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Submodular Cost Set Cover Problem

SATORU ITWATA ! and KryoHITo NAGANOT?2

This paper addresses the problems of minimizing nonnegative submodular
functions under covering constraints, which generalize the vertex cover, edge
cover, and set cover problems. We give approximation algorithms for these
problems exploiting the discrete convexity of submodular functions. We first
present a rounding 2-approximation algorithm for the submodular vertex cover
problem based on the half-integrality of the continuous relaxation problem,
and show that the rounding algorithm can be performed by one application
of submodular function minimization on a ring family. We also show that a
rounding algorithm and a primal-dual algorithm for the submodular cost set
cover problem are both constant factor approximation algorithms if the maxi-
mum frequency is fixed. In addition, we give an essentially tight lower bound
on the approximability of the submodular edge cover problem.

1. Introduction

Let N be a finite nonempty set of cardinality n. A real-valued set function p on NV
is submodular if it satisfies p(X) + p(Y) > p(X UY) 4+ p(X NY) for all XY C N.
In the areas of combinatorial optimization, game theory, and machine learning and
various other fields, submodular set functions are recognized as fundamental tools and
interesting subjects of research. Besides, submodular functions and convex functions
are closely related: a set function is submodular if and only if its Lovédsz extension is
convex?®.

The first polynomial algorithm for submodular function minimization, described by
Grotschel, Lovasz, and Schrijverm)‘l?’)7 relies on the ellipsoid method. Combinatorial
strongly polynomial algorithms for minimizing submodular functions were developed
later by Iwata, Fleischer, and Fujishigels) and by Schrijver30). These combinatorial
algorithms have been improved in time complexity!”:19):29),

In contrast, the maximization problem of submodular functions is NP-hard, as it con-
tains the maximum cut problem. Approximation algorithms for the maximization have
been extensively studied even under some constraints including knapsack and matroid
constraints®-?2:34)

Constrained submodular function minimization problems have also been investigated
in various contexts. It is easy to see that we can find a nonempty proper subset X
that minimizes p(X) in polynomial time. When the feasible region F C 2V is a ring
family, that is, F is a collection of subsets of N closed with respect to union and inter-
section, the minimization problem can be solved in polynomial time (see*?)). Goemans
and Ramakrishnan'?) dealt with the case when the feasible region is a parity family.
Recently, Svitkina and Fleischer®® considered the submodular function minimization
problem with cardinality lower bound and gave an o(y/n/Inn) lower bound for the
approximability.

This paper addresses the problems of minimizing nonnegative submodular functions
under covering constraints. These problems described below generalize the classical
covering problems: the set cover, vertex cover, edge cover problems.

Submodular Cost Set Cover:
Let U be a finite set of cardinality ¥ and S = {Si,...,S.} be a collection
of its subsets indexed by N = {1,...,n}. For a subset X C N we denote
Sx = U{Si | i € X}. We say that a subset X C N is a set cover if Sx = U.
Given a nonnegative cost function ¢ : N — R, the set cover problem asks for find-
ing a set cover X C N that minimizes the cost ¢(X) = »._ c(9). This problem is
known to be solved approximately in polynomial time within a factor of O(Ink) or
the maximum frequency 7 = max.cv |[{i | v € S;}|. Given a nonnegative submod-

ular function p : 2V — R, the submodular set cover problem asks for finding a set

1 0000, Kyoto University T
cover X C N that minimizes the cost p(X).

2 000000, Tokyo Institute of Technology

1 © 2009 Information Processing Society of Japan



goooooooog
IPSJ SIG Technical Report

Submodular Vertex Cover:
Let G = (V,E) be a graph with vertex set V and edge set E. A vertex subset
X C V is called a vertex cover in G if every edge in E is incident to a vertex
in X. Given a nonnegative cost function ¢ : V' — R, the vertex cover problem
asks for finding a vertex cover X C V that minimizes the cost c¢(X) = _ c(v).
This problem is known to be NP-hard, and efficient 2-approximation algorithms are
known'). Given a nonnegative submodular function p : 2V — R, the submodular
vertezx cover problem asks for finding a vertex cover X C V that minimizes the cost
p(X). This is a special case of a submodular cost set cover problem with U = E
and N =V.
Submodular Edge Cover:

Let H = (W, F) be a graph with vertex set W and edge set F.. An edge subset
X C F is called an edge cover in H if every vertex in W is incident to an edge in
X. Given a nonnegative cost function ¢ : FF — R, the edge cover problem asks
for finding an edge cover X C F' that minimizes the cost ¢(X) =) _ c(e). This
problem is known to be polynomial time solvable by graph matching (see, e.g.,%")
[§19.3]). Given a nonnegative submodular function p : 2°" — R, the submodular
edge cover problem asks for finding an edge cover X C F' that minimizes the cost
p(X). This is a special case of the submodular cost set cover problem with U = W
and N = F.

A different type of generalization of the set cover problem was introduced by
Hayrapetyan, Swamy, and Tardosl‘l)7 in which a submodular penalty cost was im-
posed. Chudak and Nagan03) developed an approximation algorithm for this problem
using the Lovész extension and the non-smooth convex minimization algorithms of Nes-
terov>"2®) . The present paper aims at providing another effective use of the Lovisz
extension in design of approximation algorithms.

In this paper, we first introduce a natural convex programming relaxation of the sub-
modular vertex cover problem using the Lovasz extension and prove that the relaxation
problem has a half-integral optimal solution. This extends the result of Nemhauser
and Trotter®® for the vertex cover problem. Accordingly, a rounding algorithm for the
vertex cover problem achieves an approximation factor of 2, and we further show that
it can be performed by one application of submodular function minimization.

In addition, we describe approximation algorithms for the submodular cost set cover
problem. Extending the algorithm of Hochbaum'®, we devise a rounding algorithm
based on a convex programming relaxation. We also present a primal-dual algorithm
that extends the algorithm of Bar-Yehuda and Even®). Both of these algorithms success-
fully achieve an approximation guarantee of 7. The analysis of our rounding algorithm
implies that the nonnegative submodular function p can be replaced by another sub-
modular function p° that is monotone, i.e., p°(X) < p°(Y) for X C Y C N. Each

Vo0l.2009-AL-126 No.3
2009/9/15

evaluation of p°, however, requires submodular function minimization. For the sake
of efficiency, our approximation algorithms directly deal with general nonnegative sub-
modular function without relying on this reduction.

Assuming the unique games conjecture, these approximation factors are optimal even
for the vertex cover problem and the set cover problem (Khot and Regev®).

One can obtain a k-approximation solution for the submodular cost set cover prob-
lem in a very simple way. Interestingly, we will see that this bound k is an essentially
tight bound on the approximability for the submodular cost set cover problem. This
will be shown by exhibiting the difficulty of the submodular edge cover problem. Our
analysis depends on a technique similar to those of Goemans et al'® and Svitkina and
Fleischer®®, and utilizes a celebrated result of ErdSs and RényiS) on random graphs.
We also show that the submodular edge cover problem is NP-hard, whereas the edge
cover problem can be solved efficiently by weighted matching algorithms.

A recent paper by Koufogiannakis and Young®") provides algorithms for a general
framework that include the set cover problem with monotone submodular cost func-
tion. Their algorithm achieves the same approximation guarantee of 7. In contrast, we
deal with nonnegative submodular cost function that is not necessarily monotone.

Simultaneously with us, Goel, Karande, Tripathi, and Wang® deal with the problems
of minimizing monotone submodular functions under various combinatorial constraints
and their extensions. In particular, they give a 2-approximation algorithm for the
submodular vertex cover based on the ellipsoid method, and proved that the optimal
approximation factor is indeed 2.

The present paper is organized as follows. Section 2 provides preliminaries on sub-
modular functions and associated polyhedra. In Section 3, we give an efficient rounding
2-approximation algorithm for the submodular vertex cover problem. In Section 4, we
describe approximation algorithms for the submodular cost set cover problem. Finally,
in Section 5, we present hardness results on the submodular edge cover problem.

2. Submodular Functions and Convexity

In this section, we provide preliminaries on submodular functions and associated
polyhedra.

