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Human motion analysis is a complex but extremely interesting and important
research area in computer graphics and computer vision. This paper addresses
three vital topics in human motion analysis related to keyposes: how to extract
keyposes from dance motions, how to utilize them, and how to recognize the
person and task that constitute a keypose. As our first topic, we propose a
new method to extract keyposes from a given dance using the energy flow of
the motion. Our experimental results and comparison with a previous keypose
extraction approach show the high accuracy of keypose extraction with our new
method. As our second topic, we propose a new method to reconstruct low-
dimensional motion based on keyposes, and we illustrate the effect of keyposes
in a given motion space on human perception. We utilize the keyposes ex-
tracted with our new method, formulate a model, and derive a low-dimensional
motion based on our model. We also construct low-dimensional motion us-
ing uniform sampling poses, and we compare the results with those obtained
from our method. As our third topic, we propose a novel approach to decom-
pose motion into common and individual factors using the Multi Factor Tensor
(MFT) model. By this method, we recognize person and task from the motion
sequence.

1. Introduction

Human motion analysis is a complex but extremely interesting and important
research area in computer graphics and computer vision. Researchers have pro-
posed various methods of doing this. We emphasize keyposes related to human
dance motions for our analysis purposes. Keyposes play an important role in un-
derstanding the structure of dance motions, recognizing the dance, and further
analysis purposes such as style analysis. Therefore, there is increasing demand
to investigate the role of keyposes in human motion analysis.

†1 The University of Tokyo

This paper addresses three vital topics in human motion analysis related to
keyposes. Within our first topic, extraction, we describe an energy function to
extract keyposes from human motions. In the second topic, utilization, we ex-
plain how to utilize the keyposes and present a method to create low-dimensional
motion that has high impact on human perception. In the third topic, decom-
position, we introduce a method to recognize the components of keyposes using
Multi Factor Tensor (MFT) Analysis.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 explains keypose extraction of dance sequences. Section 4 de-
scribes low-dimensional motion reconstruction based on keyposes and its impact
on human perception. Section 5 describes the Multi Factor Tensor model to de-
compose human motion into common and individual factors. Finally, in Section
6 we present conclusions and describe future work.

2. Related Work

Recently motion capture data have been frequently used for character anima-
tion, reproducing human motions (2),14),27),21)) and vision applications (7),8)). In
most cases, segmentation is observed as a basic technique to achieve goals and
speed up the process. Not only for captured motion data, but also for motion
data from video sequences, researchers have applied different techniques for seg-
mentation or extracting keyposes/keyframes and have obtained various results.

Zelnik-Manor et al. introduced a method44) based on a distance measure de-
veloped over a variety of temporal scales. Liu et al.22) used a clustering-based
adaptive keyframe extraction algorithm for improving 3D motion retrieval speed.
Loy et al.24) also applied clustering and selected the central frame of clusters as
the keyframe. They successfully extracted keyframes in a sports event video
sequence. Park et al.25), Kovar et al.13), extracted keyposes mainly for motion
synthesis and retrieval. Similar work was conducted by Vermaak et al.41), Fauvet
et al.6) for keyframe selection in video sequences focusing on background scene
and camera motion. In our study we additionally consider music; our focus is on
a different aspect and the above work does not comply with the objective of our
work.

Assa et al. proposed a method to select keyposes based on embedding the
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motion curve in low-dimensional space and applying a simple geometric algorithm
to identify the important poses (3)). They discussed different applications to
which the proposed method can be applied. However, their results indicate that
the presented method is more applicable to short motions such as tasks in our
study, and in a dance motions there are several tasks connected together. They
also iteratively select the keyposes locally until a satisfactory number of keyposes
has been extracted related to a threshold, whereas in a dance motion the number
of keyposes is fixed, although we don’t have any prior knowledge of the number of
keyposes. Yasuda et al. improved over the above method (43)). For long motions
that include several types of actions, to avoid loosing information for each action,
they suggested segmenting the motion data (4)). In4), the researchers segmented
motion data into high-level behaviors (e.g., walking, running), and also due to
the time criterion they searched for the minimum duration of simple motions,
which is not applicable to the scope of our study.

Many researchers have applied different approaches to regenerate, reproduce,
or synthesize human motions. A Fourier-based method was utilized in36) to gen-
erate human motion with behavioral characteristics. In1), Amaya et al. presented
a model to produce emotional motions based on signal processing. Brand et al.
used Hidden Markov Models with entropy minimization in5) to detect the style
variations in sample data and applied the results to novel dance sequences. A
two-mode PCA framework was described in35) to linearly classify male and fe-
male walkers. Gao et al. introduced a three-mode expressive feature model in8)

to embed tunable weights on trajectories within the sub-space model to enable
different style estimations in their experiments. In19) a method is discussed for
inferring a 3D body pose from silhouettes based on learned activity manifolds.
Safonova et al. described a method in28) that solved an optimization problem in
low-dimensional space and synthesized physically realistic human motion. In37)

motion generation techniques were presented and the generated motions were
parameterized according to speed or length. Vasilescu used tensor algebra in38)

to recognize the human motion signatures and applied it to motion synthesizing.
In the second topic of our study we apply a different approach to obtain low-
dimensional motions based on principal components incorporated with keyposes
or uniform sampling poses.

