
IPSJ SIG Technical Report

Reconstruction Algorithms for Permutation Graphs

and Distance-Hereditary Graphs

Masashi Kiyomi,†1 Toshiki Saitoh †1

and Ryuhei Uehara†1

PREIMAGE CONSTRUCTION problem by Kratsch and Hemaspaandra nat-
urally arose from the famous graph reconstruction conjecture. It deals in
the algorithmic aspects of the conjecture. We present an O(n6) time algo-
rithm for PREIMAGE CONSTRUCTION on permutation graphs. A simpli-
fied algorithm can be applied for PREIMAGE CONSTRUCTION on distance-
hereditary graphs. There are polynomial time isomorphism algorithms for per-
mutation graphs. However the number of permutation graphs obtained by
adding a vertex to a permutation graph may be exponentially large. Thus
exhaustive checking of these graphs does not achieve any polynomial time algo-
rithm. Therefore reducing the number of preimage candidates is the key point.
Keywords: the graph reconstruction conjecture, permutation graphs,
distance-hereditary graphs, polynomial time algorithm

1. Introduction

The graph reconstruction conjecture proposed by Ulam and Kelly?1 has been
studied by many researchers intensively. We call the multi-set {G−v | v ∈ V } the
deck of a graph G = (V,E), where G−v is a graph obtained from G by removing
v and incident edges. More precisely the graphs in a deck are vertex-unlabeled.
Otherwise the argument below has no mean. A graph G is a preimage of a deck
of a graph G′ if G and G′ has the same deck. We also say that a graph G is a
preimage of the n graphs when the deck of G exactly consists of them. The graph
reconstruction conjecture is that there is at most one preimage of given n graphs
(n ≥ 3). No one has given a positive nor a negative proof of this conjecture,

†1 Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-
1292, Japan. {mkiyomi,toshikis,uehara}@jaist.ac.jp

?1 Determining the first person who proposed the graph reconstruction conjecture is difficult,
actually. See9) for the detail.

while small graphs are checked positively15). Kelly showed the following lemma.
Lemma 1 (Kelley’s Lemma11)). Let G be any preimage of the given deck, and
let H be a graph whose number of vertices is smaller than that of G. Then we
can uniquely determine the number of subgraphs in G isomorphic to H from the
deck.

Greenwell and Hemminger extended this lemma to a more general form8). We
can know the degree sequence of a preimage from these lemmas. Kelly also
showed that the conjecture is true on regular graphs, trees, and disconnected
graphs. Tutte proved that the dichromatic rank and Tutte polynomials are re-
constructible (i.e. looking at the deck, they are uniquely determined)20). Bollobás
showed that almost all graphs are reconstructible from three well-chosen graphs
in its deck2). About permutation graphs, Rimscha showed that permutation
graphs are recognizable in the sense that looking at the deck of G one can de-
cide whether or not G belongs to permutation graphs17). To be precise Rimscha
showed in the paper that comparability graphs are recognizable. Even’s result6)

directly gives a proof in the case of permutation graphs. Rimscha also showed in
the same paper that many subclasses of perfect graphs including perfect graphs
themselves are recognizable, and some of subclasses are reconstructible. There
are jillion of papers about the conjecture, and many good surveys about this
conjecture. See for example3),9).

There are several kinds of algorithmic problems related to the graph recon-
struction conjecture. We consider algorithmic problems proposed by Kratsch
and Hemaspaandra13) described below.
• Given a graph G and a multi-set of graphs D, check whether D is the deck

of G (DECK CHECKING).
• Given a multi-set of graphs D, determine whether there is a graph whose

deck is D (LEGITIMATE DECK).
• Given a multi-set of graphs D, construct a graph whose deck is D (PREIM-

AGE CONSTRUCTION).
• Given a multi-set of graphs D, compute the number of (pairwise nonisomor-

phic) graphs whose decks are D (PREIMAGE COUNTING).
Kratsch and Hemaspaandra showed that these problems are solvable in polyno-
mial time for graphs of bounded degree, partial k-trees for any fixed k, and graphs

1 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

of bounded genus, in particular for planner graphs13). In the same paper they
proved many GI related complexity results. Hemaspaandra et al. extended the
results10). The authors presented a polynomial time PREIMAGE CONSTRUC-
TION algorithm for interval graphs12).

