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Quantum Communication Protocols with Public Coins

Seiichiro Tani,†1 Masaki Nakanishi †2

and Shigeru Yamashita†3

This paper studies the model of quantum protocols with classical public coins,
and shows its application to quantum communication complexity of some func-
tions. The paper first proves, by carefully combining quantum Grover search
with the concept of quantum protocols with classical public coins, that the
quantum communication complexity for LNE(l, k) is O(

√
l log l +log k), where

LNE(l, k) is an lk-bit total Boolean function called the list-nonequality func-
tion. The function is a generalization of the equality function and the disjoint
function. The above bound gives some separation between quantum and clas-
sical communication complexity for a total function, since the classical ran-
domized communication complexity for the same function is Θ(l + log k). As a
multi-party version of the list-nonequality function, the distinctness problem is
considered. The goal of this problem is to decide whether or not there are two
parties that have the same inputs. The sub-optimal bound of the communi-
cation complexity of the problem is given via the model of quantum protocols
with classical public coins.

1. Introduction

Studying communication complexity has been one of the central issues in com-
puter science since it was introduced by Yao21). Not only it is interesting in
its own right, but it also has many applications such as analyzing VLSI circuit
design, data structures and networks (See the book16)for more details).

Informally, the communication complexity of function f(x, y) : {0, 1}n ×
{0, 1}n → {0, 1} is the minimum amount of communication bits sent between
two parties, say, Alice and Bob, who get inputs x ∈ {0, 1}n and y ∈ {0, 1}n,
respectively, and compute f cooperatively by using an optimal protocol. Here
the local computation time required for Alice and Bob may be large. For exam-
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ple, Alice first performs local computation depending on her input and sends a
message to Bob. Bob then does some local computation depending on his input
and the received message, and sends a message back to Alice. This sequence
is repeated until Alice or Bob outputs the value of f . For any protocol P that
computes f , the cost of P is the number of communication bits on the worst-case
input (x, y). The communication complexity of f , D(f), is the minimum cost of
P , over all protocols P that compute f . Protocol P may be randomized, i.e.,
Alice and Bob can access random strings rA and rB , respectively, in addition to
the inputs they receive. Randomized protocol P computes f with (two-sided)
bounded error if for every input (x, y) the probability that the output of P is not
equal to f(x, y) is at most 1/3 over the random choices of rA and rB . The cost of
a bounded-error randomized protocol is the worst-case cost over all inputs and all
random strings. R2(f) denotes the minimum worst-case cost over all randomized
protocols that compute f with bounded error. In another randomized setting,
Alice and Bob are allowed to access public coins (or a common random string).
Formally, the output of protocol P depends on inputs and common random string
r. Rpub

2 (f) is the minimum worst-case cost over all randomized protocols that
compute f by using public coins with bounded error. Note that, if Alice and Bob
have public coins, they can use disjoint subsets of the coins as their local coins:
Rpub

2 (f) ≤ R2(f).
Quantum communication complexity, introduced by Yao22), is the quantum

counterpart of (classical) communication complexity. Parties are allowed to per-
form quantum computation and send/receive quantum bits (or qubits). The
communication complexities, QE(f) and Q2(f) are defined as the quantum coun-
terparts of D(f) and R2(f), respectively. In particular, the quantum counter part
of deterministic computation (protocol, algorithm, etc.) is called exact computa-
tion (protocol, algorithm, etc.); it runs in bounded time and always outputs the
correct answer.

It is known that there are functions that have gaps between quantum and clas-
sical communication complexity. For exact computation, Buhrman et al.6) proved
that for a specific promise version of the equality function EQ′

n, QE(EQ′
n) =

O(log n) while D(EQ′
n) ∈ Ω(n)10). In the bounded-error case, Raz18) showed

a promise problem that has an exponential gap between quantum and classi-
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cal settings, i.e., Q2(f) = O(log n) and R2(f) = Ω(n1/4/ logn). As for to-
tal functions, the largest known gap is quadratic: Q2(DISJn) = O(

√
n)1) and

R2(DISJn) = Ω(n)13), where DISJn is the 2n-bit disjoint function,
∧n

i=1(xiyi).
In a restricted model or other models, some exponential gaps have been proved:
the one-way bounded-error model2) and bounded-error simultaneous message-
passing model5),23).

