ρ(yj), and
〈|δ(e1, . . . , en′)|〉ρ = {δ(u1, . . . , un′) | ∀i ∈ [n′] : ui ∈ 〈|ei|〉ρ}.

The OI-transformation induced by M is the function τM : TΣ → 2TΔ defined by
τM (t) = ∪e∈E〈|e|〉[x�→t].
In contrast, the IO-semantics of a state q(m+1) ∈ Q is a function [[q]]io : TΣ ×
(TΔ)m → 2TΔ defined by

[[q]]io(σ(t1, . . . , tn), s1, . . . , sm) = ∪e∈rhsM (q,σ)〈|e|〉ρ
for σ(n) ∈ Σ, where 〈| |〉ρ denotes the evaluation of a right-hand side expression
with respect to mapping ρ = [xi 
→ ti]i∈[n] ∪ [yj 
→ sj ]j∈[m], that is defined by

〈|q′(xi, e1, . . . , em′)|〉ρ = ∪k∈[m′],uk∈〈|ek|〉ρ
[[q′]]io(ρ(xi), u1, . . . , um′),

〈|yj |〉ρ = {ρ(yj)}, and
〈|δ(e1, . . . , en′)|〉ρ = {δ(u1, . . . , un′) | ∀i ∈ [n′] : ui ∈ 〈|ei|〉ρ, }.

The IO-transformation induced by M is the function τM : TΣ → 2TΔ defined by
τM (t) = ∪e∈E〈|e|〉[x�→t]. �

The classes of all transformations realized by mtts using OI- and IO-
transformations are denoted by macoi and macio, respectively. The class of
all transformations realized by tdtts is simply denoted by top because OI- and
IO-semantics obviously coincide for tdtts. We use D, t , Dt , and l as prefixes of
classes for deterministic, total, total deterministic, and linear tree transducers,
respectively. We use nondel as a postfix of classes for non-deleting tree transduc-
ers. For instance, Dmacoi, tmacio, and Dtltopnondel correspond to the classes
of partial deterministic mtts with OI-transformation, total nondeterministic mtts
with IO-transformation, and total deterministic linear non-deleting tdtts, respec-

tively. Since Dtmacoi = Dtmacio holds 5), we simply denote the class by Dtmac.
3.2 Inverse Typechecking of Mtts
Typechecking an mtt M means verifying that τM (Lin) ⊆ Lout for two given

regular tree languages Lin and Lout of input and output trees, respectively. We
usually verify the equivalent statement τ−1

M (Lout
c) ∩ Lin = ∅ where Lc is the

complement of L since τM (Lin) generally exceeds regular tree languages (even
context-free tree languages) while τ−1

M (Lout
c) is regular 5). This is decidable be-

cause regular tree languages are closed under complementation and intersection,
and their emptiness is decidable 2). If two languages Lin and Lout are given as
dbtas, the complexity of typechecking mainly depends on the complexity of com-
puting τ−1

M (L) for a regular tree language L; the latter is often called inverse type
inference.

First, let us consider the OI-transformation of an mtt M = (Q,Σ,Δ, E,R).
Let Aoutc = (B,Δ, β,Bf ) be an output dbta for the complement of an output
tree language. We construct a dbta A which exactly accepts all input trees t such
that τM (t)∩L(Aoutc) 
= ∅, following the construction by Perst and Seidl 17). The
main idea is to assign the possible transition of states of Aoutc to every state in
A according to the rules of M . Formally, dbta A is given by (D,Σ, κ,Df ), where
• Set D of states consists of all functions of type Q(m+1) → (2B)m → 2B ; set

D is finite because Q and B are finite.
• Transition κ : Σ(n)×Dn → D of states is defined as κ(σ, d1, . . . , dn) = d with

d(q(m+1))(B1, . . . , Bm) = ∪e∈rhsM (q,σ)〈|e|〉ρ,

where 〈| |〉ρ with respect to mapping ρ = [xi 
→ di]i∈[n] ∪ [yj 
→ Bj ]j∈[m] is
given by

〈|q′(xi, e1, . . . , em′)|〉ρ = ρ(xi)(q′)(〈|e1|〉ρ, . . . , 〈|em′ |〉ρ),
〈|yj |〉ρ = ρ(yj), and
〈|δ(e1, . . . , en′)|〉ρ = {β(δ, b1, . . . , bn′) | ∀i ∈ [n′] : bi ∈ 〈|ei|〉ρ}.