We present an O(n6) time algorithm for PREIMAGE CONSTRUCTION on
permutation graphs. A simplified algorithm can be applied for PREIMAGE
CONSTRUCTION on distance-hereditary graphs. In order to make things clear,
we introduce a new graph class weakly distance-hereditary graphs as graphs whose
each connected component is distance-hereditary. It is easy to see that every
graph in the deck of a permutation graph is a permutation graph, and that ev-
ery graph in the deck of a weakly distance-hereditary graph is weakly distance-
hereditary. It is also easy to see that a deck of a connected graph has at least
two connected graphs. Since a distance-hereditary graphs is equivalently a con-
nected weakly distance-hereditary graph, every graph in the deck of a distance-
hereditary graph is weakly distance-hereditary, and at least two of them are con-
nected. We propose PREIMAGE CONSTRUCTION algorithm for a deck con-
sisting of permutation graphs, and that consisting of weakly distance-hereditary
graphs at least two of which are connected. We state our main theorems below.
Theorem 1. There is an O(n6) time PREIMAGE CONSTRUCTION algorithm
for a deck D consisting of n permutation graphs.
Theorem 2. There is an O(n3m) time PREIMAGE CONSTRUCTION algo-
rithm for a deck D consisting of n weakly distance-hereditary graphs at least two
of which are connected, where m is the number obtained by dividing the total
number of edges in D by n − 2. ?1

2. Notations and definitions

All the graphs in this paper are simple unless stated otherwise. A direct graph
G = (V,E) is oriented if there are no two vertices v and u in V such that
both (v, u) and (u, v) are in E. An oriented graph G = (V,E) is transitively
oriented if there is an edge (u,w) in E for every three vertices u, v and w in
V such that (u, v) and (v, w) are in E. An undirected graph G is transitively

?1 By Lemma 1 the number of edges in every preimage is
Pn

i=1 |E(Gi)|/(n − 2)11).

1 2 3

4 5
Fig. 1 An example of a uniquely orientable permutation graph. It is a bit confusing to

find a Γ-related edge sequence beginning from {2, 4} and ending at {2, 5}. There
is ({2, 4}, {1, 4}, {4, 5}, {3, 5}, {2, 5}) as such an edge sequence.

orientable if it is an underlying graph of some transitively oriented graph G′,
and we call G′ a transitive orientation of G. A transitively orientable graph is
uniquely orientable if it has exactly two transitive orientations. Note that if there
is a transitive orientation of an undirected graph G, then the graph obtained
by reversing every direction of the orientation is also a transitive orientation.
Thus if G is transitively orientable, G has at least two transitive orientations.
This definition of uniquely orientability is equivalent that an undirected graph
G = (V,E) is uniquely orientable if and only if for every pair of edges e and f in
G there is an edge sequence (e1, . . . , ek) such that e1 is equal to e, ek is equal to
f , and ei and ei+1 are Γ-related for all i ∈ {1, . . . , k − 1}, where edge {p, q} and
{r, s} are Γ-related if q = r and {p, s} 6∈ E hold5). See Fig. 1 for an example.
Note that two identical edges {p, q} and {q, p} in a simple graph are Γ-related.

We denote by N(v) the neighbor set of vertex v, and by N [v] the closed neighbor
set of vertex v. “Closed” means that N [v] contains v itself. Vertices u and v are
called strong twins if N [u] is equal to N [v], and weak twins if N(u) is equal to
N(v). A vertex v is called a pendant if v is a degree one vertex.

