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Improvements of IP Representation, Fitting and

Registration

Bo Zheng,†1 Jun Takamatsu†2 and Katsushi Ikeuchi†1

Among function-based shape representation techniques, representation in im-
plicit polynomial (IPs) focuses attention in the vision community, because
IPs are superior especially in the areas of fast fitting, few parameters, alge-
braic/geometric invariants, robustness against noise and occlusion, etc. Despite
these excellent characteristics, still IP mainly suffers from three issues: difficulty
of fine representation for complex objects, difficulty of determining moderate
degree for fitting and difficulty of being used for partial object registration.
Addressing these issues, in this paper, first a 3D IP-segment representation
method is developed even for robustly representing complex objects. Second,
an computationally efficient fitting method is proposed for adaptively estimat-
ing the IP of moderate degree to the complexity of object shapes. Third, a
computationally efficient and robust object registration method using IP gra-
dient field is presented. With these methods, this paper provides the insights
and extendible applicabilities into the theory and practice of IP representation.

1. Introduction

2D curve and 3D surface models are widely used for a variety of purposes in
computer vision and graphics. There exist efficient function-based shape rep-
resentation techniques such as B-spline, NURBS20), Rational Gaussian6), radial
basis function31) and Implicit Polynomial (IP). Among these techniques, repre-
sentation in IPs focuses attention from researchers in the vision community who,
in particular, are developing sophisticated techniques for the automatic recogni-
tion, registration and matching of 2D/3D objects. In contrast to other represen-
tations, IPs are superior especially in the areas of fast fitting, few parameters, al-
gebraic/geometric invariants, robustness against noise and occlusion, etc. There-
fore, representing 2D and 3D data sets with implicit polynomials (IPs) is currently
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attractive for such applications as fast shape registration2),4),13),21),25),26),28),29),
recognition12),15),17),24),25),33),34), smoothing and denoising22),28), 3D reconstruc-
tion11), image compression7), and image boundary estimation27).

Despite the excellent characteristics, still IP mainly suffers from the follow-
ing the issues on following three aspects that greatly limit its applicability and
urgently require to be addressed:
• IP representation – difficulty for modeling complex objects

Objects obtained by vision modalities are often very precise and thus com-
plex. Unfortunately, the prior methods2),13),28),29) which used one polynomial
for representing a complex object are often restricted, and generating an IP
even with high degrees is nearly impossible to give fine shape representation
for a complex object due to numerical instability and high computational
cost.

• IP fitting – difficulty in determining a moderate IP degree and achieving
global/local stability
There have been great improvements concerning IP fitting methods with its
increased use during the late 1980s and early 1990s12),29); Recently, new ro-
bust and consistent fitting methods like 3L fitting2), gradient-one fitting28)

and Rigid regression22),28) make them feasible for object recognition tasks.
However, unfortunately, these methods require that the degree of IP must
be determined before handling fitting and fixed in the fitting procedure, and
thus they are difficult to determine a moderate degree for a complex object.
Furthermore IP representation suffers from global instability that many re-
dundant zero-level sets are generated around the desired one. This makes the
fitting result nearly impossible to be interpreted in the desired region space.

• IP registration – difficulty of being used for partial object registration
The most popular registration approaches are the Iterative Closest Point
(ICP) based methods1),18). ICP-based methods are effective to the fine reg-
istration, but inevitable to require the extra computation for finding the
point-wise correspondences. Recently, distance field is considered to be con-
structed for achieving the registration10),16) that needs to spend much mem-
ory to preserve the distance field for 3D models and the support region for
registration is limited in the regions where distance field has been generated.

1 c© 2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.4
2009/6/9



IPSJ SIG Technical Report

Compare to these method, prior work reported that IP model is more at-
tractive to coarse registration with higher performance derived by a single
(non-iterative) computation26),30). However the registration of using IP is
only applied into global registration, that is, it is only suitable to deal with
the case when two objects are globally modeled but not partially overlapped,
which limited thus IP registration only into some specific applications23).

This paper focuses on addressing the above three issues. For the first issue,
we propose a IP-segment representation method against the inaccuracy when
modeling the complex shapes. To this end, we develop a 3D surface segmentation
method based on a cut-and-merge approach, through which a complex surface can
be divided into segments such that each segment can be encoded by a low-degree
IP. The advantages are i) it achieves an appropriate segmentation for any surface
model even for a complex one and the segmentation precise is determined by
the desired fitting accuracy; ii) each segment successfully avoids to use over-high
degree IPs and thus the total computational cost becomes little; and iii) because
each segment has been encoded by an IP, it has IP’s inherent algebraic/geometric
properties which are very useful for shape matching problem. The experimental
results even open up a new vista on the application of non-iterative registration
for range images, which has potential to fast initial registration for range images.

For the second issue, we propose an incremental fitting scheme that can adap-
tively determine the moderate degree required to different objects. Our method
increases the degree of IP until a satisfactory fitting result is obtained. The in-
crementability of QR decomposition with Gram-Schmidt orthogonalization gives
our method computational efficiency. Furthermore, since the decomposition de-
tects the instability element precisely, our method can selectively apply ridge
regression-based constraints to that element only. As a result, our method
achieves computational stability while maintaining fitting accuracy and still keeps
little computational cost.

Given the stable IP fitting method, we exploit a new object registration tech-
nique for solving the third issue that can efficiently achieve 2D-3D/3D-3D reg-
istration not only for globally modeled objects but also for the partially over-
lapped objects. Over the prior methods, the advantages of our method are that:
i) unlike the ICP-based methods, it avoids the extra computation for point-wise

correspondences; ii) unlike the coarse registration methods, it totally supports
partial-overlapping registration; iii) unlike the registration methods of preserv-
ing discrete distance field, it only needs a little memory space for preserving a
few IP’s coefficients, and it can support registration in wider (infinite) region.
Furthermore its high performance attracts a new application on 6-DOF pose
estimation for single Ultrasound image.

