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ネットワークコーディングにおける 
フィールドホッピング 

 

河東晴子†  寺島美昭† 
 
ネットワークコーディングの各ノードでの行列演算のフィールドを，送受信者と
中継者のみ知る規則に従って切り替えて通信を行うことにより，第三者の傍受に
対する耐性を向上するフィールドホッピング方式を提案する． 

 

Field Hopping Scheme in Network Coding  
 

Haruko Kawahigashi† and Yoshiaki Terashima†  
 
We propose Field Hopping, techniques for achieving immunity to intercept and 
interference, by altering the finite field that is a basis of the network coding operation. 
The field is altered in a predetermined manner known exclusively among the sender, the 
receiver, and the intermediate nodes. 

 
 
 
 

1. Introduction 

The technique of network coding has been successful in many different areas of digital 
communication in recent years.  The two main advantages of the network coding, 
particularly in mission-critical networks, are saving of the bandwidth through efficient use of 
the available communication channel and the enhanced data security against stealing of the 
data at intermediate nodes and channels. In the network coding, each data is transmitted 
through a channel after linear encoding, so what we see on a channel is an encoded data rather 
than a raw original data. It is clear that this encoding increases security from a view point of 
data protection.  We propose a new method here to achieve an extra step in this type of data 
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protection. 
 We first discuss related works on the security aspects of linear network coding and 

compare ours with them.  In [10], the authors consider a sufficient condition which assures 
linear network coding safe against wiretappers from an information theoretic viewpoint using 
an extra independent random variable.  Instead of the strict information theoretic conditions 
of [10], more practical consideration using various kinds of random number is made in [11].   
The authors of [12] further generalized the work in [10].  A basic idea is to introduce extra 
measure which prevents an eavesdropper from obtaining any useful information on the 
transmitted data, based on information theoretic consideration.  In [13], the authors consider 
this problem in combination with another problem of minimizing network cost.  A certain 
measure to deal with the tradeoff of these two matters has been proposed.  In [14], an 
algebraic security criterion, the number of symbols that an intermediate node has to guess in 
order to decode a symbol, is introduced.  In [15], a threat of a malicious node that corrupts 
the transmission data has been studied, and a new signature scheme for network coding based 
peer-to-peer file distribution is presented. Our method proposed here deals with different 
matters of security. Ours does not make wiretapping completely impossible or extremely 
difficult, but it forces an eavesdropper to make extra efforts and need more time for obtaining 
useful information. Our analysis uses our previous work [9] on a measure of robustness 
against wiretapping. Our method is independent from the ones in the above papers, and it is 
possible to apply our proposal simultaneously together with one of the above papers to 
enhance security. 
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(a) Single Filed (Conventional)     (b) Multiple Field (Proposed) 

Figure 1  Finite field operation multiplication tables 
 

In linear network coding, the data transmitted over a network linearly depends on the initial 
data, and this “linear” operation is performed in a certain finite field, which means a finite set 
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where one can perform addition, subtraction, multiplication and division with usual rules of 
operations such as distribution law.  By a general theory in mathematics, we know that the 
size of a finite field is always of the form qt where q is a prime number and t is a positive 
integer.  It is also known that for any such qt, we have a certain finite field having the size 
equal to qt.  It is possible to use any finite field for linear network coding, but it is more 
convenient to use the size 28=256 or 216=65536 because then an element in the finite field is 
represented with one or two byte data, respectively.  We here use the size 256 for simplicity 
and facility in the actual implementation, but there are more than one field of size 256.  
Different field structures on a set of size 256 give different operations.  For example, the 
result of 13 times 7 depends on a choice of a field.  We propose to use possibility of this 
choice as an extra enhancement of data security.  That is, we propose to change the field 
structures depending on the source, destination and the time.  With this change, even the 
same inputs give different outputs, depending on the source, destination and the time (see Fig. 
1).  This clearly brings extra complicacy for the enemy trying to stealing the data through 
wiretapping.  