We call a graph G is reducible if there are twins in G. The graph obtained by
repeatedly contracting twins from a graph G until it has no twin is the irreducible
reduction of G, and we denote it by R(G). We call a graph G is prunable if there
are twins or a pendant in G. The graph obtained by repeatedly contracting twins
or removing a pendant from a graph G until it has no twin and pendant is the
unprunable reduction of G, and we denote it by R′(G). Note that R(G) and
R′(G) are well-defined16).

An n-vertex undirected graph G = (V,E) is a permutation graph if G has a
permutation representation, that is, there exist a labeling {v1, v2, . . . , vn} of the

2 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

vertices in V and a permutation π of {1, 2, . . . , n} such that (i−j)(π(i)−π(j)) < 0
if and only if {vi, vj} is in E. An undirected graph G is distance-hereditary if and
only if G is connected, and for any two distinct vertices x and y in G the length
of induced paths between x and y are the same. It is convenient to define a new
graph class not to care if graphs are connected. We define an undirected graph
G is weakly distance-hereditary if and only if for any two distinct vertices x and
y in G the length of induced paths between x and y are the same.

Given two graphs G1 and G2, we define the disjoint union G1∪̇G2 of G1 and
G2 as (V1∪̇V2, E1∪̇E2) such that (V1, E1) is isomorphic to G1, and (V2, E2) is
isomorphic to G2, where ∪̇ means the disjoint union.

We denote by u(G) the graph obtained by adding one universal vertex to the
graph G such that the vertex connects to every vertex in G.

Let P be an ordering of elements in a set V . For v ∈ V we denote by P − v

the ordering of the elements V \{v} in which all the elements appear in the same
order in P . We denote by P +i v the orderings obtained by inserting v to the ith
position of P . We denote by P the reverse ordering of P .

3. Previous works

It is known that an undirected graph G is a permutation graph if and only if
G and the complement of G is transitively orientable6). Moreover it is known
that permutation graphs are precisely the comparability graphs of 2-dimensional
partial orders1). That is, for any permutation graph G = (V,E) there are two
orderings of the vertices in V such that {u, v} is in E if and only if u proceeds
v in both the orderings (we say the two orderings identify G). And it turns out
that if G′ = (V ′, E′) is a transitive orientation of a permutation graph, there is a
pair of vertex orderings such that (u, v) is in E′ if and only if u proceeds v in both
the orderings. Specifically for an uniquely orientable permutation graph G, G

has just two pairs of vertex orderings, one pair P and Q of which corresponds to
one of the two transitive orientations of G, and the other, P and Q, corresponds
to the other transitive orientation.

Colbourn showed that R(G) is uniquely orientable if G is a connected permu-

k

Fig. 2 Forbidden graphs of distance-hereditary graphs. The part described k contains k
vertices (k ≥ 0).

tation graph5). ?1 Bandelt and Mulder showed that R′(G) consists of a singleton
if and only if G is distance-hereditary4).

Nakano et al. proposed a DH-tree for a distance-hereditary graph16). We can
see the tree as a uniquely defined canonical form of distance-hereditary graphs
isomorphic to each other.

Bandelt and Mulder4) showed that a graph G is distance-hereditary if and only
if G is connected, and (hole, house, domino, gem)-free, that is, G has none of the
graphs in Fig. 2 as an induced subgraph. Gallai characterized comparability
graphs with the forbidden subgraphs7). Since permutation graphs are equivalent
to comparability and co-comparability graphs6), the characterization of permuta-
tion graphs is easily obtained. A graph G is a permutation graph if and only if G

is (Ck+6, T2, X2, X3, X30, X31, X32, X33, X34, X36, XF2k+3
1 , XFk+1

2 , XFk
3 , XFk

4 ,

XF2k+3
5 , XF2k+3

6 , co-Ck+6, co-T2, co-X2, co-X3, co-X30, co-X31, co-X32, co-X33,

co-X34, co-X36, co-XF2k+3
1 , co-XFk+1

2 , co-XFk
3 , co-XFk

4 , co-XF2k+3
5 , co-XF2k+2

6 ,

and odd-hole)-free. See Fig. 3.