The rest of this paper is organized as follows. Section 2 provides the mathe-
matical background needed for later sections. Section 3 presents our IP-segment
representation method. Section 4 describes our incremental scheme for IP fitting.
Section 5 provides our registration method with IP models. Each section reports
its experimental results and the conclusion is given by Section 6.

2. Mathematical Background

2.1 Definition of IP
IP is the implicit function defined in a multivariate polynomial form. For

example, the 3D IP of degree n is denoted by:

fn(x) =
∑

0≤i,j,k;i+j+k≤n

aijkxiyjzk

= (1 x . . . zn︸ ︷︷ ︸
m(x)T

)(a000 a100 . . . a00n︸ ︷︷ ︸
a

)T , (1)

where x = (x y z) is one data point in the data set. An IP can be represented
as an inner product between the monomial vector and the coefficient vector as
m(x)T a. The order for monomial indices {i, j, k} is a degree-increasing order
named inverse lexicographical order30). The homogeneous binary polynomial of
degree r in x, y, and z,

∑
i+j+k=r aijkxiyjzk, is called the r-th degree form of

the IP.
2.2 Fitting Methods
The objective of IP fitting is to find a polynomial f(x), of which the zero set

{x|fn(x) = 0} can “best” represent the given data set. This fitting problem can
be formulated in least squares optimization manner as:

MT Ma = MT b, (2)
where M is the matrix of monomials whose i-th row is m(xi) (see Eq. (1)); a
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is the unknown coefficient vector; and b is a zero vector. Note, Eq. (2) is just
transformed from the least squares result, a = M†b, where M† = (MT M)−1MT

is the so-called pseudo-inverse matrix.
Many efforts have been made for solving the linear system of equations (2) by

first overcoming the singularity of MT M and b = 0. Then, the problem can be
solved simply with a linear system solver such as the LU decomposition method,
the conjugate gradient (CG) method, singular value decomposition (SVD), or
their variations. A common technique for improving singularity of MT M and
making b 6= 0 is to add some additional constraints to the computation, see 2),
8), 28).

In this paper, we employed the 3L method2) that takes two additional data
layers at a distance ±ε outside and inside the original data as the optimization
constraint. Thus M is modified by adding the rows of monomials of additional
data points and b is modified by adding the elements of ±ε s.

2.3 Ridge Regression (RR) Regularization for Stable Fitting
Although the linear methods improve the numerical stability to some extent,

they still suffer from the difficulty of achieving global stability. Especially while
modeling a complex shape with a high-degree IP, many extra zero sets are gen-
erated. One important reason for global instability is the collinearity of column
vectors of matrix M , causing the matrix MT M to be nearly singular (see 28)).

Addressing this issue, Tasdizen et al. 28) and Sahin and Unel22) proposed
using ridge regression (RR) regularization in the fitting, which improves (that is,
decreases) the condition number of MT M by adding a term κD to the diagonal
of MT M , where κ is a small positive value called the RR parameter, and D is a
diagonal matrix. Accordingly Eq. (2) can be modified as

(MT M + κD)a = MT b. (3)
In particular, D should be calculated in a specific way to maintain Euclidean
invariance indicated by Tasdizen et al. for 2D28) and Sahin and Unel for 3D22).

2.4 Similarity Measurement
Let us define two functions to measure the similarity for fitting between an IP

and data set S as follows:
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Fig. 1 Definition of two types of our similarity measurement: one is based on the distance
between data point and IP zero set, and the other is based on the difference between
normal directions associated with data point and IP zero set.

Ddist =
1
N

N∑

i=1

| f(xi) |
‖ 5f(xi) ‖ , xi ∈ S (4)

Dsmooth =
1
N

N∑

i=1

(Ni · 5f(xi)
‖ 5f(xi) ‖ ), xi ∈ S. (5)

where N is the number of vertices, and Ni is the normal associated with the
point xi, as shown in Fig. 1; 5f denotes the gradient, e.g., 5f = (∂f

∂x
∂f
∂y

∂f
∂z ) in

the 3D case. Note, although |f |
‖5f‖ in (4) is not a real Euclidean distance, it is

proved to be useful for approximating the Euclidean distance from vertex xi to
the zero set of f(x), see 29).

Ddist and Dsmooth can be considered as two measurements of distance (mean
of the perpendicular distances from vertices to IP) and smoothness (bending and
twisting) between the point set and the zero set of an IP.

3. IP-segment representation

As described in Section 1, an IP often suffers from the difficulty of representing
complex models. The low-degree IP leads to undesired inaccuracy, whereas the
high degree leads to global instability. Therefore, in order to accurately describe
such a complex model without losing IP’s advantages, the method to segment its
surfaces and to represent each of them using an IP separately is often used.
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In this section, we propose a solution for solving the above problems based on
a novel approach on surface segmentation. In this method, a complex surface
can be divided into some meaningful segments and each segment can be well
represented by a low-degree IP. First, we define the degree of the fitness, that
is, the similarity between an IP and a point data set. We use this similarity to
decide how well the fitting is performed. Next, we describe our cut-and-merge
strategy in detail, which consists of following two procedures:
• Cutting procedure:

Iteratively cutting the regions until each segment can be represented by an
IP and neither high-curved nor distorted region exists.