We denote N = {1, ..., n}. Let f: 2" — R be a set function with f(§) = 0. The
function f is called nonnegative if f(X) > 0 for each X C N. The function f is called
monotone if f(X) < f(Y) for each pair of subsets X, Y C N with X CY C N. Obvi-
ously, a monotone function f with f()) = 0 is nonnegative. Throughout this paper, we
assume that p : 2% — R is a nonnegative submodular function with p(0) = 0, which is
not necessarily monotone. We also assume that the function p is given by a value-giving
oracle. Note that the nonnegative submodularity of p implies the subadditivity, that is,
we have p(X) +p(Y) > p(X UY) for all X, Y C N. For a vector z € R" and a subset
X C N, we denote 2(X) = ). z(i).
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Associated with the submodular function p, we consider a polyhedron
P(p) ={z |z € RY, 2(Y) < p(Y), VY C N},

which is called a submodular polyhedron. A vector in P(p) is called a subbase. For any
subbase z, we say X C N is z-tight if z2(X) = p(X). The submodularity of p implies
that for any subbase z the collection of all z-tight subsets is closed under union and
intersection.

Linear optimization over the submodular polyhedron can be solved efficiently by the
greedy algorithm of Edmonds®. Given a nonnegative vector p € RY, consider a linear
ordering L = (i1,--- ,in) such that p(i1) > p(iz) > --- > p(in). For any i; € N, we
denote L(i;) = {i1,--- ,i;}. The greedy algorithm with respect to L generates a vector
21 € RY determined by

zr (i) == p(L(2)) — p(L() \ {7}). ey
Then zz is an extreme point of P(p) maximizing the inner product (p,z) =
> ien P(9)2(7) among z € P(p).

Let p1 > p2 > -+ - > pm be the distinct values of p. For each j =1,...,m, we denote
Nj ={i|p(i) > p;}. We now define p(p) by
p(p) = 37, (P — pi+1)p(N)),
where pm,m41 = 0. The function ﬁ: Rf — R is known as the Lovdasz extension.

Note that the above definition of p is free from the submodularity of p. For a set
function f : 2¥ — R in general, we define f : RY — R in the same way. Then
]?(xx) = f(X) holds for any X C N, where yx € R" is the characteristic vector
defined by xx (i) = 1 for ¢ € X and xx (i) =0 for i € N\ X. Hence we may regard f
as a natural extension of f. Moreover, by definition, f is positively homogeneous, that
is, f(ap) = af(p) holds for any @ > 0 and p € RY.

For submodular functions, the validity of the greedy algorithm® shows that

p(p) = max{(p, z) | z € P(p)}, 2)

which implies the convexity of P

The restriction of f to the hypercube [0,1]" can be interpreted as follows. A linear
ordering L corresponds to the simplex whose extreme points are given by the charac-
teristic vectors of L(¢) for 7 € N and the empty set. Since there are n! linear orderings
of N, the hypercube [0,1]" can be partitioned into n! congruent simplices obtained by
this way. Determine the function values of f in each simplex by the linear interpolation
of the values at the extreme points. The resulting function f is a continuous function
on the hypercube.

The following theorem provides a connection between submodularity and convexity.
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Theorem 1 (Lovész23)). A set function f is submodular if and only z'ffis convez.
3. The Submodular Vertex Cover Problem

In this section, we introduce a natural continuous relaxation of the submodular vertex
cover problem using the Lovész extension of p : 2V — R. We prove that the relaxation
has a half-integral optimal solution and the rounding algorithm achieves an approxima-
tion guarantee of 2 for the submodular vertex cover problem. Furthermore, we show
that a half-integral optimal solution can be obtained by one execution of submodular
function minimization over a ring family.

3.1 Half-integrality

We start with the vertex cover problem, which can be formulated as an integer pro-
gramming problem. The linear programming relaxation is given as follows.

(LPR) Minimize ) ;. c(v)z(v)

subject to z(u) + z(v) > 1 ((u,v) € E)
z(v) >0 (veV).

Nembhauser and Trotter?®) showed that (LPR) has a half-integral optimal solution. This
can be derived from the following lemma in matrix theory.