4. Algorithm

Our algorithm outputs preimages that are permutation graphs (or distance-
hereditary graphs). However it is possible that a non-permutation (non-distance-
hereditary) graph has a deck that consists of permutation graphs (distance-
hereditary graphs), though it is exceptional. Since considering this case all the
time in the main algorithm makes it complex, we attempt to get done with this
special case in subsection 4.1.

Then we present our main algorithms. The reconstruction algorithm for per-

?1 This sentense is not correct, but we use it in the algorithm. We will fix the algorithm before
the presentation.

3 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

k

2k+3

k+1 k k 2k+3 2k+2
Fig. 3 Forbidden graphs of permutation graphs are these graphs, the complements of them,

and odd-holes.

mutation graphs consists of two phases. In the first phase we assume that the
preimages are reducible. The second phase is for the case that the preimages are
irreducible and hence are uniquely orientable. The reconstructions of distance-
hereditary graphs are done only using a slightly modified first phase algorithm.
In both phases the algorithm lists up the preimage candidates, and checks if they
are really the preimages by the DECK CHECKING algorithm which we describe
in subsection 4.2.

Our main algorithms assume that the preimages are connected graphs. This as-
sumption is true on distance-hereditary graphs. However there are disconnected
permutation graphs that are preimages of some decks. Thus we consider the case
that the preimages are disconnected permutation graphs in subsection 4.5.

4.1 non-permutation, non-distance-hereditary graph preimage case
Graph G is distance-hereditary if and only if it is connected, and it has no

cycle of length more than five, no house, no domino, and no gem as an induced
subgraph4). This means that the forbidden graphs of weakly distance-hereditary
graphs are cycles of length more than five, a house, a domino, and a gem. If
a connected graph G is not distance-hereditary (it turns out that G has some

forbidden graph as an induced subgraph), and if G has a deck consisting of weakly
distance-hereditary graphs, and at least two of them are connected, then G must
be the one of a cycle of length more than five, a house, a domino, or a gem, since
otherwise some graphs in the deck have the forbidden induced subgraphs. We
can check if the input deck is a deck of a house, of a domino, or of a gem in
constant time, since the size of these graphs are constant. We can check if the
input deck is a deck of a cycle in O(n2) time, since the deck of a cycle of length
n consists of n paths of length n − 2. Thus we have the theorem below.
Theorem 3. If n weakly distance-hereditary graphs G1, G2, . . . , Gn including at
least two connected graphs have a non-distance-hereditary preimage G, we can
reconstruct G from G1, G2, . . . , Gn in O(n2) time.

Since the forbidden graphs of permutation graphs are more complicated than
those of weak distance-hereditary graphs, we need to be more careful in the case
of deck consisting of permutation graphs.

Let D be a deck consisting of n graphs G1, G2, . . . , Gn. It is clear that
G1, G2, . . . , Gn have the same number of vertices n − 1, and that the number
of vertices in a preimage G is n. Since the number of the forbidden graphs of
size n is O(1), we can check if one of them is a preimage of the input graphs in
the polynomial time with DECK CHECKING algorithm which we will describe
in the next subsection. The time complexity is O(n4), since the time complexity
of the DECK CHECKING algorithm is O(n4).
Theorem 4. If n permutation graphs G1, G2, . . . , Gn have a preimage G that
is not a permutation graph, we can reconstruct G from G1, G2, . . . , Gn in O(n4)
time.

4.2 DECK CHECKING
Since an O(n2) time isomorphism algorithm for permutation graphs19), and an

O(m) time isomorphism algorithm for distance-hereditary graphs16) are known,
developing polynomial time DECK CHECKING algorithms for permutation
graphs and distance-hereditary graphs are not very difficult.