With regard to classical communication complexity, protocols with public coins
are often discussed since they can always be converted to ones without public
coins by using public-private coin conversion17): if there is a bounded error proto-
col that uses (possibly) many public coins, a bounded error protocol that does not
use public coins exists with only O(log n) additional communication bits, where
n is the input length. Thus, in the classical communication protocol, a stan-
dard technique is to work out a public-coin protocol first and then convert it to
one without public coins. This often provides us with many nice communication
protocols.

In the quantum setting, the natural counter part of public coins may be prior
entanglement. Many papers4),7),8) have shown how to reduce communication bits
by using prior entanglement. However, unlike the classical case, it seems to be
hopeless to convert (possibly) many prior entanglement resources to only, say,
O(log n) additional communication (qu)bits. Thus, we have no standard tech-
nique unlike the classical case mentioned above. Instead, we may have the fol-
lowing technique: first we consider what we call “quantum protocols with classical
public coins,” which is a quantum protocol where Alice and Bob are allowed to
access classical correlated randomness (not quantum prior entanglement). This
protocol model was studied in the literature14) in the context of privacy and
secure quantum communication.

This paper studies a model of quantum protocols with classical public coins in
the context of communication complexity, and shows some interesting applica-
tions. More concretely, we first consider the list-nonequality function with 2lk

variables; the function consists of l instances of the function EQk with 2k vari-
ables and is false if and only if at least one of the l instances of EQk is true. The
functions can be a generalization of two well-studied functions EQk and DISJl,
which have quite different properties. EQk can efficiently be computed in the

classical and quantum settings, implying no gap exists between the classical and
quantum communication complexities, whereas there is a quadratic gap between
those for DISJl, which is the maximum gap known for total functions. Thus, it
is interesting to consider the communication complexity of LNE(l, k), a mixture
of EQk and DISJl. We show that Q2(LNE(l, k)) = O(

√
l log l + log k). Our

technique is to carefully combine the concept of quantum protocols with classical
public coins, with Grover search. This gives some separation between quantum
and classical communication complexity, since R2(LNE(l, k)) = Θ(l + log k)16).
It should be noted that this may not be achieved without using the notion of
quantum protocols with classical public coins.

For the multi-party case, we consider the Distinctness problem: given that
every party gets a value drawn from a fixed range, the goal of the problem is
to decide whether or not there are two parties who have the same input. For
instance, this problem needs to be solved when every party on a network wants
to check if the priorities of all parties are totally ordered. From a theoretical
point of view, this problem can be considered as a multi-party version of the
list non-equality function in the two-party case, in the sense that the latter is
reducible to the former. We again apply the concept of quantum protocols with
classical public coins to the Distinctness problem on a ring and give a sub-optimal
upper bound of its quantum communication complexity. Furthermore, we show
that a modification of the algorithm can solve a more general problem, called the
Max-Coalition problem, of computing the maximum number of parties that have
the same input.

2. Preliminaries

2.1 Converting Public Coins into Private Coins
In what follows, we assume that communication is quantum, but parties share

no prior-entanglement. If a quantum protocol allows parties to access an arbitrary
number of classical public coins, it is called a quantum protocol with classical
public coins. Qpub

ε (f) is defined as the minimum communication complexity over
all quantum protocols with classical public coins that compute f with error
probability at most ε.

As in the classical case17), we would like to be able to replace many public coins
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with a small number of communication bits in the case of quantum protocols
with classical public coins. Although it looks very similar to the classical case,
the proof needs to be modified to handle quantum errors. The next proposition
is used in the proof.

Proposition 1 (Hoeffding inequality16)) Suppose that X1, . . . , Xt are t

independent random variables with identical probability distribution over the
real interval [a, b] that have expected value p. Then

Pr

[∣∣∣∣∣
∑t

i=1 Xi

t
− p

∣∣∣∣∣ ≥ δ

]
≤ 2e−

2tδ2
b−a .