Field Hopping is a technique for achieving immunity (resilience) to eavesdropping, 
intercept and interference, by altering the finite field that is a basis of the network coding 
operation. It can be viewed as a method to spread the information. The field is altered as 
follows.  
(1) The field (the irreducible polynomial) is altered in a predetermined manner known 
exclusively among the participants, i.e., the sender, the receiver, and the intermediate nodes. 
 (a) The resilience to eavesdropping increases since the hopping sequence is shared only 
among the participants.   

(b) The resilience to eavesdropping increases as the number of altering polynomials 
increases.   
(2) Alternatively, the polynomial currently in use can be written in the packet 
 (a)Explicitly write the polynomial in use on the packet e.g. in the header.  The resilience to 
the eavesdropping is small with this method alone, but increases by combination with some 
other mechanisms.   
 (b)Alter the polynomial in a predetermined manner shared among the participants, according 
to the implicitly shared information written in the packet e.g. in the header. 

In the rest of this paper, we give a detailed description of this method of switching the field 
structures and analyze how much extra safety we gain in this method.  At first in Section 2, 
we present a formulation of the linear network coding and the finite field.  Then in Section 3, 
we describe the proposing method and evaluate its effectiveness.  In Section 4, we estimate 
its effectiveness in different environments.  In Section 5, we show application examples. 

 

2. Finite Field and Formulation of Linear Network Coding 

We present a formal structure of linear network coding.  All arithmetic operations are 
performed within a set of size 256 called a field.  The operations are given as follows. 

First, let GF(2) be the set {0, 1} with operations 0+0=1+1=0, 0+1=1+0=1, 0.0=0.1=1.0=0 
and 1.1=1.  (Note that the period symbol denotes the multiplication here.) This is a field of 
size 2.  Consider a polynomial of degree m, f(x)=a0+a1x+a2x2+…+amxm, where the 
coefficients are in GF(2).  We can add and multiply two such polynomials in the usual way, 
but now the coefficients are added and multiplied within GF(2).  We say that such a 
polynomial is irreducible if it cannot be decomposed as a product of two such polynomials.  
We take and fix such an irreducible polynomial f(x) of degree 8 with coefficients in GF(2).  
(Such examples are explicitly known and not unique.)  Then we can define a finite field 
structure on the set F={0,1,2,3,…,255} as follows.  Each number a in F is represented as 
binary integer expression a7a6a5…a0.  We regard this as a polynomial a0+a1x+a2x2+…+a7x7 

with coefficients in GF(2).  If we have two elements a and b in F, we can add the 
corresponding two polynomials and obtain a new polynomial c0+c1x+c2x2+…+c7x7 with 
coefficients in GF(2).  The element c in F given by the binary integer expression c7c6c5…c0 

is the sum of a and b.  It is easy to see that this c is given by the “exclusive or” of a and b.  
This is the additive operation in F and the subtraction is defined similarly.  Now take two 
elements a and b in F and consider the corresponding two polynomials with coefficients in 
GF(2).  We multiply these two polynomials in the usual way and obtain a polynomial of 
degree at most 14.  We then divide this polynomial by f(x) and let the remainder be 
c0+c1x+c2x2+…+c7x7.  Note that the degree of the remainder is at most 7 since the degree of 
f(x) is 8.  Now the element c in F given by the binary integer expression c7c6c5…c0 is the 
product of a and b.  It is easy to see that we have ordinary rules for addition, subtraction and 
multiplication such as the distributive law.  It can be mathematically shown with the Euclid 
algorithm that for any a in F, we have unique b in F with a.b=b.a=1.  This is due to 
irreducibility of f(x). This b is 1/a, and a/b is generally defined as the product of a and 1/b.  
Then we have all the ordinary rules for addition, subtraction, multiplication and division, thus 
we have a finite field F of size 256.  Note that the value of a.b and a/b depend on the choice 
of f(x).  So if we change f(x) in a way depending on the time and other information, we 
constantly change the rules of multiplication and division on the same set F of size 256. 