Given a deck D that consists of permutation graphs, and given a preimage
candidate G = (V,E) which is a permutation graph, we first prepare the deck
D̂ of G in O(|V |(|V | + |E|)) time. We then add a universal vertex to every
graph in D and D̂ in order to make each graph connected. Note that for any

4 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

permutation graph G, u(G) is also a permutation graph. Since the disjoint union
of permutation graphs is clearly a permutation graph, we can check if D and D̂

are equivalent in O((|V |(|V | + 1))2)=O(|V |4) time by applying the isomorphism
algorithm for permutation graphs to the disjoint union of graphs in D and the
disjoint union of graphs in D̂. Now we obtain the theorem below.
Theorem 5. There is O(|V |4) time DECK CHECKING algorithm for a deck
that consists of permutation graphs, and a preimage candidate G = (V,E) which
is a permutation graph.

We have to be more careful in the case of distance-hereditary graphs, since
a distance-hereditary graph must be connected, and adding a universal vertex
breaks (weakly) distance-hereditariness.
Lemma 2. For two weakly distance-hereditary graphs G1 and G2, we can check
if G1 and G2 are isomorphic in O(n+m) time, where n is the number of vertices
in G1 (and of course in G2), and m is the number of edges in G1.

Proof. The O(m) isomorphism algorithm in16) does not explicitly use the prop-
erty that distance-hereditary graphs are connected. It makes two DH-trees corre-
sponding to the two input distance-hereditary graphs, and compare them. Each
node of a DH-tree corresponds to an operation of adding twins or adding pen-
dants, and the root corresponds to K2. We only have to replace the root K2

by K1. Since adding k − 1 weak twins to K1 results in k isolated vertices, we
can generate any disconnected weakly distance-hereditary graphs from K1. It
is straightforward to modify the algorithm in16) to handle such a case without
affecting the time complexity.

Moreover the following lemma is useful.
Lemma 3. Given two sets of weakly distance-hereditary graphs S1 =
{G1, . . . , Gk} and S2 = {G′

1, . . . , G
′
k}, we can determine if S1 is equal to S2

in O(k(n + m)) time, where n is the maximum number of vertices in G1, . . . , Gk

and G′
1, . . . , G

′
k, and m is the maximum number of edges in G1, . . . , Gk and

G′
1, . . . , G

′
k.

Proof. We extend the DH-tree for a weakly distance-hereditary graph described
above to the DH-tree for a set S of weakly distance-hereditary graphs. The root

corresponds to an empty graph, and the DH-trees of all the elements in S are
the children of the root. Then we can use the similar algorithm to that in16).

Now we describe DECK CHECKING algorithm for distance-hereditary graphs.
Given a deck D that consists of weakly distance-hereditary graphs at least two
of which are connected, and given a distance-hereditary preimage candidate G =
(V,E), we prepare the deck D̂ of G in O(|V | · |E|) time. We can check if D and
D̂ are equivalent in O(|V | · |E|) time by Lemma 3. We thus obtain the theorem
below.
Theorem 6. There is O(|V | · |E|) time DECK CHECKING algorithm for a deck
that consists of weakly distance-hereditary graphs at least two of which are con-
nected, and for a preimage candidate G = (V,E) which is a distance-hereditary
graph.

4.3 reducible or prunable preimage
A reducible permutation graph has twins. A distance-hereditary graph has

twins or a pendant4). It is easy to develop a polynomial time PREIMAGE CON-
STRUCTION algorithm for the deck of a graph that has twins or a pendant.
If a preimage has twins, we can reconstruct it by copying every vertex in the
deck and checking if the resulting graph is a preimage by DECK CHECKING
algorithm. If a preimage has a pendant, we can reconstruct it by adding a degree
one vertex to every vertex in the deck and checking if it is a preimage by DECK
CHECKING algorithm. Thus we have the theorems below.
Theorem 7. Given a deck D = {G1, . . . , Gn} consisting of permutation graphs,
we can list up every reducible permutation graph whose deck is D, if any, in
O(n6) time, where n is the number of graphs in D (equivalently the number of
vertices in a preimage).

Proof. Copying every vertex in every graph in D requires O(nm) time, where m is
the number of edges in a preimage, and is thus O(n2). Each DECK CHECKING
costs O(n4) time. The maximum number of DECK CHECKING executions is
O(n2). Hence we need O(nm + n4 · n2)=O(n6) time.