Lemma 2 Let f : {0, 1}n×{0, 1}n → {0, 1} be a function. For every positive
real δ and ε (δ + ε < 1/2) , any ε-error quantum protocol with classical public
coins can be transformed into an (ε+δ)-error quantum protocol without classical
public coins by using additional �log n + 2 log 1/δ�-bit communication.
Proof Suppose that we have any ε-error quantum protocol with classical public
coins, P , that computes f , and assume that P chooses a random string according
to probability distribution Π over all possible random strings. Let P (x, y, r) be
the event that P is given input (x, y) and chooses particular string r as the random
string. The error probability of P under event P (x, y, r), i.e., the probability
that the output of P under P (x, y, r) is not equal to f(x, y), is denoted by
Er[P (x, y, r)].

We will show that there exist t strings r1, . . . , rt such that, for every input
(x, y), the expected value of Er[P (x, y, r)] for random r chosen uniformly from
the t strings is at most ε + δ . Therefore, if Alice randomly chooses one of the t

strings and sends the �log t� bits specifying the chosen string to Bob, then they
can compute f with error probability at most ε + δ. The lemma follows.

Choose t = �n/δ2� strings r1, . . . , rt according to the probability distribution
Π of common random strings. Since 0 ≤ Er[P (x, y, ri)] ≤ 1, we can show by the
Hoeffding inequality for fixed input (x, y) that

Prr1,...,rt

[(
1
t

t∑
i=1

Er[P (x, y, ri)] − ε

)
> δ

]
≤ 2e−2δ2t.

If we set t to �n/δ2�, 2e−2δ2t is smaller than 2−2n. Therefore, the probability that,
for some input (x, y), 1

t

∑t
i=1 Er[P (x, y, ri)] > ε+δ is smaller than 2−2n ·22n = 1

when r1, . . . , rt is randomly chosen. This implies that there exist r1, . . . , rt such
that for every input (x, y), 1

t

∑t
i=1 Er[P (x, y, ri)] ≤ ε + δ. �

This lemma can be easily generalized to the case of k parties, in which every party
i gets xi ∈ {0, 1}n as input and they have to compute function f depending on
xi’s.

Lemma 3 Let f : {0, 1}nk → {0, 1} be a function. For every positive real δ

and ε (δ + ε < 1/2) , any ε-error quantum protocol with classical public coins
that computes f on k parties can be transformed into an (ε + δ)-error quantum
protocol without classical public coins, by using additional communication to
broadcast a �log(kn) + 2 log 1/δ�-bit message.
Proof Follow the same argument with t = �kn/(2δ2)�. �

In the case of a ring, the additional communication is just k�log(kn)+2 log 1/δ�-
bits, since broadcasting involves passing the message around the ring.

2.2 Quantum amplitude amplification
We quote the quantum amplitude amplification theorem by Brassard et al.3),

which we will use in our proofs.
Theorem 4 Let A be any quantum algorithm that uses no measurements,

and let χ : Z → {0, 1} be any Boolean function. Given the initial success
probability a > 0 of A, Qm(A, χ)A|0〉 gives a good solution with probability
sin2((2m + 1)Arcsin

√
a), where Q(A, χ) = −AF0A−1Fχ. Operator Fχ trans-

forms x into −|x〉 if χ(x) = 1, and leaves x unchanged otherwise; F0 transforms
|x〉 into −|x〉 if x = 0 . . . 0, and leaves |x〉 unchanged otherwise.

This theorem can be considered as a generalization of Grover’s search algo-
rithm11). In what follows, we may say Grover search (algorithm) to mean this
theorem.

3. List-Nonequality Function

We consider the list-nonequality function LNE(l, k): the negation of EQ∨l
k ,

where f∨l =
∨l

i=1 f(xi, yi) and EQk : {0, 1}k × {0, 1}k → {0, 1} is true if and
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only if two inputs x, y ∈ {0, 1}k are identical. More precisely,

LNE(l, k) =
l∧

i=1

k∨
j=1

(xi[j] ⊕ yi[j]) = ¬(
l∨

i=1

k∧
j=1

¬(xi[j] ⊕ yi[j])),

where xi, yi ∈ {0, 1}k and xi[j] and yi[j] are the jth bit of xi and yi, respectively.
When Alice and Bob compute LNE(l, k), suppose that Alice is given x1, . . . , xl

and Bob is given y1, . . . , yl for xi, yi ∈ {0, 1}k.
We first show the algorithm for initialization.