Now fix F and we formulate a linear network coding over F, following [2].  Our network 
consists of a fixed finite directed graph, and our transmission data are sent through this 
directed graph with certain encoding which occurs at each vertex.  For simplicity, we assume 
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that the graph is acyclic, that is, we do not have a directed loop in the graph.  For a small 
graph, this assumption is rather realistic, and we consider only this situation, but for a large 
network such as the Internet, we would need a different type of consideration allowing loops 
in the graph.  Then some setting in [2], where they allow loops, is simplified and we have 
simpler description of the Linear-Code Multicast as follows. 

(1) We have a finite directed graph ( , )V E , where V and E are the sets of the vertices and 

edges, respectively.  Multiple edges between a pair of vertices are allowed.  We 
have the distinguished vertex S called the source vertex. 

(2) Transmission data consist of string of elements in the field F. 
(3) The number of independent paths from S to each non-source vertex T is called the 

maximum flow from S to T, and is denoted by maxflow(T).  Let d be the minimum 
of maxflow(T) for all non-source vertices T among V. 

(4) We send out an arbitrary d-dimensional column vector v over the base field F at the 
source S and it is called the information vector. 

(5) Each edge is a channel and transmits an element of the base field F as transmitted data. 

(6) At the source vertex S, we have an s d× matrix SM , where s is the numbers of the 

outgoing edges from S.  We have a matrix multiplication SM v and send out each 

entry of this s-dimensional column vector through each of the s edges starting from S.  
(Each of the s rows of the matrix is labeled with the edges from S.)  The data are 
sent without any time delay. 
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y m m x
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  (1) 

(7) At each vertex T, we have an s l× matrix TM , where s and l are the numbers of the 

outgoing and incoming edges at vertex T.  The rows and columns of the matrix are 
labeled with the outgoing and incoming edges at vertex T.   Each incoming edge 
carries an element of the base field F and they give an l-dimensional column vector v.  

We have a matrix multiplication TM v and send out each entry of this s-dimensional 

column vector through each of the s out going edges without any time delay. 
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(8) At each of a fixed subset of the vertices having maxflow equal to d, we want to recover 
the original information vector.  Such a vertex is called a target vertex. 

 
Note that our data are sent without time delay and our graph has no directed loops, so in 
Step (7), we can treat each vertex one by one. 

We call the s l× matrix TM  at T the encoding matrix at the vertex T.  For any 

d-dimensional information vector v at the source S, the data z transmitted through an edge E, 
represented by an element in the base field F, depends linearly on v, so we have a 
d-dimensional row vector wE such that z= wE v.  We call this vector wE the encoding vector 
for the edge E.  For a given graph (V, E), we call the system of the matrices MT the 
encoding scheme. 

( )
1

1E E El
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x
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x
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 (3)  

Note that in the above procedure, we have to use the same finite field structure for F for 
data transmission from the source to the destination.  However, we can change the finite 
field structures for F as long as a single structure is used for one set of data flows from the 
source to the destination.  This is the main point of our new method we propose here. 

T1

T2

S

 
Figure 2 Network Model 
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3. Switching Irreducible Polynomials and its Effectiveness 

It is known that there are 30 irreducible polynomials of degree 8 with coefficients in GF(2).  

One such example is 8 4 3 2 1x x x x+ + + + .  So we have 30 different finite field structures.  

(If we use a larger unit than 1 byte such as 2 bytes, then we use irreducible polynomials of 
higher degrees such as 16.  Then we have much more choices of irreducible polynomials.  
For example, the number of irreducible polynomials of degree 9 is 56 and those of degree 10 
and 16 are 99 and 4080 respectively.)  We propose to change the irreducible polynomials 
under certain rules. 

Before discussing changes of the irreducible polynomials, we deal with a problem of 
arithmetic operations for a given finite field.  One byte data is regarded as a set of 
coefficients of a polynomial of degree at most 7.  Additions and subtractions are both bitwise 
operations of “exclusive-OR”, so it is very easy to perform.  Multiplication consists of 
ordinary multiplication of two polynomials and a division by the irreducible polynomial.  
The former part is very easy to perform, but the latter part is relatively complicated and 
time-consuming.  So we use a multiplication table beforehand for each irreducible 
polynomial.  One table consists of 256 x 256 bytes of data, that is, 64Kbytes.  We need 30 
such tables as in Figure 1. For division, it is enough to have a table of 1/x for each one byte 
data x, since y/x is a product of y and 1/x, so the size of each table is 256 bytes and the number 
of tables is again 30.  (Since 1/0 is not allowed, the size of one table is 255 bytes, strictly 
speaking.) 