Theorem 8. Given a deck D = {G1, . . . , Gn} consisting of weakly distance-
hereditary graphs at least two of which are connected, we can list up every

5 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

distance-hereditary graph whose deck is D, if any, in O(n3m) time, where n

is the number of graphs in D, and m is the number of edges in a preimage.

Proof. Copying every vertex in every graph in D requires O(nm) time. Adding
a pendant to each vertex in every graph in D requires O(n2) time. Each DECK
CHECKING costs O(nm) time. The maximum number of DECK CHECKING
executions is O(n2). Hence we need O(nm + n2 + nm · n2)=O(n3m) time.

4.4 uniquely orientable preimage
We consider the case that a preimage of the deck is uniquely orientable in this

subsection. It is possible that a graph obtained by removing a vertex from a
uniquely orientable permutation graph is not uniquely orientable. Consider the
graph obtained by removing the vertex 1 from the graph in Fig. 1. It seems
difficult to reconstruct a uniquely orientable permutation graph owing to this
fact. First we show that we can get over this difficulty.
Lemma 4. There is a connected uniquely orientable permutation graph in the
deck of a connected uniquely orientable permutation graph.

Proof. Let G be a connected uniquely orientable permutation graph. We assume
that there is no connected uniquely orientable permutation graph in the deck D

of G. It is easy to see that every graph in D is a permutation graph, and there
exist at least two connected graphs in D (considering graphs that are obtained
from G by removing vertices that are leaves of a spanning tree of G). Let G′

be a connected permutation graph in D. Since G′ is not uniquely orientable,
G′ must have twins. In G, the pair of vertices that are twins in G′ are almost
twins to each other but one of them has one another neighbor, since otherwise
G has twins and hence is not uniquely orientable. Denote such vertices by u and
v (we assume that the degree of u is one greater than that of v). We show that
the graph G′′ obtained by removing v from G is uniquely orientable. Since G

is uniquely orientable, for every pair of edges e and f in G′′ there is an edge
sequence P = (e1 = e, e2, . . . , ek = f) such that ei is an edge in G, and ei and
ei+1 are Γ-related in G. Since G′′ is not uniquely orientable, some of edges in P

must be incident to v. There are two cases.
( 1 ) u and v are weak twins. In this case, there is an index i ∈ {2, . . . , k − 2}

such that ei and ei+1 are incident to v. Denote ei by {p, v} and ei+1 by
{v, q}. Since {p, v} and {v, q} are Γ-related, so are {p, u} and {u, q}. Thus
considering an edge sequence (e1, . . . , ei−1, {p, u}, {u, q}, ei+2, . . . , ek), G′′

is uniquely orientable.
( 2 ) u and v are strong twins. If u and v are connected, it seems possible that

some edge ei is incident to v (we denote ei by {p, v}), and ei−1 or ei+1 is
equal to {u, v}. However this is not the case, since there exists an edge
{p, u}, and hence {p, v} and {u, v} are not Γ-related. Therefore the same
argument to the case 1 gives a proof that G′′ is uniquely orientable.

It is clear that G′′ is a connected permutation graph in D. Thus the fact that
G′′ is uniquely orientable contradicts the assumption.

Now we consider an algorithm which is given a connected uniquely orientable
permutation graph G′ as the input and outputs all the connected uniquely ori-
entable permutation graphs whose decks include G′. From the definition of per-
mutation graph, the lemma below is clear.
Lemma 5. Let G = (V,E) be a permutation graph, and G′ be a permutation
graph obtained by removing a vertex v ∈ V from G. Denote a pair of vertex
orderings that identifies G by P and Q. Then P − v and Q − v identify G′.

Thus we have the lemma below.
Lemma 6. Given a connected uniquely orientable permutation graph G′ =
(V ′, E′), we can list up all the connected uniquely orientable permutation graphs
whose deck include G′ in O(|V ′|2) time.