Lemma 2 (¥ [Lemma 6.1]). Let A be a nonsingular {0,+1}-matriz each row and
each column of which has at most two nonzero entries. Then every entry of the inverse
matriz A™' is a half integer.

The half-integrality result on (LPR) naturally leads to an LP-rounding 2-
approximation algorithm for the vertex cover problem. Bar-Yehuda and Even?® devel-
oped a primal-dual 2-approximation algorithm that runs in O(|E|) time.

We now introduce a continuous relaxation (CPR) of the submodular vertex cover:

(CPR) Minimize p(z)
subject to z(u) + z(v) > 1 ((u,v) € E)
z(v) >0 (veV).
This problem can be solved in polynomial time by the ellipsoid method.

Lemma 3. The relazation problem (CPR) has a half-integral optimal solution.

Proof. Let z° be an optimal solution of (CPR). Consider a linear ordering L =
(v1,...,vn) such that z°(v1) > z°(v2) > --+ > 2°(v,). Then z° is an optimal solu-
tion to the following linear programming problem.

(SLP) Minimize p(z)
subject to z(u) + z(v) > 1 ((u,v) € E)

(
z(vj) —z(vj41) 20 (j=1,...
z(v,) > 0.

,n—1)
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Note that the objective function is linear in the feasible region. The coefficient matrix
of (SLP) is a {0, £1}-matrix, each row of which has at most two nonzero entries. By
Lemma 2, any nonsingular submatrix has a half-integral inverse matrix. Hence (SLP)
has a half-integral optimal solution z*, which is also optimal to (CPR). O

3.2 A rounding algorithm

Let z* be a half-integral optimal solution to (CPR). Then X~ := {v | 2" (v) > 1} is
a vertex cover. The following theorem shows that X* is a 2-approximation solution for
the submodular vertex cover problem.

Theorem 4. The verter cover X* satisfies p(X™) < 2p(X) for any vertez cover X.

Proof. The half-integral optimal solution z* can be expressed by x = ZXX’ + %XX*:
where X' := {v | 2" (v) = 1}. Then p(z*) = £p(X') + 1p(X*) > Lp(X*) holds. Since
p(x*) is the optimal value of the relaxation problem (CPR), we have plz™) < plxx) =

p(X) for any vertex cover X in G. Therefore, we obtain p(X*) < 2p(z*) < 2p(X). O

We now discuss a combinatorial algorithm for finding a half-integral optimal solution
to the relaxation problem (CRP). Let V' and V'~ be the copies of V. We denote by
T € VT and v~ € V™~ the copies of v € V. We also denote the copies of X C V by
X+ C V1t and X~ C V™. Construct a bipartite graph Gi (VF,V~; E*) with vertex
sets VT and V™. The edge set BT is given by E* = {(ut,v7), (v+,u_) | (u,v) € E}.
For a vertex cover (X, Y ™), we define its rank by p(X) + p(Y). Observe that if
(X*,Y7) is a vertex cover, then (XTNYT, X" UY )and (XTUYT, X" NY") are
also vertex covers.
Lemma 5. Let (X1,Y7) be a vertez cover in GF with minimum rank. Then
= 2(xx + Xxv) is a half-integral optimal solution of (CPR).

Proof. For any half-integral feasible solution z of (CPR), we assign a pair of ver-
tex subsets X = {v | z(v) = 1} and Y = {v | 2(v) > 1}. Then (X1, Y7) is
a vertex cover in GT, and p(z) = 1[p(X) + p(Y)] holds. Conversely, for any ver-
tex cover (X1, Y7) in G¥, z = f(xx + xv) is a feasible solution of (CPR), and
pla) = Lp(X NY)+ p(X UY)] < L[p(X) + p(Y)] holds. Therefore, a half-integral
optimal solution z* of (CPR) can be obtained by z* = 1(xx + xv) from a minimum
rank vertex cover (X*, V™) in G*. O