We now propose changes of irreducible polynomials.  Note that one flow of data from the 
source to the targets must use the same finite field and that encoding matrices are chosen 
according to a certain algorithm after fixing a finite field.  So there are several options for 
how to implement such changes and we list some of them as follows.  Note that all the nodes 
must know which finite field they use at present. 

(1) Some node in the network chooses a finite field and notifies the other nodes of this 
choice.  Then all the nodes compute the encoding matrices according the same algorithm and 
share the same system of the encoding matrices.  All the nodes continue to use this finite 
field until the next choice is announced. 

(2) Before starting the data transmission, all the nodes agree to have the same rules which 
determine the finite field in a certain time period.  When one time period is over, all the 
nodes switch to the new finite field under this pre-determined rule. 

(3) As a variation of (2), all the nodes agree to have the same rules to determine a sequence 
of finite fields.  After certain times of data transmission, all the nodes switch simultaneously 

to the next finite field in the pre-determined sequence. 
(4) We fix a certain algorithm to generate a sequence of pseudo-random numbers from a 

given seed number.  This algorithm is shared by all the nodes.  Then each data packet 
carries the seed number and the sequential number, such as the 7th number from the seed 135.  
Then by the pre-determined algorithm, each node can determine which finite field they use. 

 
We now estimate effectiveness of the above proposed method from a viewpoint of data 

protection. 
We deal with data flows at one node.  Suppose that a wiretapper can watch incoming and 

outgoing data and he wants to find out the encoding matrix.  This is the type of security 
threat we consider here.  Suppose that the number of the incoming edges is l and that of the 
outgoing ones is s. Then the incoming data give an l-dimensional column vector x and we 

multiply the s l× encoding matrix TM  to get an s-dimensional column vector y of outgoing 

data.  First we assume that the wiretapper knows the finite field and consider how many 

times of wiretapping are necessary in order to find out the encoding matrix TM .  The 

wiretapper obtains l times of l-dimensional vectors x1,x2,…,xl.  Multiplication by TM to 

these vectors gives l times s-dimensional column vectors y1,y2,…,yl.  By putting l times of 

l-dimensional vectors x1,x2,…,xl, we obtain an l l×  matrix X.  We similarly obtain a 

s l×  matrix Y by putting l times s-dimensional column vectors y1,y2,…,yl.  Then we have 

MTX=Y, where the left hand side is a product of s l×  matrix and l l×  matrix, and the 

right hand side is a s l×  matrix.  If the determinant of X is not zero (in the finite field), 

one has the inverse matrix X-1, so can easily find MT as YX-1.  If X does not have an inverse 

matrix, and one obviously cannot find TM .   In this case, the wiretapper has to continue to 

steal more data.  So we would like to count how many times one has to wiretaps vectors.  
We have already considered this mathematical problem in a different context in [9], and the 
answer is 
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since the size of the finite field is 256.  The computation for this in [9] is basically as 
follows.  The first vector is useful unless it is zero.  This probability is (256l-1)/ 256l and 
the expectation of the number of vectors for obtaining the first useful information is 256l 
/(256l-1).  The next vector is useful with probability (256l-1-1)/256l-1, so the expectation of 
the number of vectors for obtaining the next useful information is 256l-1/(256l-1-1).  
Repeating this process, we obtain the sum as above.  Note that the above sum is almost equal 
to l, since 1/256 is small.  We called this quantity the wiretap robustness (WTR) in [9].  We 
show the graphs of this quantity f1 for different values of l and t in Figure 3, where t is the bit 
size. 

Next we assume that the wiretapper does not know the finite field structure and needs to 
find it out.  Then one proceeds as follows. 

(1) One chooses one of the 30 irreducible polynomials and assumes it gives the finite field 
structure. 