Proof. Let G = (V,E) be a connected uniquely orientable permutation graph
whose deck includes G′. Denote by v the vertex in G and not in G′. Let P

and Q be a pair of vertex orderings of G that identifies G. Since G is uniquely
orientable, vertex orderings that identify G are only P and Q, and P and Q. By
lemma 5 P − v and Q − v identify G′, and P − v = P − v and Q − v = Q − v

identify G′. Since G′ is uniquely orientable, no other pair of vertex orderings
identify G′. Thus if P ′ and Q′ are vertex orderings that identify G′, one of the
two pairs of the vertex orderings that identify G must be in the form P ′ +i v and
Q′ +j v for some i ∈ {1, . . . , |V |} and j ∈ {1, . . . , |V |}. Given G′ we can calculate
P ′ and Q′ in O(|V ′| + |E′|) time14). Hence we can list up P ′ +i v and Q′ +j v

6 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

in O(|V ′| + |E′| + |V |2)=O(|V ′|2) time. Note that each output graph is in the
form of edge difference from the graph previously output. Otherwise we cannot
output each graph in amortized constant time. Note that the graph identified by
P ′ +i v and Q′ +j v, and the graph identified by P ′ +i+1 v and Q′ +j v differ in
one edge.

From the lemma above, we have a polynomial time algorithm for listing all
connected uniquely orientable permutation graphs whose deck is the input.
Theorem 9. There is an O(n6) time algorithm for listing all connected uniquely
orientable permutation graphs whose deck is the input, where n is the number of
vertices in a preimage.

Proof. We can check if a graph G = (V,E) has twins in O(|V | + |E|) time18).
Hence we can find a connected uniquely orientable permutation graph in a deck
in O(n(n + m)) time, where m is the number of edges in a preimage, and is
O(n2). Once such a graph G′ is found, the remaining thing to do is only listing
graphs whose deck include G′ and checking if each of them is a preimage with
DECK CHECKING algorithm. Note that we only need one G′, not all the
connected uniquely orientable permutation graphs in the deck. Thus executing
DECK CHECKING at most O(n2) times is enough.

4.5 disconnected preimage case
Disconnected graphs are forbidden by the definition of distance-hereditary

graphs. Thus we only treat the case that the preimage G is a disconnected
permutation graph in this subsection.

It is clear that if there are at most one connected graph in a given deck, it is
possible that the deck has disconnected preimage, and it is impossible that the
deck has connected preimage. If there is at least two connected graphs in the
deck, the deck has no disconnected preimage.

When G is reducible, since our algorithm described in subsection 4.3 does not
use the property that G is connected, we simply execute our previously described
algorithm.

Now we mention in the case that G is irreducible. Since every connected com-
ponent of G must be uniquely orientable, there is a uniquely orientable graph G′′

obtained by removing some vertex v from a connected component of G. There
must be a graph G′ in the deck of G that has G′′ as a connected component. Of
course every connected component of G′ is uniquely orientable. The number of
ways for inserting a vertex to a pair of vertex orderings to some connected com-
ponent in G′ is O(n2). Thus we can use the similar algorithm to that described
in subsection 4.4.
Theorem 10. There is an O(n6) time algorithm for finding the disconnected
permutation graph whose deck is the input, where n is the number of vertices in
the preimage.

Note that if the preimage is disconnected, the graph reconstruction conjecture
is true. There is thus at most one preimage in this case.