• Set Df of final states is given as {d | 〈|e|〉[x�→d] ∩ Bf 
= ∅, e ∈ E}.
It can be shown in a similar way to that by Perst and Seidl 17) that κ(t) ∈ Df

if and only if β(τM (t)) ∈ Bf for t ∈ TΣ. This implies that τM (L(A)) = L(Aoutc).
The construction works for the inverse type inference of not only nondetermin-

istic mtts with OI-transformation, i.e., macoi, but also the other classes of mtts
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D = Q → (2B)m → 2B for macoi

D = Q → Bm → 2B for macio

D = Q → (B � {⊥})m → (B � {⊥}) for Dmacoi

D = Q → ((Bm → B) � {⊥}) for Dmacio

D = Q → Bm → B for Dtmac

D = Q → 2B for top

D = Q → (B � {⊥}) for Dtop

D = Q → B for Dttop

Fig. 1 Domain of states of inferred input dbtas.

by replacing set D of states as shown in Fig. 1, where we fix the ranks of states of
mtts with the maximum rank m + 1 = maxr(Q), i.e., D = Q → (2B)m → B for
macoi, to estimate the upper bound of the cost of type inference. The designated
symbol ⊥ stands for undefined outputs for partial functions. In order to apply
the construction, set B may be used as a set of singleton sets of elements in B,
i.e., is {{b} | b ∈ B}.

We give a rough explanation on the domain of states of inferred input dbtas in
Fig. 1. For nondeterministic mtts with IO-transformation (in macio), context pa-
rameters should be bound to the same output tree as indicated by IO-semantics
in Definition 3.2. Thus, we need singleton sets of output states for context param-
eters in D. For deterministic (partial) mtts with OI-transformation (in Dmacoi),
we do not consider power sets for outputs since all rules are deterministic. In-
stead, we have to consider the case where output is undefined because transfor-
mation is partial. In OI-semantics, context parameters can be undefined even if
the output is defined. Thus, we need to consider ⊥ for not only outputs but also
all context parameters. For deterministic (partial) mtts with IO-transformation
(in Dmacio), we do not have to consider each case where some context param-
eters are undefined. In IO-semantics, output is always undefined if one of the
context parameters is undefined. Thus, all cases where output is undefined are
treated as ⊥ as well as the case with the absence of applicable rules. For total
deterministic mtts (in Dtmac), we simply consider the case where all outputs
and context parameters are singleton sets. For tdtts, the domain of states of
inferred input dbtas are obtained as the special case of m = 0 in corresponding

2pN ·2mN

for macoi[p,m]
2pNm+1

for macio[p,m]
(N + 1)p(N+1)m

for Dmacoi[p,m]
(NNm

+ 1)p for Dmacio[p,m]
NpNm

for Dtmac[p,m]
2pN for top[p]
(N + 1)p for Dtop[p]
Np for Dttop[p]

Fig. 2 Cost of inverse type inference of single mtt.

mtts. We consider either macoi or macio for top, either Dmacoi or Dmacio

for Dtop, and Dtmac for Dttop, where we obtain the same domain no matter
which transformation is used, IO or OI.

3.3 Cost of Typechecking Mtts
We count the size of an inferred input dbta against a given output dbta to

compute the cost of typechecking since size is the main factor for checking the
emptiness of the intersection of the inferred dbta and the given input dbta. Usu-
ally, the size of a tree automaton is defined as its number of transitions. It suffices
to count the number of states for dbta, which is cardinality of D in Fig. 1, be-
cause the constructed tree automaton is deterministic, i.e., all transitions are
deterministic.