For a vertex subset Z C V, let ['(Z) denote the set of vertices adjacent to Z in G,
namely I'(Z) = {v | 3u € Z, (u,v) € E}. For any X, Y, Z C V with Z = V \ X, the
pair (XT, Y7) is a vertex cover in GT if and only if ['(Z) C Y. We now consider a
family D of subsets D = ZtUY ™ of VUV~ such that I'(Z) C Y. Then D forms a ring
family, i.e., D is closed with respect to union and intersection. Note that (XT,Y ") is a
vertex cover in G¥ if and only if X* = V*\Dand Y~ = DNV~ for some D € D. For
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each D= ZTUY™ in D, we assign f(D) := p(V \ Z) + p(Y). Then f is a submodular
function on D. Thus finding a minimum rank vertex cover reduces to minimizing the
submodular function f on the ring family D. Therefore, by Lemma 5, a half-integral
optimal solution of (CPR) can be obtained by one execution of submodular function
minimization over a ring family.

4. The Submodular Cost Set Cover Problem

In this section, we present approximation algorithms for the submodular cost set cover
problem. For each u € U, we denote N, = {i | u € S;}. The maximum frequency 7 is
given by n = max{|N.| | v € U}. Note that the special case with n = 2 is essentially
the submodular vertex cover problem, for which we have presented a 2-approximation
algorithm in §3.

For the standard set cover problem (which means p = ¢), it is known that the greedy
algorithm achieves an approximation guarantee of O(In k) (see, e.g.,>®). As for the sub-
modular cost set cover problem, the performance of the greedy set cover algorithm is no
better than a simple k-approximation algorithm of §4.1. In contrast, the LP-rounding
algorithm of Hochbaum'® can be extended to achieve the same performance guarantee
of the maximum frequency 7 for the submodular cost set cover problem. The resulting
algorithm, presented in §4.2, requires solving a convex optimization problem by the
ellipsoid method. To avoid this, we also devise a factor 7 primal-dual approximation
algorithm in §4.3 by extending the algorithm of Bar-Yehuda and Even®).

4.1 A simple algorithm

We start with a simple approximation algorithm. For uw € U, let X, C N denote a
minimizer of p(X) among all the subsets X C N that covers u. Then X* =[], ., Xu
is a set cover.

Proposition 6. The set cover X* satisfies p(X*) < kp(X) for any set cover X.

Proof. Let X be an arbitrary set cover. By the definition of X, we have p(X.) < p(X)
for each u € U. The subadditivity of p implies that p(X*®) < ZueU p(X.) <Ekp(X). O

For each u € U, X, can be computed by applying submodular function minimiza-
tion |V, | times. Thus, Proposition 6 suggests a strongly polynomial k-approximation
algorithm for the submodular cost set cover problem.

4.2 A rounding algorithm

Consider a convex programming relaxation of the submodular cost set cover:

(SCP) Minimize p(z)
subject to .y x(i) >1 (u€U)
z(i) 20 (i€ N).
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This problem can be solved in polynomial time with the aid of the ellipsoid method.
Let p° : 2¥ — R be defined by

p(X) = min{p(2) | XCZC N} (X CN).
Clearly, p° is monotone. It is known that p° is submodular (see, e.g.,®) [Section 3.1(b)]).
By definition, p(X) > p°(X) holds for all X C N. Therefore, for all z € RY we have
p(x) > p°(z). For each X C N, let X° denote the unique minimal subset Z such that
X CZ C N and p(Z) = p°(X). Then p°(X) = p(X°) holds for any X C N.

Let z* € R” be an optimal solution to (SCP). Then T = {i | £*(i) > 1/n} is a set
cover, and so is T°. Note that T° can be obtained by executing submodular function
minimization. The following theorem shows that T° is an n-approximate solution for
the submodular cost set cover problem.

Theorem 7. The set cover T° satisfies p(T°) < np(X) for any set cover X.

Proof. Since p(z*) is the optimal value of the relaxation problem (SCP), we have
p°(x*) < p(x*) < p(xx) = p(X) for any set cover X. The function p° is mono-
tone and positively homogeneous. Then it follows from nz* > xr that np°(z*) =
p°(na") > 5°(xr) = p°(T) = p(T°). Thus, we obtain p(T°) < 7p(X). O

Note that replacing p by p° does not change the optimal values of submodular cost
set cover problems. Therefore, it suffices to consider a monotone submodular function
as an objective function. Omne thing we should be careful of is that we must execute
some submodular function minimization algorithm to obtain the value of p°(X) for each
X C N. In this paper, we treat the nonnegative submodular function p directly and do
not use the monotonized function p° in algorithms.