Algorithm INIT(t)
( 1 ) Alice generates 1√

t

∑t−1
i=0 |i〉|i〉 in �log t� qubit registers RA and RA′ .

( 2 ) Alice sends the qubits in RA′ to Bob.
Bob receives the qubits and puts them into a �log t�-qubit register RB.

( 3 ) Alice and Bob each generate a string s(i), in registers SA and SB, for the
content of RA and RB, respectively, to make the entire state

1√
t

t−1∑
i=0

|i〉|s(i)〉|i〉|s(i)〉.

Then we perform the following algorithm that computes ¬LNE(l, k) provided
that a randomized string r = s(i) shared by Alice and Bob. The algorithm can
be obtained by converting Grover Search algorithm to a quantum communication
protocol with the technique in 6).

Algorithm ¬LNE(l, k)
( 1 ) Alice generates 1√

l

∑l
j=1 |j〉.

( 2 ) Alice searches j such that xj = yj by using Grover Search with O(
√

l) calls
of the following subroutine which simulates an oracle.

Subroutine Oracle
( 1 ) Alice performs the transformation |j〉|0〉|0〉 → |j〉|f(xj)〉|0〉, and sends all

the qubits to Bob, where f(xj) is a fingerprinting of xj generated with
r, namely, f : {0, 1}k → {0, 1}w, where w = O(log l), maps xj to (xj ⊕
r1,j) · · · (xj ⊕ rw,j), where ri,j is a disjoint substring of r.

( 2 ) Bob performs |j〉|f(xj)〉 → |j〉|f(xj)〉|guess[xj = yj ]〉, where guess[xj = yj ]

is true if and only if f(xj) is equal to f(yj) (notice that guess[xj = yj ] is
always true if xj = yj , and false with probability at least 1−1/l2 otherwise).
Bob sends all the qubits back to Alice.

( 3 ) Alice performs |j〉|f(xj)〉|guess[xj = yj ]〉 → |j〉|0〉|guess[xj = yj]〉.

Theorem 5 There is a quantum protocol that can compute LNE(l, k) with
probability at least some constant with quantum communication complexity
O(

√
l log l + log k).

Proofsketch We first consider the algorithm for computing ¬LNE(l, k). Notice
that for each basis state of each oracle call guess[xj = yj ] with error probability
at most 1/l2. Thus, the accumulated error is at most O(

√
ll

l2 ) = O(1/
√

l). Thus,
together with Theorem 4, ¬LNE(l, k) can be computed with bounded error if
public randomness is provided.

Algorithm INIT essentially has the two parties share a string sampled from t

strings. Lemma 2 says there is a certain set of t strings for t = O(lk) such that
the above sampling decreases the success probability by at most some constant.

Therefore, the overall success probability is at least some constant and the total
complexity is O(

√
l log l + log k). �

Remark 6 The protocol in Theorem 5 uses only pure states, although it
essentially uses public coins. Hence, a divide-and-conquer approach with respect
to l can somewhat improve the upper bound as in 12).

Theorem 7 The quantum query complexity of LNE(l, k)) is Ω(
√

l + log k),
while the randomized query complexity is R2(LNE(l, k)) = Ω(l + log k).
Proof We first reduce the equality function EQk to LNE(l, k). We associate an
EQk instance x, y ∈ {0, 1}k with an LNE(l, k) instance xi, yi for i = 1, . . . , l such
that x1 = · · · = xl = x and y1 = · · · = yl = y. It is easy to see that LNE(l, k) is
false if and only if EQk is true.

We then reduce the function INTl to LNE(l, k), where INTl is the negation
of DISJl. We associate an INTl instance x′, y′ ∈ {0, 1}l with an LNE(l, k)
instance xi, yi for i = 1, . . . , l such that
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• xi = 110l−2 if x′
i = 1

• xi = 010l−2 if x′
i = 0

• yi = 110l−2 if y′
i = 1

• yi = 100l−2 if y′
i = 0.