5. Concluding remarks

We have the main theorems by joining theorems in the previous sections.
Remember that the size of the input is O(nm), not O(n + m). Since we can
use PREIMAGE CONSTRUCTION algorithms for LEGITIMATE DECK and
PREIMAGE COUNTING, we also have the LEGITIMATE DECK and PREIM-
AGE COUNTING algorithms running in the same time complexity for permu-
tation graphs. In the case of distance-hereditary graphs the time complexity for
LEGITIMATE DECK is the same as that for PREIMAGE CONSTRUCTION.
However PREIMAGE COUNTING may cost O(n4m) time, since we have to
check if we count an identical graph twice. Our argument in this paper only en-
sures that the number of preimages are at most O(n2). Thus the time complexity
for the checking is O(n2 · n2 · m), where m is the time complexity for isomor-
phism. Note that in the case of permutation graphs the time complexity for this
checking is O(n6). Also note that if the graph reconstruction conjecture is true,
we do not have to execute these checkings for PREIMAGE COUNTING. These
theorems do not help directly the proofs of the graph reconstruction conjecture
on permutation graphs, and distance-hereditary graphs. The conjecture on these
classes still remains to be open.

Note: After concluding this manuscript, we found a bug; as noted in page 3,
we use a claim that R(G) is uniquely orientable if G is a connected permutation
graph. But this claim is not correct. We will fix the bug in the representation.

7 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15



IPSJ SIG Technical Report

References

1) K. A. Baker, P. C. Fishburn, and F. S. Roberts: Partial orders of dimension 2.
Networks, vol. 2 (1971) 11–28.

2) B. Bollobás: Almost every graph has reconstruction number three. Journal of
Graph Theory, vol. 14 (1990) 1–4.

3) J. A. Bondy: A graph reconstructor’s manual. Surveys in Combinatorics, London
Mathematical Society Lecture Note Series, vol. 166 (1991) 221–252.

4) H. Bandelt, and H. M. Mulder: Distance-hereditary graphs. Journal of Combina-
torial Theory, Series B, vol. 41 (1986) 182–208.

5) C. J. Colbourn: On testing isomorphism of permutation graphs. Networks, vol. 11
(1981) 13–21.

6) S. Even: Algorithmic Combinatorics. Macmillan, New York, 1973.
7) T. Gallai: Transitiv orientierbare graphen. Acta Mathematica Hungarica, vol. 18

(2005) 25–66.
8) D. L. Greenwell, and R. L. Hemminger: Reconstructing the n-connected compo-

nents of a graph. Aequationes Mathematicae, vol. 9 (1973) 19–22.
9) F. Harary: A survey of the reconstruction conjecture. Graphs and Combinatorics,

Lecture Notes in Mathematics, vol. 406 (1974) 18–28.
10) E. Hemaspaandra, L. Hemaspaandra, S. Radziszowski, and R. Tripathi: Complex-

ity Results in Graph Reconstruction. Discrete Applied Mathematics, vol. 152 (2007)
103–118.

11) P. J. Kelly: A congruence theorem for trees. Pacific Journal of Mathematics, vol.
7 (1957) 961–968.

12) M. Kiyomi, T. Saitoh, and R. Uehara: Reconstruction of interval graphs. COCOON
2009, to appear.

13) D. Kratsch and L. A. Hemaspaandra: On the complexity of graph reconstruction,
Mathematical Systems Theory, vol. 27 (1994) 257–273.

14) R. M. McConnell, and J. Spinrad: Modular decomposition and transitive orienta-
tion. Discrete Mathematics, vol. 201 (1999) 189–241.

15) B. D. McKay: Small graphs are reconstructible. Australasian Journal of Combi-
natorics, vol. 15 (1997) 123–126.

16) S. Nakano, R. Uehara, and T. Uno: A new approach to graph recognition and
applications to distance-hereditary graphs. Journal of computer science and tech-
nology, vol. 24 (2009) 517–533.

17) M. von Rimscha: Reconstructibility and perfect graphs. Discrete Mathematics, vol.
47 (1983) 283–291.

18) J. P. Spinrad: Efficient Graph Representations, AMS, 2003.
19) J. Spinrad, and J. Valdes: Recognition and isomorphism of two-dimensional partial

orders. Lecture Notes in Computer Science, vol. 154 (1983) 676–686.
20) W. T. Tutte: On dichromatic polynomials. Journal of Combinatorial Theory, vol.

2 (1967) 310–320.

8 c© 2009 Information Processing Society of Japan

Vol.2009-AL-126 No.5
2009/9/15