TimeEmin

Emax

Beat pointEnergy

Fig. 1 Candidate Determination: The broken line shows the estimated music beat. The
curved line describes the computed energy flow in the global coordinate system. The
dark circles indicate the local minimum and local maximum energy points.

Researchers have put a considerable amount of effort into investigating style.
Tenenbaum et al. introduced a bilinear model31) for two-factor problems in sep-
arating style and content factors. They displayed two-mode examples in ex-
trapolating fonts for unseen letters and translating face postures to new illumi-
nations32). Given several sequences of walking silhouettes of different people,
Su Lee et al. decomposed intrinsic body configuration through action (content)
from the appearance (or shape) of the person performing the action (style)18)

and used the results for recognition. Style and content were separated on a non-
linear manifold and applied in interpolating the modes of gait styles and manner
of smiling20). Gao et al.7),8) proposed a three-model principal component model
and recognized the expressiveness in the style of human action when carrying
different weights and when varying the walking pace of different people. Kanna-
pan et al.11),12) also recognized the effort in human actions within a three-mode
principal component analysis (PCA) framework.
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Fig. 2 Keypose selection: Here, the top and middle rows show two instances of global and local
energy graphs. The dotted lines indicate the estimated music beats. The Gray-colored
broken lines indicate the selected keypose candidates. The dotted arrows indicate the
selected keyposes.

3. Keypose Extraction with Energy Analysis

3.1 Keypose Extraction Method
In 2004 Shiratori et al. used a method to extract keyposes (29),30)). The speed

of end effectors and the musical beat were used in this method, but some issues
need to be improved. We introduce a novel energy function for keypose extraction
combined with music rhythm tracking as an addition to the above method for
keypose extraction.

We formulate our energy function for keypose extraction by detecting corre-
spondence between each pose or frame with global and local coordinate systems.
The global coordinate system is fixed on the floor, while the local coordinate
system is attached to the waist of the human body. The local coordinate system,
which is also the body center coordinate system has its origin at the waist position
of the body. Here, the Z axis is the direction from waist to body, the Y axis is the
frontal direction, and the X axis is perpendicular to these axes. Let the human
body consist of i = 1, . . . , N marker positions, where mi represents the weight

Global
Energy

Local
Energy

Global
Energy

Local
Energy

(1) (3) (4) (5) (6) (7) (8) (1)(2)

Fig. 3 Aizu-bandaisan dance keyposes 1: Top row and second row show the energy flow graph
in global and local coordinate systems. The dark broken lines display the estimated
musical beat. The gray-colored dashed lines represent the candidates, and the straight
lines represent the extracted keyposes. (1), (2), (3) etc. represent the keypose number.
The third row shows the extracted keyposes by our method in a viewer and the fourth
row shows the keyposes drawn by dancing professionals.

for each marker position. Then F G
t , the global energy at time t is defined as

F G
t = ||

N∑
i=1

miV i(t)||, (1)

where V i(t) describes the velocity of the i th marker position at time t in the
global coordinate system. The local energy F L

t at time t is defined as

F L
t = ||

N∑
i=1

mivi(t)||, (2)

where vi(t) represents the velocity of the i th marker position at time t in the
local coordinate system.

After computing the energy flow of the motion given, we determine the suitable
candidates for keypose extraction. The keypose candidate determination process
requires several thresholds as described below, and all the threshold values were
obtained from example-based learning.

Candidate determination in global and local coordinate systems is conducted
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separately, and later the determined candidate results are combined during key-
pose extraction. For each energy function, keypose candidates are calculated as
follows.

Figure 1 displays the energy flow in the global coordinate system. The broken
line represents the estimated music beat. First we find the local minimum around
the music beat. We also find the local maximum around the music beat and find
the energy difference between Emax and Emin. If the local minimum is small
enough, we select that as a candidate. If the energy difference is greater than
the amount T 2, we select the pose as a candidate. In this operation, we use two
thresholds, T 1 and T 2, which are obtained from example-based learning. In the
same manner, the candidates for the keyposes are determined for the energy flow
in the local coordinate system.

Figure 2 describes the keypose selection process from the determined keypose
candidates in global and local coordinate systems. In accordance with a particular
estimated rhythm beat, we search for the existence of a keypose candidate in the
global coordinate system. If there is a global candidate, that global candidate
is selected as a keypose. If there is no global candidate, but if there is a local
candidate, the local candidate is selected as a keypose. This process is repeated
until all the estimated rhythm beats are searched for the existence of keyposes
corresponding to them. In a local energy flow graph, the effect of rotation is
neutralized, and in practical situations, where the dancer is moving around a
particular space such as a room, the effects of rotation and non-rotation are
interconnected in a complex way. Our experimental results and the energy flow
graphs indicate that the global energy candidates bear higher priority than local
energy candidates.