We can see that LNE(l, k) is false if and only if INTl is true. Notice that
Q2(EQk) = Ω(log k) can be derived by combining the following two facts:
(1) D(EQk) = Ω(k) by the rank lower bound technique16), and (2) for any
f , Q2(f) > Ω(log(D(f))15). This fact and Q2(INTl) = Ω(

√
l)19) imply the

quantum lower bound. Similarly, the randomized lower bound follows from
R2(EQk) ≥ Q2(EQk) = Ω(log k) and R2(INTl) = Ω(l)13). �

4. Distinctness and Max-Coalition

The distinctness problem DistinctnessG
k,L was first introduced by Tiwari20)

and is defined as follows.
Definition 8 (DistinctnessG

k,L) Let k parties be placed on a network G. Let
each party Pi (0 ≤ i ≤ k − 1) have an integer xi ∈ {0, . . . , L − 1} (k ≤ L). The
goal is to decide whether xi is not equal to xj for any i, j (i �= j). At termination,
each party knows a one-bit result.

Theorem 9 (Lower Bound) For L ≥ k, the quantum communication com-
plexity of Distinctnessring

k,L is Ω(k(
√

k + log log L)).
Proofsketch We will reduce ¬LNE(ck, �log L� − �log(ck)�) with an arbitrary
small constant c < 1 to Distinctnessring

k,L .
We first partition the k-party ring of Distinctnessring

k,L into four connected
segments A, B, C and D of size �ck�, (k − 2�ck�)/2, �ck� and (k − 2�ck�)/2,
respectively, where segment A is diametrically opposite C. Next, we construct
an instance of Distinctnessring

k,L from any instance (x1, . . . , xl, y1, . . . , yl), where
l = �log L� − �log(ck)�, of ¬LNE(ck, �log L� − �log(ck)�) in the following way:
(1) The input of the ith party of A is set to xi ◦ (i)2, where (i)2 is the binary
expression of i and “◦” denotes concatenation;(2) the input of the ith party of C

is set to yi◦(i)2. Then, Alice and Bob can compute ¬LNE(ck, �log L�−�log(ck)�)
by using any protocol P that computes Distinctnessring

k,L as follows.

( 1 ) Alice generates a random log((k − ck)/2)-bit string r.
( 2 ) Alice sends r to Bob.
( 3 ) Alice and Bob construct an instance of Distinctnessring

k,L from the given
instance of ¬LNE(ck, log L − log(ck)) in the way described above.

( 4 ) Alice and Bob simulate P on the instance in the following way: Alice
simulates segment A and all the parties that are away by distance at most
r from segment A and Bob simulates the rest.

Thus, the expected quantum communication complexity of ¬LNE(ck, �log L� −
�log(ck)�) over all strings r is at most 1

(k−2�ck�)/2+1Q2(Distinctnessring
k,L ) plus

O(log k). By Markov’s inequality, the worst case quantum communication com-
plexity is equal to the expected quantum communication complexity up to a
constant factor. Therefore, the theorem follows from Theorem 7. �

Theorem 10 (Upper Bound) For L ≥ k, the quantum communication
complexity of Distinctnessring

k,L is O(k(
√

k log k + log log L)).
Proofsketch We consider the following search problem: is there any party Pi

such that, for some j (�= i), party Pj has the same input as party Pi? Given an
oracle that, for query i, answers 1 if there is a party Pj(�= Pi) that has the same
input as party Pi and otherwise answers 0, we can solve the search problem with
O(

√
k) queries to the oracle by Grover’s quantum search algorithm. Let party

P0 be distinguished, and she executes the search algorithm on behalf of all the
parties. We assume that all parties share coins, i.e., a random string of sufficient
length, and we will remove this shared random string later by using Lemma 3.