Let N be the number of states of a given output dbta, p the number of states
of the given mtt, and m + 1 their maximum rank. Figure 2 shows the cost
of inverse type inference, where we use postfix [p,m] to denote the class of tree
transducers with the number p of states and the maximum number m of context
parameters. The second number will be omitted for classes of tdtts because it
is always equal to 0, e.g., Dttop[p]. These costs are given as the cardinality of
sets D in Fig. 1. Recall that linearity, the non-deleting property, and totality
(with nondeterministic) do not affect the construction of an input dbta of mtts.
We can ignore these restrictions under the context of the type inference of mtts.
Therefore, the cost of type inference for ltopnondel and tmacoi is the same as
that for top and macoi, respectively, as long as we employ the construction of
the input dbta shown in Section 3.2. We do not discuss other constructions in
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this paper even though they may reduce the cost.
Inverse type inference for a trivial automaton that accepts all trees in TΔ com-

putes the domain of the transducer. Thus, an emptiness test of its domain
automaton solves emptiness of the transducer. The costs of the complexity of
the emptiness test are computed by applying N = 1 to the formulae in Fig. 2.

4. Cost of Typechecking Composition of Mtts

It is well-known that mtts have at most an exponential height increase (The-
orem 3.2 5)). This implies that the composition of two mtts is strictly more ex-
pressive than an mtt. For example, Mexp � Mexp has a double exponential height
increase, where Mexp is the mtt presented in Section 3.1. If one or both of the
mtts in the composition are restricted to particular classes, then the composition
can be expressed by a single mtt. In this section, we review the results of the
composition of two mtts and compare the cost of type inference between equiv-
alent classes of transformations. Composition improves the cost in some cases,
while decomposition does in others.

4.1 On Composition of Two Tdtts
Nondeterministic tdtts are not closed under composition 3),20), while total de-

terministic tdtts are18),20). Baker 1) investigated what kind of restrictions are
required of two tdtts so that their composition can be realized by a single tdtt.
Figure 3 shows her results on the composition of two tdtts except for composi-
tions (6) and (7), which are immediately derived from (5). All constructions of a
single tdtt from two tdtts are done by the coupling states of two tdtts (“product
construction”). Therefore, the number of states of the synthesized tdtt is ob-
tained by multiplying the numbers of states of two tdtts. Baker presented more
results on the composition of tdtts that were obtained by combining results where
the composition of linear tree transducers was linear or where the composition
of one state tree transducers was one state.

Let us compare the cost of type inference for transformations on both sides of
each composition shown in Fig. 3. We compute the cost of inverse type inference
for a given number N of states of the output dbta. Consider composition (1).
The input dbta of the second tdtt on the left-hand side, which can also be the
output dbta for the first tdtt, has Np2 -many states because the second tdtt is

Dttop[p1] � Dttop[p2] ⊆ Dttop[p1p2] (1)
Dttop[p1] � top[p2] ⊆ top[p1p2] (2)
ttop[p1] � ltop[p2] ⊆ top[p1p2] (3)

Dtop[p1] � topnondel[p2] ⊆ top[p1p2] (4)
top[p1] � ltopnondel[p2] ⊆ top[p1p2] (5)

top[p1] � Dltopnondel[p2] ⊂ top[p1p2] (6)
top[p1] � Dtltopnondel[p2] ⊂ top[p1p2] (7)

Fig. 3 Composition of two tdtts.

total deterministic. Thus, the number of states of the inferred input dbta is
(Np2)p1 = Np1p2 . This coincides with the number of states of the input dbta
inferred for the right-hand side transformation of the composition. Therefore,
composition (1) does not change the cost of type inference by composition. We
find that composition (2) similarly also does not change the cost of type inference.