• Merging procedure:
Iteratively merging the regions which are acceptable for the same IP.

3.1 Cutting procedure
Accordingly two thresholds T1(T1 > 0) and T2(T2 < 1) are set into the con-

straint of
(Ddist < T1) ∧ (Dsmooth > T2). (6)

If this constraint is satisfied, we say the current region is IP representable, oth-
erwise IP unrepresentable.

The cutting procedure can be viewed as a procedure that divides the IP unrep-
resentable data set into IP representable segments. For achieving that, there are
mainly two steps required as: i) we use the IP of a certain degree to measure
a surface region with constraint (6). ii) if the constraint is satisfied, this region
is regarded as IP representable and will be outputted. Otherwise, this region is
regarded as IP unrepresentable and will be divided into two parts: Inner part
({InnerRg} := {xi|f(xi) ≤ 0}) and Outer part ({OuterRg} := {xi|f(xi) > 0}).
We repeat the above operation until there are no more IP unrepresentable re-
gions.

3.2 Removing High-curved segment
Because in the results from the above cutting procedure there might still exist

highly curved or distorted regions, an additional cutting procedure is required
that can find and divide the high-curved segments into low-curved regions.

To find the curved regions, we take advantage of IP’s property that can
provide a convenient way to find the surface curvatures quickly and robustly.

If the normal vector ni at vertex xi is approximated by the first order par-
tial derivative of f . And if gi = 5f(xi) = (∂f(xi)

∂x
∂f(xi)

∂y
∂f(xi)

∂z )T , then
ni = (nx ny nz)T = gi/|gi|. The second order derivatives in (7) contain in-
formation about the curvature of isosurfaces of the implicit function.

5nT
i =




∂nx

∂x
∂nx

∂y
∂nx

∂z
∂ny

∂x
∂ny

∂y
∂ny

∂z
∂nz

∂x
∂nz

∂y
∂nz

∂z


 . (7)

It can be solved as follows (see the derivation in 14)):

5nT
i =

1
|gi|

GH, (8)

where G = I− ninT
i ; I is the 3× 3 identity matrix; and H is the Hessian matrix:

H =




∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂x∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂z2


 .

From the eigenvalues of the matrix 5nT
i , the so-called principal curvatures, k1

and k2 are obtained. And the maximum/minimum absolute curvatures are de-
fined as

κmax = max(|k1|, |k2|) (9)
κmin = min(|k1|, |k2|). (10)

We extract the points if they satisfy the constraint:
κmax/κmin > K, (11)

where K is a certain threshold for the ratio of maximum and minimum absolute
curvatures. That is what we are now interested in are the angled regions that
contain the ridge and valley, namely the region where κmax is large and κmin is
relatively small. Thus we call the extracted points valley or ridge.

Once the high-curved regions are found, using the information of the vertices
and their normals on the valley/ridge curves, we try to fit a new IP, and cut the
curved region again with this IP. If we let vertices on the ridge and the points
along their normals be the points passed through by the IP zero set, we can fit
a new IP whose zero set crosses the ridge curve. Thus, according to the sign of
each point measured by the IP function, the region can be cut into two parts,

4 c© 2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.4
2009/6/9



IPSJ SIG Technical Report

the inner part and the outer part.
3.3 Merging procedure
The task of the merging procedure is to merge the over-segmented regions to

an integral region, since the regions resulting from the cutting procedure may be
over-segmented.

This procedure makes use of the region-grow strategy19) where the seed region
is selected and then is merged with its neighbors if possible. The criterion for
judging whether a neighbor should be merged into the seed region is the same
as the constraint (6). The difference is that we use the seed’s IP to measure the
neighbors. Thus the measurement described in (4) and (5) should be replaced
by:

ei =
| fseed(xi) |
‖ 5fseed(xi) ‖ , xi ∈ N , (12)

ni =
5fseed(xi)

‖ 5fseed(xi) ‖ , xi ∈ N , (13)

where fseed is the IP function corresponding to the seed region, and N is a
neighbor region of the seed region. The constraint in (6) is still used as the mea-
surement of the similarity between a seed IP and its neighbor. In this procedure,
the larger region is first to be chosen as a seed region.

3.4 Experimental Results
In this subsection, we show some other experimental results to prove the effec-

tiveness of our method. A simple example of segmented IP surface representation
of a synthetic data is shown in Fig. 2; the shape has been contaminated by adding
noises to one percent of its height. Five segmented IP surfaces for the object are
shown in Fig. 2 (b), and its corresponding segmentation result is shown in Fig. 2
(c).

Other complex examples are shown in Figs. 3 and 4. The original range data
are shown in column (a) respectively. Then each of these images is represented
with IP surfaces in different segmentation levels, by changing the thresholds of
(6), shown in columns (b) and (c) of each figure. The figures in column (d) show
the segmentation results corresponding to the IP surfaces shown in column (c)
respectively.

(a) (b) (c)
Fig. 2 (a) Original range data. (b) 5 4-degree IP surfaces. (c) 5 segments with different

colors corresponding to (b).

(a) (b) (c) (d)
Fig. 3 (a) Original range data. (b) 100 4-degree IP surfaces. (c) 8 4-degree IP surfaces. (d)

8 segments referring to (c).

(a) (b) (c) (d)
Fig. 4 (a) Original range data. (b) 763 4-degree IP surfaces. (c) 113 4-degree IP surfaces.

(d) 113 segments referring to (e).

3.5 Application to Non-iterative Registration for Range Images
We extend the previous result to the application of 3D registration (alignment).