The oracle is simulated in a distributed way by the k parties as follows. The
simulation for query i consists of two phases. The purpose of the first phase is
for P0 to get a t-bit information on xi, namely,

x̃i = (xi ⊕ r1) · · · (xi ⊕ rt),
where ri is a disjoint �log L�-bit substring of the shared random string. If i �= 0,
party P0 first prepares a (�log k�+ t)-qubit message |i〉|0t〉; otherwise P0 prepares
message |i〉|x̃0〉. Party P0 then sends it to adjacent party P1. Every party Pj (j >

0) except Pi simply passes the received message to adjacent party Pj+1 (mod k);
party Pi changes message |i〉|0t〉 to |i〉|x̃i〉 before sending it to adjacent party
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Pi+1 (mod k).
The purpose of the second phase is to check whether string xi is identical to

one of the k − 1 strings {x0, . . . , xk−1} \ {xi} with high probability. If i �= 0,
party P0 prepares (t + �log k�)-qubit message |x̃i〉|0�log k�〉; otherwise it prepares
message |x̃i〉|0�log k�−11〉. Notice that the second register is used to count the
number of parties that have values identical to xi (with high probability). Party
P0 then sends it to adjacent party P1. For j > 0, Pj just passes the received
message to adjacent party Pj+1 (mod k) if x̃j �= x̃i; otherwise party Pj increments
the counter, i.e., the contents of the last �log k� qubits, in the message, and sends
it to adjacent party Pj+1 (mod k). When the message arrives at P0, the counter
has value of at least two if and only if there are at least two parties that have
values identical to xi. Party P0 then sets the content of a fresh qubit to 1 if the
value of the counter is at least two; otherwise, P0 sets it to 0. The content of
the fresh qubit is the answer of the oracle. Finally, every computation (except
the last step) and communication performed in the first and second phases is
inverted to disentangle all work qubits including the message qubits. If we set
t = O(log k), then the oracle gives a correct answer with error probability at most
1/poly(k). In this case, the quantum communication complexity of one oracle
call is O(k log k).

By combining Grover’s search algorithm with this distributed oracle,
O(k

√
k log k)-qubit communication is sufficient to find any party Pi with bounded

error such that there exists party Pj (j �= i) that has the same input as party Pi.
If such a party is found, the answer to Distinctnessring

k,L is false; otherwise the
answer is true. (To inform every party of the answer, a one-bit message needs to
be passed around the ring, which does not change the order of complexity.)

Now we removed the assumption that all parties share a random string
by using Lemma 3: The random string can be substituted for broadcasting
an O(log(k log L))-bit message, for which O(k log(k log L))-bit communication
is needed. Therefore, the total communication complexity is O(k

√
k log k) +

O(k log(k log L)) = O(k(
√

k log k + log log L)). �

The following problem is a generalization of Distinctnessring
k,L .

Definition 11 (MAXCOALITIONG
k,L) Let k parties be placed on a net-

work G. Let each party Pi (0 ≤ i ≤ k−1) have an integer xi ∈ {0, . . . , L−1} (k ≤
L). The goal is to compute maxj∈{0,...,L−1} |{i : xi = j}|. At termination, each
party knows a �log k�-bit result.

It is easy to see that, if every party knows a solution of MAXCOALITIONring
k,L ,

he/she can know a solution of Distinctnessring
k,L . Therefore, the lower bound of

the quantum communication complexity of MAXCOALITIONring
k,L is Ω(k(

√
k+

log log L)). This bound is almost tight due to the following theorem.
Theorem 12 For L ≥ k, the quantum communication complexity of

MAXCOALITIONG
k,L is O(k(

√
k log k + log log L)).

Proofsketch The algorithm can be obtained by combining a modification of the
algorithm in Theorem 10 with the maximum (minimum) finding algorithm by
Dürr et al.9).

More precisely, suppose that every party shares a random string of sufficient
length. P0 first picks i ∈ {1, . . . , k} uniformly at random. P0 then searches j

such that the number of parties, nj , that have the value equal to xj is larger than
that of parties, ni, that have the value equal to xi. If such j is found, P0 sets i

to j. Then P0 repeats the same procedure c
√

k times for a certain constant c. P0

computes the number of parties that have the value equal to xi and outputs it.
To perform this search, we need an oracle that, for query i, answers 1 if nj > ni

for some j. This oracle can be implemented with communication complexity
O(k log k) by slightly modifying the oracle in Theorem 10.

The above algorithm can solve the problem with bounded error in an analysis
similar to that of the minimum finding algorithm in 9). The total communi-
cation complexity is O(k

√
k log k) with a shared random string. The theorem

follows from Lemma 3 (Broadcasting the result needs only O(k log k)-bit com-
munication). �
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