Consider composition (3). The number of states of the input dbta is 2p1N ′

on the left-hand side, where N ′ = 2p2N is the number of states of the input
dbta for the second tdtt. Hence, the number is 2p1·2p2N

. On the other hand,
the cost of type inference of transformation in top[p1p2] is 2p1p2N . Note that
p1, p2, N > 0. This composition decreases the cost with a reduction in its com-
plexity. Compositions (5), (6), and (7) also reduce the cost of type inference in
a similar way.

For composition (4), the costs of type inference for the left- and right-hand
sides are (2p2N + 1)p1 and 2p1p2N , respectively. Hence, this composition reduces
the cost.

In summary, compositions (3), (4), (5), (6), and (7) reduce the cost of type
inference. They even reduce the exponential height of the cost except for com-
position (4).

4.2 On Composition of Mtt and Tdtt
Engelfriet and Vogler 5) investigated many combinations of two classes of mtts

whose composition belonged to a single class of mtts, in particular where either
one of them was a tdtt. To precisely compute the cost of type inference, we
have to focus on the proofs of their results because we cannot apply the same
construction, which is different from Baker’s results on the composition of two
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tdtts.
According to Corollary 4.10 and Theorem 4.12 in Ref. 5), the composition of

a total deterministic mtt and a total deterministic tdtt (in any order) can be
realized by a single (total deterministic) mtt. We have

Dtmac[p1,m1] � Dttop[p2] ⊆ Dtmac[p1p2,m1p2] and (8)
Dttop[p1] � Dtmac[p2,m2] ⊆ Dtmac[p1p2,m2]. (9)

For composition (8), the cost of type inference on the left-hand side is N ′p1N ′m1

with N ′ = Np2 ; hence, Np1p2Nm1p2 . Therefore, this composition does not change
the cost of type inference. We easily see that composition (9) also does not change
the cost because we obtain Np1p2Nm2 for both sides.

Engelfriet and Vogler presented three cases where the first mtt was total de-
terministic other than composition (8). Since we can use the same construction
for these three, we have

Dtmac[p1,m1] � Dtop[p2] ⊆ Dmacoi[p1p2,m1p2], (10)
Dtmac[p1,m1] � ttop[p2] ⊆ tmacoi[p1p2,m1p2], and (11)
Dtmac[p1,m1] � top[p2] ⊆ macoi[p1p2,m1p2]. (12)

It is easy to check that these compositions do not change the cost of type infer-
ence. The costs are (N +1)p1p2(N+1)m1p2 for composition (10) and 2p1p2N ·2m1p2N

for compositions (11) and (12).
For the case where the first mtt of the composition is partial deterministic in

either Dmacio or Dtop, Engelfriet and Vogler presented several results. Consider
one of these, Dtop � Dtmac = Dmacio. It is not simple to compute the cost
for this composition because we cannot directly use the same construction for
mtts as in composition (9). Their proof of this composition was based on the
decomposition Dtop[p] ⊆ dtfta[2p] � Dttop[p] of Theorem 3.1 in Ref. 6), where
dtfta[p′] denotes the class of deterministic top-down tree automata with p′-
many states. A tree automaton is used to make the partial tdtt total in order to
apply the same construction of mtts as in composition (9). Therefore,

Dtop[p1] � Dtmac[p2,m2]
⊆ dtfta[2p1 ] � Dttop[p1] � Dtmac[p2,m2]
⊆ dtfta[2p1 ] � Dtmac[p1p2,m2]
⊆ Dmacio[p1p2 + 2p1 + r,max{m2, s + 1}] (13)

with the number r of rules in Dtmac[p1p2,m2] in the second last line and the

cardinality s of the input alphabet in the next line, where we apply Theorem
5.21 from Ref. 5) in the last step, which demonstrates the closure property of
mtts on regular look-ahead (see Theorem 5.19 in Ref. 5)). It is obvious that
the composition worsens the cost of type inference. Similarly, we find that all
the following compositions, in which the first mtt is in either Dmacio or Dtop,
increase the cost of type inference because they always require their domain to
be extracted using dtfta (with an exponential number of states) to obtain a
single mtt:

Dmacio � Dttop = Dmacio, (14)
Dmacio � Dtop = Dmacoi, (15)

Dmacio � top = macoi, (16)
Dtop � Dmacio = Dmacio, (17)
Dtop � Dmacoi = Dmacoi, and (18)

Dtop � macoi = macoi. (19)
For the case where the first mtt is in Dmacoi, Engelfriet and Vogler presented

two results, Dmacoi � Dtop = Dmacoi and Dmacoi � top = macoi. We have
to extract the domain of Dmacoi to make it total in a similar way to Dtop.
The domain is realized by a nondeterministic finite tree automaton whose class
is denoted by fta[p] with the number p of its states. According to the re-
sults by Theorems 5.22 and 6.18 of Ref. 5) and Theorem 3.1 of Ref. 6). we have
Dmacoi[p,m] ⊆ fta[2p·2m

] � Dtmac[p,m] (the number of states of fta can also
be derived from the cost for Dmacoi in Fig. 2 by fixing N = 1 to obtain a domain
automaton).

Therefore,

Dmacoi[p1,m1] � Dtop[p2]
⊆ fta[2p1·2m1 ] � Dtmac[p1,m1] � Dtop[p2]
⊆ Dtmac[p1 + 2p1·2m1

,max{m1, 2}] � Dtop[p2]
⊆ Dmacoi[p2p1 + p2 · 2p1·2m1

,max{m1p2, 2p2}],

where we apply Theorem 4.21 of Ref. 5) in the second last step.
In summary, the composition laws (8), (9), (10), (11), and (12) do not change

the cost of type inference, while the other laws for mtts and tdtts increase the
cost.
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4.3 On Composition of Two Mtts
Voigtländer and Kühnemann 22) presented results on the composition of two

restricted mtts based on the composition of attributed tree transducers 11)–13).
According to Construction 5.1 in their paper, we have

Dtmacnc[p1,m1] � Dtmacwsu[p2,m2]
= Dtmac[p1p2(m1m2 + 1), p2(m1 + m2)],

where nc and wsu correspond to restrictions of mtts, non-copying and weakly
single-use, respectively. The non-copying mtt does not have more than one oc-
currence of the same context parameter on the right-hand side of the rules. The
weakly single-use mtt M = (Q,Σ,Δ, E,R) does not have more than one occur-
rence of q′(xi, . . . ) with the same state q′ ∈ Q and the same input variable xi on
all right-hand sides of (q, σ)-rules with q ∈ Q for every σ ∈ Σ.

The cost of type inference for the left-hand side is Np1p2Nm2+m1p2Nm2
using the

cost in Fig. 2 as two mtts in Dtmac. On the other hand, the cost for the right-
hand side is Np1p2(m1m2+1)Np2(m1+m2)

. It is easy to see that this composition
may reduce complexity with respect to N .

4.4 Decomposition of Mtts
It is known that a single mtt is decomposed into a tdtt and yield mapping 5),10).

We call this top-yield decomposition. Yield mapping, a total deterministic lin-
ear mtt with a single state, transforms a tree, in which the operation of tree
substitution is expressed symbolically, into the tree it denotes. We extend the
result so that the tdtt will be non-deleting because the cost of type inference may
be improved by using compositions (4), (5), (6), and (7) when the tdtt follows
another tdtt.

Theorem 4.1 For a total deterministic mtt M , there exist a total determin-
istic non-deleting tdtt M1 and a total deterministic linear mtt M2 with a single
state such that τM = τM1 � τM2 .