4.3 A primal-dual algorithm
We now present a primal-dual algorithm using the relaxation problem (SCP). Given
a vector z € RY, we have p(z) = max{(z, z) | z € P(p)}. Thus, the value p(z) is equal
to the optimal value of the following dual problem with variables £(X) for all X C N.
Minimize ) . p(X) - £(X)
subject to ) .oy &(X) =x(i) (i € N)
§X)>0 (XCN).
Therefore, the problem (SCP) can be written as a linear program:
Minimize ) . p(X) - £(X)
subject to Y. v x(i) >1 (u€U)
Zx:ieng §(X)==z(i) (eN)
§X)>0 (X CN).
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Here, we neglect the redundant nonnegativity constraint of z(i) for ¢ € N. Therefore,
the dual problem to (SCP) is given as follows.

(DCP) Maximize ZueUy(u)
subject to z € P(p),
S oes, W) = 2() (i€ N),
y(u) >0 (ueUl).

The primal-dual algorithm keeps a feasible solution (y,z) of (DCP) and a subset
T C N that is z-tight. The algorithm starts with y := 0, z := 0 and T := ). Since pis a
nonnegative submodular function with p(#) = 0, this gives a feasible solution of (DCP)
and we have z(T) = p(T"). While T is not a set cover, there must be an element v € U
which is not covered by 7. The algorithm augments y(u) and z(¢) for i € N, as much
as possible without violating the constraints in (DCP). Then the algorithm updates T
to be the unique maximal set with z(7) = p(T"). The algorithm iterates this procedure
until 7" becomes a set cover. The algorithm is now described more precisely as follows.

Primal-dual algorithm for the submodular cost set cover
Step 0: Puty:=0,2:=0,and T := 0.
Step 1:  Repeat the following (1-1) to (1-4) until T covers all elements of U.
(1-1) Select an element u € U \ St and put ¥ := N,.
(1-2) Compute o := max{\ | z + Axy € P(p)}.
(1-3) Put y(u) :=y(u) + @ and z := z + axy.
(1-4) Update T to be the unique maximal set with z(T") = p(T).
Step 2: Return 7.

It is easy to see that the primal-dual algorithm indeed keeps a feasible solution of
(DCP) and a z-tight set T C N. We now analyze the running time of the primal-dual
algorithm. Since

z+ Axy € P(p) ifandonly if AXNY|<p(X)—2(X) (X CN),

the computation of « in Step (1-2) is tantamount to minimizing [p(X) — 2(X)]/|X NY|
subject to X NY # (. This minimization problem can be solved by the Newton method
within the same running time as submodular function minimization”*®). The obtained
minimizer X satisfies p(X) = 2(X)+a|X NY| and |[X NY| > 1. Note that p(T") = 2(T)
and |TNY| = 0. Then, after the subsequent update of z in Step (1-3), it holds that
2(X) = p(X) and z(T) = p(T), which implies z(X UT) = p(X UT) by the submod-
ularity of p. Therefore, T' gets larger as a result of Step (1-4). Thus, the algorithm
terminates after at most n iterations.

We now analyze the approximation ratio of the primal-dual algorithm. The following
theorem shows that the primal-dual algorithm is an n-approximation algorithm.
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Theorem 8. At the termination of the primal-dual algorithm, p(T) < np(X) holds for
any set cover X C N, where n is the mazimum frequency.

Proof. By the definition of 7, for any set cover X, we have
Yy <> Y yw)<n Y yu).
uelU i€EX u€ES; u€eU
Since T'C N is a set cover with z(T) = p(T), it follows from the feasibility of (y, z) in
(DCP) that
p(T)=2(T) =3 > y(u) <n 3 y(u).
i€T uES; welU
On the other side, for any set cover X C N, we have
p(X) 2 2(X) =30 > ylw) > 3 y(u).
i€X uES; uelU
Thus we obtain p(T") < np(X) for any set cover X. |

5. The Submodular Edge Cover Problem

This section is devoted to hardness results on the submodular edge cover problems.
The edge cover problem is solvable in polynomial time by weighted matching algorithms.
In contrast, we now show that the submodular edge cover problem is NP-hard.