3D registration is one of the important sub-steps for large-scale 3D modeling.
Most of these registrations need to manually align the corresponding scans for
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Registered imagesMatched 3D IP segments3D objects Registered imagesMatched 3D IP segments3D objects

Fig. 5 Two examples on registration for range images

the initial process, and then use an ICP-based algorithm such as 18) to achieve
further accuracy in alignment. We refer this survey to 23).

Taubin and Cooper gave a simple method for calculating IP’s orientation and
center of mass from the coefficients of IP’s leading form 30), which made the
registration (or pose estimation) fast and simple. Fortunately, this method can
be applied to the results of our segmentation method.

Fig. 5 shows two simple examples of this application. In the first example,
we took half of the original “bunny” and transform it to another position using
random Euclidean transform; the second example is for the real range images
obtained by scanning the stairs in Bayon Temple9). The raw data are plotted in
same coordinate but different position, see Fig. 5. Then we tested the registration.
The process can be described in three steps: i) Segmentation: segmenting
the objects with the same thresholds; ii) Matching: calculating invariants and
finding the matching pairs in the same way as in the recognition application30); iii)
Registration: calculating the orientation and center of the matched segments
by Taubin’s method30) and then estimating the transformation.

Although there are some errors in the registration results, since our segmenta-

tion method cannot give exactly the same segments between the original “bunny”
and the partial “bunny.” But this result is acceptable as the result of the ini-
tial alignment process (coarse registration) to be succeeded by a fine registration
such as the ICP process18). The advantages of this method are that it is fully
automatic, fast, simple and free to any point-to-point corresponding procedures.

4. An Adaptive and Stable Method for IP Fitting

In this section, we present an incremental scheme using QR decomposition for
the fitting methods, which allows the IP degree to increase during the fitting
procedure until a moderate fitting result is obtained. The computational cost is
also saved because each step can completely reuse the calculation results of the
previous step.

4.1 Incremental Fitting
In this subsection, first we describe the method for fitting an IP with the QR

decomposition method. Next, we show the incrementability of Gram-Schmidt
QR decomposition. After that, we clarify the amount of calculation needed to
increase the IP degree.

Without solving the linear system (2) directly, we first carry out QR decom-
position on matrix M as: M = QN×mRm×m, where Q satisfies: QT Q = I (I is
an m×m identity matrix), and R is an invertible upper triangular matrix.

Then, substituting M = QR into Eq. (2), we obtain:

RT QT QRa = RT QT b → RT Ra = RT QT b → Ra = QT b → Ra = b̃. (14)

After upper triangular matrix R and vector b̃ are calculated, the upper triangular
linear system can be solved quickly in O(m).

4.1.1 Gram-Schmidt QR Decomposition
Our incremental algorithm depends on the QR-decomposition process. We

found that the Gram-Schmidt QR Decomposition is very suitable and power-
ful for saving the computational cost for our algorithm (discussed in the next
subsection).

Now, first let us briefly describe the QR decomposition based on the
Gram-Schmidt orthogonalization. Assume that matrix M consisting of
columns {c1, c2, · · · , cm} is known. The Gram-Schmidt algorithm orthogonal-
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izes {c1, c2, · · · , cm} into the orthonormal vectors {q1,q2, · · · ,qm} that are the
columns of matrix Q, and simultaneously calculates the corresponding upper tri-
angular matrix R consisting of elements ri,j . The algorithm is written in an in-
ductive manner. Initially let q1 = c1/ ‖ c1 ‖ and r1,1 =‖ c1 ‖. If {q1,q2, · · · ,qi}
have been computed at the i-th step, then the (i+1)-th step for orthonormalizing
vector ci+1 is

rj,i+1 = qT
j ci+1, for j ≤ i,

qi+1 = ci+1 −
i∑

j=1

rj,i+1qj ,

ri+1,i+1 =‖ qi+1 ‖,
qi+1 = qi+1/ ‖ qi+1 ‖ . (15)

With the Gram-Schmidt algorithm, matrix M is successfully QR-decomposed as
M = QR, and thus the problem of solving Eq. (2) can be transformed to solve a
linear system with an upper triangular coefficient matrix.

Furthermore, from the Gram-Schmidt algorithm, we can see that Gram-
Schmidt orthogonalization can be carried out in an incremental manner, which
orthogonalizes the columns of M one by one.

4.1.2 Incremental Scheme
The idea of our incremental scheme is to continuously solve upper triangular

linear systems (14) in different dimensions where the QR Decomposition with
Gram-Schmidt orthogonalization (15) is utilized. This process is illustrated in
Fig. 6, where the dimension of the upper triangular linear system increases, and
then the coefficient vectors of different degrees can be solved.

We designed this incremental scheme not only because, at each step, solving an
upper triangular linear system is much faster than solving a square one, but also
because the calculation for dimension increment between two successive steps is
computationally efficient. Fig. 6 illustrates this efficiency by clarifying necessary
calculation from the i-th step to the (i + 1)-th step in our incremental process.
For this calculation, in fact, it is only necessary to calculate the parts that are
illustrated with dark gray blocks in Fig. 6.

For constructing the (i + 1)-th upper triangular linear system from the i-th
one, we are concerned with two types of calculation:

== =
L

L

(i-1)-th step i-th step (i+1)-th step

1−iR 1−ia 1

~
−ib iR ia ib

~
1+iR 1+ia 1

~
+ib

Fig. 6 The incremental scheme that iteratively keeps solving an upper triangular linear sys-
tem. In order that the triangular linear system grows from the i-th to (i + 1)-th step,
only the calculation shown in dark gray is required; other calculation is omitted by
reuse at the i-th step.

i) How to calculate the upper triangular matrix Ri+1,
ii) How to calculate the right-hand vector b̃i+1.