Proof. Let M = (Q,Σ,Δ, E,R) be a total deterministic mtt. We construct a
total deterministic non-deleting tdtt M1 = (P,Σ,Γ, E′, R′) where
• P = {p(1)

q | q ∈ Q},
• Γ = {γ(0)

δ | δ ∈ Δ} ∪ {c(k)
k | k ∈ [maxr(Q ∪ Σ) + 1]} ∪ {πj | j ∈ [maxr(Q) −

1]} ∪ {del (2)}, and
• E′ = {〈|e|〉 | e ∈ E} and R′ = {q(σ(x1, . . . , xn)) → φZ,q(〈|e|〉) | e ∈

rhsM (q, σ).Z is the set of deleted input variables in e.} with auxiliary func-
tions 〈| |〉 and φZ,q defined by

φ{z1,...,zk},q(e) = del(pq(z1), . . . , del(pq(zk), e) · · · ),
〈|q′(xi, e1, . . . , em′)|〉 = cm′+1(pq′(xi), 〈|e1|〉, . . . , 〈|em′ |〉),
〈|yj |〉 = πj , and
〈|δ(e1, . . . , en)|〉 = cn+1(γδ, 〈|e1|〉, . . . , 〈|en|〉).

Next, we construct a total deterministic mtt M2 = ({q(m+1)},Γ,Δ, {q(x, δ′, . . . ,

δ′)}, R′′) where m = maxr(Q ∪ Δ) and R′′ consists of the following rules using
some δ′ ∈ Δ(0) as a dummy symbol.
• For δ ∈ Δ(n), R′′ contains in(γδ) → δ′ and q(γδ, y1, . . . , ym) → δ(y1, . . . , yn);

note that n = rank(δ) ≤ m,
• For ck with k ∈ [m + 1], R′′ contains

in(ck(x1, . . . , xk)) → q(x1, in(x2), . . . , in(xk), δ′, . . . , δ′)
and

q(ck(x1, . . . , xk), y1, . . . , ym) →
q(x1, q(x2, y1, . . . , ym), . . . , q(xk, y1, . . . , ym), δ′, . . . , δ′).

• For πj with j ∈ [maxr(Q) − 1], R′′ contains in(πj) → δ′ and
q(πj , y1, . . . , ym) → yj .

• For del (2), R′′ contains in(del(x1, x2)) → in(x2) and q(del(x1, x2), y1, . . . , ym)
→ q(x2, y1, . . . , ym).

Since all symbols del introduced by M1 are appropriately eliminated by M2,
we can claim τM1 � τM2 = τM by following the proof of the original decomposition
theorem of Corollary 5.9 of Ref. 5) and Theorem 4.37 of Ref. 10). �

Let us call M2 in the proof above M(Γ). We denote the class
of all yield transformations by yield, which is given by {τM(Γ) |
Γ = A(Δ,m, n) with ranked alphabetΔ and m, n ∈ N}, where A(Δ,m, n) =
Δ ∪ {c(k)

k | k ∈ [m + 1]} ∪ {πj | j ∈ [n]} ∪ {del (2)}. We write yield[m]
for the subset of yield obtained by fixing the second parameter of A to m.
The cost of type inference for the transformations in yield[m] is NNm

because
yield[m] ⊂ Dtmac[1,m]. According to Engelfriet and Vogler 5) and Theorem 4.1,
we have

Dtmac[p,m] ⊆ Dttopnondel[p] � yield[m], (20)
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Dmacoi[p,m] ⊆ Dttopnondel[p] � yield[m] � empty, (21)
Dmacio[p,m] ⊆ Dtopnondel[p + 1] � yield[m], (22)

macoi[p,m] ⊆ Dttopnondel[p] � yield[m] � set, and (23)
macio[p,m] ⊆ topres[p + #(Δ)] � yield[m], (24)

where set and empty are special kinds of tdtts introduced by Engelfriet and
Vogler 5). Here, we assume that number m is greater than the maximum rank of
input alphabet Σ for the sake of simplicity. We may have to write Dtmac[p,m] =
Dttopnondel[p] � yield[max{m,maxr(Σ)}] for decomposition (20) if we want to
precisely compute the cost. We do not show concrete definitions of set and
empty. What we have to know to compute the cost of type inference is the cost
for each transformation, i.e.,