Theorem 9. The submodular edge cover problem is NP-hard.

In what follows, we examine the inapproximability of the submodular edge cover
problem. Our analysis is based on a framework similar to those of Goemans et al.'®)
and Svitkina and Fleischer®®, and uses a sophisticated result on random graphs.

The simple algorithm of §4.1 achieves an approximation guarantee of k for general
submodular cost set cover problems. We will see that this factor is essentially optimal
even for the submodular edge cover problem with monotone submodular cost functions.
The following theorem is the main result of this section.

Theorem 10. Let e > 0 be any positive real number. In the value-giving oracle model,
there is no O(|W|*~%)-approzimation algorithm with polynomial number of oracle calls
for the submodular edge cover problem on a graph H = (W, F). More precisely, the sub-
modular edge cover problem cannot be approzimated within a factor of o(|W|/In? |[W]).

This result immediately implies that the submodular cost set cover problem cannot
be approximated within a factor of o(k/In” k). The proof of Theorem 10 will be given
below. The following lemma of*? is used for obtaining the inapproximability result.

Lemma 11 (*% [Lemma 2.1]). Let fi and fo be two functions defined on 2V, where
f2 is parametrized by a string of random bits R but fi1 is mot. Suppose that for any
subset X C N, chosen without knowing R, the probability over R that fi1(X) # f2(X)
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is n~“® . Then, any algorithm that calls a value-giving oracle a polynomial number of

times can find a subset X* C N such that f1(X") # fo(X™) with probability at most
—w(l)
n )

To prove Theorem 10, we will give a graph H = (W, F) and two monotone submod-
ular functions p; and ps defined on 27 such that
e The function p> is parametrized by a random subset R C F but p; is not.
e Without knowledge of R, it is difficult to find X C F such that p1(X) # p2(X).
e Tt holds that OPT; = Q(|]W|) and OPT» = O(In® |W|) with probability at least
3/4, where OPT); is the optimal value of the submodular edge cover problem for H
and p; for each ¢ =1, 2.

Then, the existence of a factor o(|W|/In* |W|) algorithm would lead to a contradiction.

A random subgraph

Let k be an even number, and let H = (W, F) be a complete graph with |W| = k.
The edge set F' is of cardinality n = %k(k —1). If X C F is a perfect matching in H,
then X C F satisfies the edge cover constraint with respect to H.

Let R C F be a random subset for which each e € F is chosen independently
with an identical probability = € [0, 1], where 7 is the parameter that will be de-
fined below. We show some properties of a random subgraph H, = (W, R). Denote
n=E[R|]] = %k(k — ).

The parameter 7 will be defined so that R contains a perfect matching with high prob-
ability. Erdés and Rényi proved the following result on random graphs (cf.?) [Theorem
VII.14]).

Theorem 12 (Erdés and Rényi®). If 7 > (Ink + 3Inlnk)/2k, then the probability
(over the choice of R) that H. = (W, R) does not have a perfect matching is o(1).

In order to evaluate the cardinality of the random subset R, we need to know the tail
distribution of the sum of Bernoulli trials. The following well-known bound is referred
to as a Chernoff bound.

Lemma 13 (Chernoff bounds (see, e.g.,2%)). Let 81, ..., Bm be independent ran-
dom variables such that Pr(B; =1) =7 and Pr(8; =0) =1—x. Let $ =" (i and
us = B[B] = mm. For a > 8uga, we have Pr(f > a) < exp(—a).

Now, we set 7 = Ink/k. Theorem 12 implies that there exists an integer ko such that
Pr(H, = (W, R) has a perfect matching) > 3,
for all k > ko. Since p = E[|R|] = 1(k — 1)Ink, we see from Lemma 13 that

Pr(|R| > 8u) < exp(—8pu)
=exp(—4(k —1)Ink) = k11, (3)
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Comparison of two submodular functions

Consider the following two set functions defined on 2%

p1(X) = min{p, | X|} (X CF),
p2(X) = min{y, | X \ R| + min{36In”k, | X N R|}} (X CF).