Taking advantage of Gram-Schmidt QR Decomposition, we find that, for the
first calculation, that is, growing from Ri to Ri+1, we only need to calculate the
rightmost column of Ri+1, and the other elements of Ri+1 are not changed from
Ri; for the second calculation, that is, growing from b̃i to b̃i+1, we only need
to calculate the bottom element of b̃i+1, and the other elements of b̃i+1 are not
changed from b̃i.

For the first calculation, the result can be simply obtained from Gram-Schmidt
orthogonalization in Eq. (15). For the second calculation, assuming b̃i+1 is the
bottom element of vector b̃i+1, the calculation of b̃i+1 can be stated as b̃i+1 =
qT

i+1b after carrying out the (i + 1)-th step of Gram-Schmidt orthogonalization
in Eq. (15).

In order to clarify the computational efficiency, let us assume a comparison
between our method and a brute-force method, such as the 3L method2), that
iteratively calls the linear method at each step for obtaining the coefficient vectors
of different degrees. It is obvious that, for solving coefficient a at the i-th step, our
method needs i inner-product operations for constructing the upper triangular
linear system (see (15)), and O(i) for solving this linear system; whereas the
latter method needs i2 inner-product operations for constructing linear system
(2), and O(i) for solving Eq. (2).
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Fig. 7 A comparison between our method and the prior methods with respect to calculation
time.

We show a simple example in Fig. 7 to compare the actual calculation time
between our method described above and two other methods that solve the linear
system (2) independently at each step with two famous linear system solvers: i)
LU decomposition and ii) incomplete Cholesky conjugate gradient (ICCG). The
result was taken from the mean of 10, 000 calculations for solving the same 2D
fitting problem that incrementally fits an IP to a certain data set until achieving
the 10th degree; practically the IPs of about the 10th degree are often required
to represent complex shapes. As shown in this figure, our incremental scheme
performs much faster than the other two methods during the dimension-growing
process. Note that, although the ICCG algorithm is very efficient for solving
a large-scale sparse linear system, matrix MT M in linear system (2) is often a
dense matrix, and therefore ICCG cannot result in good performance.

4.2 Global/Local Stabilization
As described in Sections 1 and 2, linear fitting methods usually suffer from

the difficulty of achieving global stability. Although ridge regression (RR) regu-
larization can be adopted to achieve global stability22),28), local accuracy might
deteriorate too much. Addressing this problem, in this section we present a

computationally simple procedure to detect whether a specific monomial will
contribute to the accuracy of IP representation during the incremental steps. If
it will not, RR is used to stabilize the fitting at the current step.

To explain the procedure, we first clarify how RR regularization achieves global
stability and why it sacrifices local accuracy. Then we propose a new RR
regularization-based stabilization technique: our regularization can concentrate
on the improvement of stability by selectively applying RR regularization to our
incremental scheme.

4.2.1 RR Constraints
First let us analyze why the numerical instability occurs. In fact, an important

reason is the collinearity of matrix M , which causes its covariance matrix MT M

to be nearly singular. The collinear columns of M are degenerated to contribute
very little to the overall shape of the fit (see 28)). But this little contribution may
result in the sensitivity for a high-degree IP, e.g., divergence of some coefficient
values. As a result, there are extra undesired solutions generated.

Now let us interpret RR regularization in5),22),28) to be some individual con-
straints that we call RR constraints hereafter. According to the conventional
definition in5), the formula of RR regularization shown in Eq. (3) can be equiva-
lently transformed as

M̂T M̂a = M̂T b̂, (16)

where M̂ is the matrix combining matrix M and the square roots of diagonal
elements of D, and vector b̂ is from the extension of b with zeros. Eq. (16)
is similar to Eq. (2). The only difference between them is that there are some
additional row vectors at the bottom of matrix M̂ , and actually these additional
row vectors act as the linear constraints in fitting. Let us call the constraints RR
constraints.

These RR constraints overcome the singularity of matrix M̂T M̂ and thus keep
the IP presentation globally stable, but an excessive brute-force constraint man-
ner causes all the zero set to be closed to its origin (see 28)), and thus local
accuracy deteriorates. Our claim is that if we can apply the RR constraints
only to the necessary part, such as the part corresponding to the monomial that
weakly contributes to the whole IP representation, the RR regularization can
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resist deterioration of local accuracy.
4.2.2 Proposed RR Regularization
First, it is necessary to detect global instability. Fortunately, in our incremental

process, since matrix M has been QR-decomposed as M = QR, we can observe
that MT M = RT R, and thus instability of MT M can be determined from the
eigenvalues of R. We can easily evaluate the singularity of R by observing only
the diagonal values at each step, since upper triangular matrix R’s eigenvalues
always lie on its main diagonal.

If the value of the diagonal element rii at the i-th step is relatively too small,
we can assume the current column ci of M might be nearly collinear to the
previously generated orthogonal space of {c1, c2, · · · , ci−1} so as to have little
contribution to the overall shape of fit. Thus, we apply the i-th RR constraint
only to this part to concentrate on solving this collinearity. The action is as
follows.