2N for set, and
N + 1 for empty,

which are obtained from the facts of set ⊂ top[1] and empty ⊂ Dtop[1],
respectively. Note that the tdtt has (p + 1)-many states for decomposition (22).
The tdtt may have to have one more (total) state because of the partiality of state
pq in the definition of φ. Since in the decomposition in the proof of Theorem 4.1
we have assumed the totality of the original mtt, there are no problems with the
construction of the tdtt. If the original mtt is partial, there may be no rule for
pq, which makes outputs undefined. Hence, we should use a “total” state for
pq. The identity state pid would be reasonable for an additional state, which has
rules with the form

pid(δ(x1, . . . , xn)) → δ(pid(x1), . . . , pid(x1))
for every output symbol δ.

For decomposition (24), the number of states of the tdtt depends on the number
#(Δ) of output symbols of the original mtt, following the proof of Theorem 5.12
of Ref. 5). topres stands for the class of restricted tdtts, in which the right-hand
side of every rule is either an output tree (with no state call q(xi)) or a tree whose
subtree with children should have a state call as its first child.

Linearity is always preserved for all of these decompositions, e.g.,
Dtlmac[p,m] ⊆ Dtltopnondel[p] � yield[m]

for decomposition (20).
Now, let us investigate the cost reduction for each decomposition. For de-

composition (20), the cost of type inference for the right-hand side is N ′p with
N ′ = NNm

, i.e., NpNm

. This is the same cost as that for the left-hand side.
Therefore, this decomposition does not change the cost of type inference. It
is also easy to find that neither decompositions (21) nor (23) change the cost.
Decomposition (22) slightly increases the cost.

For decomposition (24), the cost of type inference for the left-hand side is
2pNm+1

. On the other hand, the cost for the right-hand side is 2pNNm

. Therefore,
this decomposition increases the cost even its exponential height. This is not a
bad result when we use the opposite direction of decomposition (24). According
to Lemmas 5.4 and 5.8 of 5), the composition of a tdtt and yield mapping is
realized by a single mtt in macio if every subtree δ(t1, t2, . . . , tn) on the right-
hand side of the rules in the tdtt satisfies both of the statements (†):
• All states in t2, . . . , tn are deterministic or πi occurs at most once in τM2(t1)

and
• All states in t2, . . . , tn are total or πi occurs at least once in τM2(t1),

where M2 is a yield mapping mtt in the proof of Theorem 4.1. As presented in
Theorem 5.12 5), a tdtt in topres satisfies the condition (†). An mtt in macio

can be constructed by applying yield mapping to the right-hand side of all rules
of the tdtt as presented in Lemma 5.8 5). We modify the axiom tree instead of
adding a dummy initial state so as not to change the cost. Thus, we have

topres[p] � yield[m] ⊆ macio[p,m] and (25)
top†[p] � yield[m] ⊆ macio[p,m], (26)

where top† stands for the class of tdtts satisfying the condition (†).
Since tdtts in set ⊂ top[1] and empty ⊂ Dtop[1] are just identity transfor-

mations except for specified input symbols, the condition (†) is preserved on the
composition, i.e., we have

set � ltop†nondel[p] ⊆ top†[p] and (27)
empty � top†nondel[p] ⊆ top†[p] (28)

using compositions (5) and (4), respectively. As their corollaries, we have
set � Dltop†nondel[p] ⊆ top†[p], (29)

empty � Dtop†nondel[p] ⊆ Dtop†[p], (30)
set � Dtltop†nondel[p] ⊆ top†[p], and (31)

empty � Dttop†nondel[p] ⊆ Dtop†[p], (32)
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which still reduce the cost except for composition (32). These compositions are
useful when we combine them with other decompositions.