The function p2, but not p1, is parametrized by the random subset R. Regardless of the
choice of R, p2(X) < p1(X) for all X C F, and both p; and ps are monotone submod-
ular functions. Let OPT; denote the optimal value of the monotone submodular edge
cover problem for H = (W, F) and p; for i = 1, 2. We now evaluate the gap between
OPT; and OPT,, which plays an important role to prove Theorem 10.

Lemma 14. If Hr = (W, R) has a perfect matching, it holds that OPT1 = Q(k) and
OPT:y = O(In* k).

Proof. For any edge cover X C F, we have |X| > k/2. Since p = 2(k —1)Ink, we
have OPT; > min{u, k/2} = Q(k). Consider the case where H, = (W, R) has a per-
fect matching X. Since X C R, we have OPT» < p»(X) = min{y, 3610k, k/2} =
O(In? k). O

Note that the probability (over the choice of R) that H, has a perfect matching is at
least % for a sufficiently large k.

The other crucial element towards the proof of Theorem 10 is that, for any fixed
X C F, the probability (over the choice of R) that pi1(X) # p2(X) is quite small.

Lemma 15. Fiz any subset X C F. Let R be a random subset of F for which each
e € F is chosen independently with probability m = Ink/k. Then, the probability (over
the choice of R) that p1(X) # pa(X) is at most k=<1,

Proof. To show the assertion, we consider the case that |X| > 9u and the case that

| X| < 9pu, separately. We assume that k is sufficiently large.
(i) Suppose that | X| > 9u. Then, |R| < 8u implies p < | X\R|. Furthermore, p < |X\R)|
implies p1(X) = p2(X) = p. Thus, in view of (3), we obtain
Pr(p1(X) # p2(X)) < Pr(|R| > 8p)
< =1 _ pmw()

(if) Suppose that |X| < 9u. By the definitions of p; and p2, p1(X) # p2(X) implies
|X N R| > 361n% k. Thus,

Pr(p1(X) # p2(X)) < Pr(|X NR| > 361n° k). (4)

Clearly, the right hand side of inequality (4) is maximized with respect to X when
|X| = |9u]. Let T be an arbitrary subset of F such that |T| = [9u] and let
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¢ =E(TNR|) = |9u]. Since 9ur = 52 1In"k, we have 4In”k < p' < 2In’k.
Lemma 13 implies
Pr(|TNR| >36ln°k) =Pr(|TNR| > 8- (3In”k))
<Pr(ITNR| > 8u')
< exp(—8y') < exp(—32In* k).
Hence, for any subset X C F with |X| < 9u, we have

Pr(|X NR| > 36In° k) < Pr(|T N R| > 361n° k)
< k—321nk — k—w(l). (5

~

By (4) and (5), we have Pr(p1(X) # p2(X)) < k~“®)| completing the proof. O

Using Lemmas 11 and 15, we obtain the following.

Corollary 16. For any algorithm that calls a polynomial number of value-giving or-
acle, the probability (over the choice of R) that it can find a subset X C F such that
p1(X) # p2(X) is at most k=<1,

Proof of the inapproximability

Finally, we give a proof of Theorem 10.

Proor or THEOREM 10: Let k = |[W|. Assume, to the contrary, that there is a poly-
nomial y-approximation algorithm A for the submodular edge cover problem, where
v = o(k/In® k), which succeeds with high probability. Then, we can suppose w.l.o.g.
that A succeeds with probability at least 3/4.

We suppose that k is sufficiently large. Apply the algorithm A to the submodu-
lar edge cover problem for p, and H, and let X be an edge cover given by A. We
only consider the case where A succeeds and H. has a perfect matching, which occurs
with probability at least 1 — (1 — 2) — (1 — 2) = L. It follows from Lemma 14 that
p1(X) > OPT; = Q(k) and p2(X) < v-OPTy = O(In’k - v) = o(k). As a result, we
obtain p;(X) # p2(X) with probability at least 1/2, which contradicts Corollary 16.
a
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