(2) One continues as above until determining MT .  Then find another input vector x and 
compare it with MTy for the output vector y. 

(3) If the above comparison fails, the irreducible polynomial is not the right one.  Repeat 
this process until 29 out of 30 polynomials are excluded.  Then the remaining one 
gives the right answer and we know the encoding matrix. 

 
We now estimate the number of extra times of wiretapping in the above procedure 

compared with the case we know the finite field from the beginning.  If we wiretap an extra 
vector, it gives one byte data after multiplications and additions.  It gives a correct answer 
even if we have a wrong finite field structure just by coincidence.  Let p be 1/256, which is 
the estimated probability of this coincidence, since one byte gives 256 possible answers.  
Then (1-p)29 is the probability that all the other 29 wrong finite field structures are excluded 
by such one vector.  So with probability 1-(1-p)29, we need one more vector.  Similarly, 
with probability 1-(1-p2)29, we need a further extra vector.  The total number of vectors we 
need in this process is given as follows. 

29 2 292 1 (1 (1 ) ) (1 (1 ) )f p p= + − − + − − +  (5) 

Since p=1/256 is small, the third and later terms are negligible, and we obtain 1.11 
approximately.  In Figure 4, we have a graph showing this quantity f2 for various values of t 
for the size 2t of the finite field.  Note that t is the number of bits for one element in the finite 

field and p=2-t in this graph.  In the above setting, l is typically around 2, 3, or 4, so in these 
cases, this extra number 1.11 gives an increase of 56%, 37%, and 28% respectively.  We 
have Figure 5 which shows f1+f2 for different values of l and t, and Figure 6 showing the 
increase f2 for various values of l and t, where t is as above for the size 2t of the finite field.  
Note that this extra increase of efforts for a wiretapper occurs at one node.  In network 
coding, each node transfers coded data, so having the encoding matrix at one node is usually 
insufficient for obtaining the entire date flow over the network.  So a wiretapper needs to 
continue the same type of wiretapping at other nodes, and this extra increase of the efforts 
applies to other nodes, too. 

In order to determine how frequently we change the finite fields, we need to estimate how 
frequently a wiretapper can steal the transmitted data at a node.  The time interval between 
changes of finite fields should be (substantially) larger than the product of the above estimate 
of the necessary number of wiretapping to find the encoding matrix and the estimate of an 
average time interval between two attempts of wiretapping. 

 

4. Estimates of Effectiveness in Different Environments 

We now estimate effectiveness of our proposed method in different settings of network 
coding. 

(1) Random network coding 
Recently technique of random network coding has been studied by many researchers [7].  

In this scheme, an encoding matrix at each node is not fixed and is chosen randomly at each 
time, and the encoding vector is sent within each packet.  Then at the target node, if one has 
sufficiently many data with linearly independent encoding vectors, then one can recover the 
original data. 

We now consider switching finite field structures within this framework.  In this setting, 
each node obviously must know which finite field is used, but the wiretapper does not know it.  
In order for a wiretapper to decode a specific data, which is a d-dimensional vector having 
elements in the finite field, one has to collect d times of linearly independent d-dimensional 
encoding vector.  Finding the estimate of the number of data we need to collect in order to 
obtain linear independence is the same mathematical problem as in the last section, so the 
number is given by f1 where the variable l is now replaced with d, and if one does not know 
the finite field structure, the estimate of the number of extra vectors we need to find out the 
finite field is again 1.11 which is given by f2 with p=1/256 as above.  So the framework of 
random network coding is quite different from the above scheme of fixed encoding matrices, 
but the mathematical structures and estimates are the same, and Figures 3-6 apply. 
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(2) Multi-layer network coding 
Suppose that the number l, the number of incoming data, is 3.  Then the extra increase we 

have with our proposed method is 37%, as shown in the previous section.  Now we consider 
this effect in the setting of multi-layer network coding.  In a linear network coding system, 
one node sends encoded data to other nodes.  We can apply the network coding scheme also 
to these data transmissions through intermediate nodes.  In this way, we have double layers 
of network coding systems.  We can consider triple or quadruple layers in a similar way. 