Let us suppose matrix M̂ denotes the matrix M after having added the i-th
row vector of RR constraint: (0, . . . , 0,

√
κdii), where dii is the i-th diagonal

element of D. We assume its QR decomposition is M̂ = Q̂R̂ and each element
after the constraint is denoted with .̂ The difference between M and M̂ is only the
last row whose last element is only non-zero. From Eq. 15, this effect propagates
only rii, qi, and b̃i. The norm of q̂i before normalizing is

√
r2
ii + κdii, where rii

is the norm of qi. Therefore, r̂ii is derived as follows:

r̂ii =
√

r2
ii + κdii. (17)

From the derivation,

b̂i = q̂T
i

(
b̃
0

)

=
rii√

r2
ii + κdii

qT
i b̃ =

rii

r̂ii
b̃i. (18)

From Eq. (17) we can see obviously that once the i-th eigenvalue rii is relatively
too small, it can be improved to be a larger one as r̂ii by adding the ith RR
constraint. Following this stability improvement, coefficient âi at this step is
thus calculated as

âi =
b̂i

r̂ii
=

rii

r2
ii + κdii

b̃i (<
b̃i

rii
= ai). (19)

Therefore we can see that the divergence of ai is restrained by adding the i-th
RR constraint.

In short, at an incremental step, once a column vector ci is detected to be
linearly dependent on the preceding columns, the computation in Eqs. (17), (18)
and (19) should be done.

However, checking the value of rii might be unfair for judging the collinearity.
In the result obtained from Gram-Schmidt orthogonalization, rii might be related
not only to the degree of the collinearity but also to the norm of the corresponding
column of M . In order to remove only the effect of the norm, it is necessary to
normalize the linear system (2). The normalizing operation can be described as
follows

M :=
{

c1

‖ c1 ‖ ,
c2

‖ c2 ‖ , . . . ,
cn

‖ cn ‖
}

, b :=
b

‖ b ‖ , (20)

assuming originally M = {c1, c2, · · · , cn}. Therefore the finally obtained coeffi-
cients need the transformation as: a = { ‖b‖‖c1‖a1,

‖b‖
‖c2‖a2, . . . ,

‖b‖
‖cn‖an}.

4.3 Finding the Moderate Degree
Now the coefficients of various degrees can be worked out stably by the in-

cremental method described above. The remaining problem is how to measure
the moderation of degrees for these resolved coefficients. In other words, when
should we stop the incremental procedure?

4.3.1 Stopping Criterion
A naive method is to define a stopping criteria such as constraint Eq. (6) that

let T1 and T2 correspond to data noise levels in statistics. Then we can let T1 and
T2 be close to zero and one respectively for smooth models and more tolerant
values for coarse ones. But for the data set with variation of noise level or whose
noise condition cannot be observed, an alternative way is considered as

(Rdist < T1) ∧ (Rsmooth > T2). (21)
where Rdist and Rsmooth are residuals for errors of distance and smoothness
respectively, so that we only see the difference between the errors of current
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and previous steps. An example of using this stopping criterion is shown in
Section 4.5.

4.4 Algorithm for Finding the Moderate IPs
Given the above conditions, our algorithm can be simply described as follows:
i) Constructing the upper triangular linear system with i column vectors of M

with the method described in Section 4.1;
ii) Stabilization with the method described in Section 4.2;
iii) Solving current linear system to obtain coefficient vector a;
iv) Measuring the similarity for the obtained IP;
v) Stopping the algorithm if the stopping criterion (6) or (21) is satisfied;

otherwise going back to i) and increasing the dimension by adding the (i + 1)-th
column of M .

4.5 Experimental Results
Our experiments are set in some pre-conditions. i) As a matter of convenience,

we employ the constraints of the 3L method2)?1. ii) All the data sets are regu-
larized by centering the data-set center of mass at the origin of the coordinate
system and scaling it by dividing each point by the average length from point to
origin, as done in28); iii) We choose T1 and T2 in Eq. (6) with about 0.01 and 0.95
respectively, excepted for the experiment in Section 4.5. iv) The RR parameter
κ in Eq. (17) is empirically set to increase the original diagonal element rii about
10%. Note: we also refer the interested reader to the discussion on setting κ

in28).
Some 2-D and 3-D experiments are shown in Fig. 8. The result shows our

method’s adaptivity for different complexities of shapes.
4.5.1 Degree-fixed Fitting vs. Adaptive Fitting
Fig. 9 shows some comparisons between the degree-fixed fitting methods and

our adaptive fitting method. Compared with degree-fixed methods, in the re-
sults of our method, there is neither over-fitting nor insufficient fitting. This
shows that our method is more meaningful than the degree-fixed methods, since
it fulfills the requirement that the degrees should be subject to the complexi-
ties of object shapes. To clarify again, as described above, our method saves

?1 The layer distance of the 3L method in2) is set as 0.05.

11-degree 12-degree 8-degree 12-degree
Fig. 8 Adaptive IP fitting results in 2D/3D. First row: original objects; Second row: IP fits.

Original Objects

Degree-fixed fitting 
with 2-degree

Degree-fixed fitting 
with 4-degree

Our method 
(Degree-unfixed 

fitting)

2-degree IP 6-degree IP 12-degree IP

Fig. 9 Comparison between degree-fixed fitting and adaptive fitting. First row: original ob-
jects. Second row: IP fits resulting from two-degree degree-fixed fitting. Third row:
IP fits resulting from four-degree degree-fixed fitting. Fourth row: IP fits in different
degrees resulting from adaptive fitting setting parameters as T1 = 0.01 and T2 = 0.95.

much computational time despite its determination of the moderate degree by
an incremental process.

4.5.2 Comparison of Fitting Stability
Fig. 10 shows a comparison between three methods: i) 3L method2), ii) 3L
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Objects 3L method 3L + RR method our method
Fig. 10 Comparison of fitting results: first column: original 2D/3D objects, second column:

results obtained by 3L method2), third column: results obtained by 3L method +
RR method22),28) (for 2D and 3D respectively), last column: results obtained by our
method. Results in top row are 12th degree and in bottom row are 8th degree.