Engelfriet and Vogler 5) also showed a decomposition result for tdtts in Lemma
5.14,

top[p] ⊆ Dttop[1] � topres[ps], (33)
where s is the maximum size of the right-hand side expressions of the rules of the
original tdtt. Although it is obvious that the cost of type inference gets worse due
to this decomposition, we can reduce the cost by combining it with composition
(25) as follows.

top[p] � yield[m] ⊆ Dttop[1] � topres[ps] � yield[m]
⊆ Dttop[1] � macio[ps,m]. (34)

The cost of type inference is 2pNNm

on the left-hand side, while the cost is
2psNm+1

on the right-hand side. The cost is reduced if s < NNm−m−1. Since the
condition holds in many cases, the transformation in law (34) may be used as
one of the cost-improvement laws.

4.5 Cost Improvement of Composition of Mtts
The cost of type inference for the sequential composition of many mtts may be

reduced if we combine it with the other decompositions (20), (21), and (23). The
strategy for the cost improvement consists of two steps:
• Decompose as many mtts as possible by laws (20), (21), and (23).
• Compose as many mtts as possible by laws (3), (4), (5), (6), (7), (27), (28),

(29), (30), and (31).
Since no decomposition laws change the cost and all composition laws reduce the
cost, this strategy always reduces the cost as long as we can apply composition
laws.

It is better to take care of the condition of mtts in the decomposition step
so that we can compose many combinations of mtts. For example, consider
macoi � Dtliomac, where lio represents linearity for not only input variables but
also context parameters, called strong linearity. It is easy to show that

Dtliomac[p,m] ⊆ Dtltop†nondel[p] � yield[m], (35)
based on the decomposition law (20). The cost of type inference can be im-
proved as shown in Fig. 4, where we explicitly write the number of states and
the maximum rank of states. We usually do not have to take these numbers into

macoi[p1,m1] � Dtliomac[p2,m2]
⊆ Dttopnondel[p1] � yield[m1] � set � Dtltop†nondel[p2] � yield[m2]

by (23) and (35)
⊂ Dttopnondel[p1] � yield[m2] � top†[p2] � yield[m2] by (31)
⊆ Dttopnondel[p1] � yield[m2] � macio[p2,m2] by (26)

Fig. 4 Example of improvement of sequential composition of mtts.

consideration since the total cost is reduced as long as we only employ composi-
tion and decomposition, which do not change the cost, plus at least one of them
that reduces the cost.

Actually, this example gives another proof for the cost improvement of type
inference for macro forest transducers 17) and macro tree transducers with holes 15)

because these classes of transducers are represented by a composition of mtts
and forest concatenations (or hole applications) which can be specified by a total
deterministic strongly-linear mtt. Our approach can achieve exactly the same
cost improvement as their methods.

5. Conclusion

We have shown that the cost of typechecking for sequential compositions of
macro tree transducers (mtts) can be improved by applying composition and
decomposition constructions to mtts according to their properties, such as being
deterministic or total, having no accumulative parameters, or taking OI- or IO-
semantics. The results can be used to reduce of the cost of typechecking for
macro forest transducers and macro tree transducers with holes.

We have only counted the number of states and the maximum rank to compute
the cost of typechecking in this paper. For more precise cost estimation and cost
improvement, we may have to count the number of input and output symbols
and the size of the right-hand side expressions of rules as required in the trans-
formation law (34). Additionally, we have only considered the construction of
deterministic tree automata for inputs. The cost of typechecking may be reduced
if we consider the construction of nondeterministic tree automata as Engelfriet
did for the composition of tree-walking tree transducers 7). In this case, we need
to count the number of transitions instead of that of states as the size of tree
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automata. For practical typechecking, it is nicer to consider alternating tree au-
tomata as Tozawa 21), Frisch and Hosoya 9) did. A similar technique may improve
the cost of typechecking combined with our composition and decomposition.
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