In the case of double layers, we can apply our proposed method to both layers.  (The two 
layers can use different finite fields.)  Then the estimate of the 37% increase applies to both 
layers, and a wiretapper has to attack two layers separately.  This means that the total 
increase of the extra efforts for a wiretapper is 88% since 1.372=1.88.  Figure 7 shows the 
effect of this multilayer for different values of l 

(3) Multi-party use of the same network 
Two or more parties can use the same network with network coding, using different finite 

field structures.  Then one party knows only their own data and finite field structure, so they 
are at the same position as a wiretapper as far as the data of the other party are concerned, and 
the above analysis applies.  We deal with this case from a different viewpoint in the next 
section. 

 

0

1

2

3

4

5

0 8 16 24 32
Finite field size (bit)

N
o.

 o
f n

ec
es

sa
ry

 v
ec

to
re

s 
fo

r l
in

ea
r

in
de

pe
nd

en
ce

vector size = 4

3

2

1

 

Figure 3 Number of necessary vectors for linear independence:  f1  (Eq. (4)) 
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Figure 4 Number of extra vectors required: f2  (Eq. (5)) 
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Figure 5 Number of required vectors: f1+ f2 (Equations (4) + (5)) 
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Figure 6 Increase effect in relation to vector size f2 / f1 

0

1

2

3

4

5

6

7

1 2 3 4 5
No. of layers

In
cr

ea
se

 e
ffe

ct

Vector size = 2

3

4

 
Figure 7 Increase effect in layered coding (Finite filed size: 8 bit) 

 

5. Application Examples 

We now present application examples of our proposed method.  We show a network model 
in Figure 2 with a source S and targets T1 and T2.   Figure 8 (a) shows another network 
model with a different source S2 and targets T3 and T4.  Figure 8 (b) shows a network model 
where the network models of Figures 2 and 8 (a) are superimposed.  These figures represent 
a case of multi-party communication networks.   Figure 2 with source S and targets T1 and 
T2 represents a network of Party 1, and Figure 8 (a) with source S2 and targets T3 and T4 
represents a network of Party 2.  When Party 1 and Party 2 transmit data of each party, 
sharing the same communication equipments at the nodes and the links, they can keep their 
own data security by using different operation rules, namely, different finite field structures.  

These finite fields can be either fixed or changed according to the rules known only inside 
each party.  The finite field unique to the party is determined according to the party 
identification code described in the packet header.  Moreover, the multiple parties that 
pursue their own individual secret communication can switch to start a mutual communication 
by using the finite field structure. They can still keep their data security against the third 
party. 

This multi-party flexible security mechanism is useful in case of Disaster Relief (DR) 
where multi organizations are dispatched to the same field.  They need to build their own 
networks in the field with limited number of communication equipments and scarce spectrum 
of the field.  Their primary needs are communication inside their own group and 
communication to the home office, but they need to share some information with other groups 
working at the same field, e.g., announcement of damage status of the disaster area.  In such 
kind of mission, security requirement is not as strict as normal operation.  They need, 
however, some kind of security for internal communication of a party. 
Using our proposed schemes and network models of Figures 2 and 8, Party 1 corresponds to a 
dispatched team of one organization and Party 2 corresponds to a dispatched team of another 
organization.  

Our proposed schemes and network models are also effective in case of national Disaster 
Relief where national rescue teams, civil rescue teams, non-proprietary organizations share 
Disaster Relief networks.   
 

T3

T4

S2

     

S2

T1

T2

T3

S1

T4  
(a)                                 (b) 

Figure 8 (a) A network model with different source and destination, (b) A Superimposed 
model of two parties 

 

6. Conclusion 

In this paper, we have proposed network coding schemes with increased and flexible 
security by changing finite field structures.  Our proposed schemes switch irreducible 
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polynomials used in multiplication of coding operation.  This multi-party flexible security 
mechanism is particularly useful in cases such as Disaster Relief where multi organizations 
are dispatched to the same field.  The multi organizations are able to pursue their own 
individual secret communication by using different finite field structure, and also able to start 
a mutual communication by using the same finite field structure while keeping their data 
security against the third party. 
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