Fig. 11 Top row: Noisy data sets made by adding Gaussian noise to the original model with
standard deviations: from left to right 0.1, 0.15, 0.2; Bottom row: the corresponding
fitting results.

method2) + 2D RR regularization28) and 3L method2) + 3D RR regularization22)

and iii) our method. As a result, our method shows better performance than the
others, in both global stability and local accuracy.

4.5.3 An Example for Noisy Data Fitting
We generated some synthetic noisy data sets shown in the top row of Fig. 11.

For overcoming the effect on the variation of noise, we adopted the second

stopping criterion (21) where parameters with respect to residuals are set as
T1 = 0.001 and T2 = 0.01.?1 Then we obtained the fitting results as shown in
the bottom row of Fig. 11.

5. A Registration Method using IP Gradient Field

The task of rigid shape registration aims to build a transformation relationship
between a source object and a target object. In this section, we present a fast
registration method by using IP gradient field which supposes that the target
object has been modeled by an IP beforehand.

Given the IP model representing the target object, first let us consider how to
solve the registration problem between the IP and the source object of discrete
model. To achieve that, we first define the registration problem as an energy
minimization problem, and then by minimizing this energy function the motion
of source object can be driven to the target model (IP model).

5.1 Energy functional
The objective of registration is to find a transformation, through which the

zero set {x|fn(x) = 0} can “best” register to the discrete points (source object).
To achieve this, we first define an energy functional E which will be minimized
to find the proper transformation, described as follow:

p = arg min
p

E(p). (22)

where p is the transformation parameters (p ∈ R for rigid transformation). In
general, the energy functional E evaluates the registration by minimizing the
distance between the data set and IP, defined as:

E =
∑

i

dist(T (p,xi), fn),∀xi ∈ Ω, (23)

where T (p,xi) is a function: R → R, that returns the transformed point of
xi by the rigid-transform operation respected to parameter p; dist(x, fn) means
a certain distance from the data point x to the zero set of fn; and Ω represents
the 3D region of the source model.

?1 Since the normals often vary more strongly than vertices, we set the smoothness threshold
T2 to be more tolerant than the distance threshold T1
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There are multiple choices for the distance dist(x, fn) in (23), and the common
one is to use L norm. Thus it becomes possible to form least-squares regression
with dist(x, fn) = fn(x)2. However, in this work, we choose more meaningful
approximation for the distance representation of IP as (see 29)):

dist(x, fn) =
fn(x)2

‖ 5fn(x) ‖2 , ∀x ∈ Ω, (24)

where 5 denotes the gradient of IP function.
5.2 Minimizing energy functional
To minimize the energy functional (23), we employ the following two steps: for

accelerating the convergence, first, it minimizes the function without any con-
straint in the transformation. This means every point can move freely towards
IP along their gradients during the first minimization. Next, it determines the
transformation parameters to maintain the Euclidean transformation. These two
steps are repeated alternately until convergence. The efficiency of this minimiza-
tion benefits from that it can successfully avoid the time-consuming computation
for finding the point-wise correspondence.

5.2.1 First step: free deformation
At the first step, by calculus of variations3), the Gateaux derivative (first vari-

ation) of the functional E in (23) to point x can be approximately formulated
as

∂E

∂x
=

∂dist(x, f)
∂x

≈ 2f(x)
5fn(x)

‖ 5fn(x) ‖2 = 2G(x), (25)

if we assume ‖ 5fn(x) ‖ is a constant and let G(x) = f(x) 5fn(x)
‖5fn(x)‖2 .

Therefore, we need to minimize this functional to satisfy the Euler-Lagrange
equation ∂E

∂x = 0. Thus the steepest descent process is executed in the following
gradient flow for each point x:

∂x
∂t

≈ −2G(x), (26)

where t denotes the time step. From the view of implementation, each point can
be updated as:

xk+1 = xk − 2G(xk), (27)

where xk denotes the point at k-th time step.

Similarly, if let X ∈ RN×3 represent the integral data set consisting of each
point x at each row vector, and G̃ ∈ RN×3 be the integral gradients for integral
data set X, then Xk at the k-th time step can be updated as the following
recurrence:

Xk+1 = Xk − 2G̃(X). (28)

This shows the fact that, under this operation, every points in the discrete data
set of source object will be moved towards the zero set of polynomial along their
gradients.

5.2.2 Second step: rigid deformation
In the first step, although every point in source model can move closed to IP

surface, the transformation dose not maintain the rigid transformation form, but
rigid transformation is necessary for the estimation of (22).

Therefore, in the second step, we fix the first step to be rigid transformation.
For achieving this, the integral evolution of the data set is need to be analyzed
first. Since from the first step’s transformation in Eq. (28) we can obtain data
sets represented by two matrices Xk and Xk+1 in two continuous steps. Then,
the covariant matrix of these two matrices can be calculated as:

A = (Xk − X̄k)T(Xk+1 − X̄k+1), (29)

where X̄ is the matrix each row consisting of the mean value (center point) of
X. If A (∈ R×) is decomposed as A = USV T by using the singular value
decomposition (SVD), where S is the diagonal matrix and U and V are the
unitary matrices, then the rigid transformation is obtained by:

R = UV T,

t = X̄k − X̄k+1RT, (30)
where R and t are rotation and translation parameters respectively32). Thus,
with R and t, we can fix the transformation in first step shown in Eq. (28) to be
rigid transformation as:

Xk+1 = XkRT + t. (31)

Therefore, the above two steps can be alternately repeated until the discrete
data set of source model is moved near to IP with desired accuracy.
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−→

Fig. 12 Illustration for registration. Blue points for target object and red points for source
object

5.3 An acceleration method
Let us present an acceleration method which makes the registration more effi-

cient in the case that the number of data points in the discrete model is much
larger than the number of coefficients of the IP. Since in this case moving the
large-scale data sets to IP model is relatively more expensive than moving in-
versely the IP towards the discrete model.

To drive this motion of IP, it requires a transformation method for IP through
which IP’s coefficients are transformed to satisfy that IP model can maintain a
rigid transformation. Therefore the acceleration method can described as that,
instead of updating discrete data set in Eq. (31), we update the coefficients of IP
at each step:

ak+1 = V (R, t)ak, (32)

where we suppose that ak is the coefficient vector at the k-th time step, and V is
a square transformation matrix corresponding to the Euclidean transformation
of rotation R and translation t. The remained problem is how to construct the
transformation matrix V in (32). For solving V , we refer the interested reader
to36).

5.4 Experimental Results
For comparing our method to the ICP-based methods, we solved a registration

problem shown in Fig. 12, where the required initial settings are: i) both the
target and source model were extracted from same object; ii) the target model

Table 1 Computational cost comparison for registering a 10k-points data set.

ICP ICP with KD tree IP
CPU Time (sec) 123.01 35.12 1.07
Memory 20K points 20K points + KD tree 10K points + 165 coef.

was rotated and translated to the position as the blue points shown in Fig. 12;
iii) the registration was tested by different methods, and all the methods will
stopped until satisfy the same accuracy and computational time and memory
were used to evaluate the performance.

We tested three methods: standard ICP method1), ICP method with KD tree35)

and our method. Since they are set with the same stopping criterion (same
threshold for registration accuracy), we only compared the computational time
and memory in Tab. 1 which show the registration task of 10k points both for
target and source data sets. Since the implementations were done in Matlab, it
was necessary to take care to eliminate the effect of Matlab being an interpreted
language.

5.5 Application to Pose Estimation for US Image
Ultrasound (US) imaging is widely used for assistance with surgical operations

and real-time diagnosis. The relative pose estimation for US image to another
modality, such as MRI or CT, is desired and will be helpful to diagnosis guidance.
But it suffers the difficulties due to poor image quality with speckle noises, low
signal-to-noise ratio, and uniform brightness, and only cross-sectional images
obtained. Fortunately, considering the characteristics of our method described
above, we confront this registration problem by making use of IP.

5.5.1 Pose Estimation for Duck Toy
Fig. 14 shows the result of the US image pose estimation that the images are

obtained by scanning a duck toy made of rubber in the cistern shown in Fig. 13
left, and we modeled the duck object with an 8-degree IP shown in Fig. 13 right.
Fig. 14 shows the relative position and the cross-section contour at each iteration
resulting from the registration. In this case the total consumed CPU time is
about 180 ms excluding the rendering time.

5.5.2 Pose Estimation and Tracking for CT data
The third example is tested for registration between a real CT data and US

image. To do this, we first segmented the CT data to obtain the desired organ
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Fig. 13 Left: photograph of measuring a duck toy. Right: IP model of duck object

Initial position Iteration 2# Iteration 5# Iteration 8#

Fig. 14 Pose estimation for duck toy. First row: relative pose of IP and US image at each
iteration. Second row: cross-section contour at each iteration.

object by modern segmentation methods such as Graph Cut (see Fig. 15). Then
we model the organ object by a 4-degree IP as shown in Fig. 15 right. Therefore
for US images to find the relative pose to CT data becomes to find the relative
pose to the IP.

The first example is pose estimation for a single US image shown in Fig. 16
where we show the registration process with relative pose and cross-section con-
tour at each selected iteration.

We also experimented the US image sequence by tracking the position of the
kidney object with the above IP model. Results are shown in Fig. 17 where we
show the cross-section contours of IP for selected frames. The only difference to

A coarse surface data 
extracted from CT data

4-degree IP model

CT data

Fig. 15 Segmenting kidney data from the CT scans and modeling with a 4-degree IP.

Initial position Iteration 2# Iteration 6# Iteration 10#

Fig. 16 US pose estimation for CT data with 4-degree IP.

Fig. 17 Tracking for US image sequence. Cross-section contours of frames are shown in
black points.

single frame registration is that we set the initial position of each frame with the
resulted position of the previous frame.

6. Conclusions

We have explored the problems on IP representation, fitting and registration,
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and provided the three solutions: i) a segmentation method for achieving IP-
segment representation. ii) a globally/locally stable fitting method that can
adaptively determine moderate degrees for fitting. iii) a fast registration method
using IP gradient field that supports partially overlapping object registration.

With the first method, IPs can be assigned to surface segments not only for
providing good representation, but also for assigning the geometric/algebraic
properties to the surface, such as the curvatures and Euclidean invariants encoded
by IP. The results have the potentials for opening up the new vista for 3D object
recognition and registration.

The second method solves the fitting problems on how to determine the mod-
erate degree and brings numerical stability. First, its computational efficiency
benefits from keeping incrementally solving upper-triangular linear systems by
taking advantage of QR decomposition. Second, its numerical stability benefits
from the easy and quick instability detection by checking the diagonal elements
of upper triangular matrix and modifying selectively the unstable elements.

The third method has high computational efficiency, because i) the avoidance
of point-wise correspondence by using IP gradient flows; ii) a fast two-step min-
imization adopted; iii) acceleration by IP transformation to large-scale problem.

As the result, this research provided some new insights into the theory and
practice for IP representation. It extends IP’s applicability and makes it have
potentials for wider applications in computer vision.
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