3.2 Keypose Extraction Results
We conducted several experiments to evaluate the keypose extraction method.

The extracted keyposes were compared with the dance masters’ teachings. We
extracted the keyposes of five Japanese folk dances, namely Aizu-bandaisan, Jon-
garabushi, Donpan, Kokiriko-sasara and Kokiriko-theodori dances. Figure 3 il-
lustrates the keypose extraction results for the Aizu-bandaisan dance. According
to dance masters’ teachings the Aizu-bandaisan dance comprises eight keyposes.
Our results show that the new method is capable of extracting all the keyposes.

Table 1 Summary Keypose Extraction Results: Summary of the keypose extraction results
are displayed.

3133Donpan

1010Sasara

1010Theodori

1212Jongara

88Aizu-bandaisan

Our MethodTrueDance

3133Donpan

1010Sasara

1010Theodori

1212Jongara

88Aizu-bandaisan

Our MethodTrueDance

We note that using our previous approach for the Aizu-bandaisan dance, we were
able to extract only four of the keyposes precisely, shown in Figure 3 as (1), (2),
(3), and (4). In figure 3 the top two rows display the graphs of energy function
in global and local coordinate systems respectively. The dotted lines and gray-
colored broken lines in those rows display the estimated musical beat and the
selected candidates. The dark straight lines represent the extracted keyposes. In
Figure 3, (1) on the left side and (1) on the right side represent the same keypose,
while they belong to two different but consecutive dancing cycles. In the third
row, the pictures with a character show the keyposes seen through a viewer. The
other pictures represent the keyposes drawn by the dancing professionals.

Table 1 summarizes the results of our keypose extraction experiments. The
True column represents the number of total keyposes each dance has according to
dance masters’ textbooks. Our Method column indicates the number of keyposes
extracted by the new method. Example-based learning works well, as shown in
this table.

3.3 Effect of Threshold Values
This subsection explains what will happen to keypose extraction by varying

thresholds. For this purpose we use Precision and Recall. Precision indicates the
number of correct keyposes in the extracted poses divided by the total number
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050100
0.0 2.0 4.0 6.0 8.0 10.0Threshold (T1)

Recall (%) 050100
0.0 2.0 4.0 6 .0 8.0 10.0Threshold (T1)Precision (%)

Fig. 4 Analysis of effect of T 1 on keypose extraction: The graphs display the recall and
precision results of threshold T 1 on keypose extraction

050100
0.0 2.0 4.0 6.0 8.0 10.0Threshold (T2)

Recall (%) 050100
0.0 2.0 4.0 6.0 8.0 10.0Threshold (T2)Precision (%)

Fig. 5 Analysis of effect of T 2 on keypose extraction: The graphs display the recall and
precision results of threshold T 2 on keypose extraction

of extracted poses. Recall indicates the number of correct keyposes in extracted
poses divided by the total number of correct keyposes according to the textbook.

Note that in this analysis we consider only global energy for simplicity. Global
energy and local energy have roughly the same tendency regarding keypose ex-
traction with respect to variance in threshold values. Between global and local
energy, global energy has the dominant influence on the keypose extraction result,
so we focus on global energy only for this analysis.

Figure 4 shows recall and precision when varying threshold T 1 from 0 to 10.
For a large range of values, precision and recall are constant. This shows that
the selection of threshold value is not that sensitive for keypose extraction. Fig-
ure 5 shows recall and precision when varying threshold T 2 from 0 to 10. The
graphs show a higher percentage for a large range of values. We can see a higher
percentage for a wide range of values, even for one energy graph. Even the worst
case provides 50%. This shows that threshold is not very sensitive. The reason
is we use the music beat, and we search keyposes around the music beat.

3.4 Weights in Energy Function
In our experiments we analyzed the effect of different weight settings on keypose

extraction. We set the weights in our experiments as uniformly distributed.
Another possibility of weight setting is based on mass distribution of the human
body (9),15)).

The graphs in figure 6 show an example of energy computation according to
different ways of weight assignments. At the top, the two graphs show global
and local energy computation based on weights assigned according to mass dis-
tribution. At the bottom, they show weight computation based on uniformly
distributed weights. Roughly, it appears that graphs based on both methods are
the same. But if we analyze carefully, we can see that the energy flow based
on weights according to mass distribution is more noisy and error-prone. Our
observation on weight distribution provides little effect on energy function. But
since uniform distribution of weights provides more weights to end effectors, it
provides relatively clear characteristics.

4. Low-dimensional Motion Reconstruction

4.1 Motion Model
In this subsection, we describe the process of decomposing high-dimensional

motion into low-dimensional representation. We incorporate a simple dimension-
ality reduction technique, such as Principal Component Analysis (PCA) for the
purpose. For a particular motion space and for a particular set of poses, we
create an eigen model relevant to the specific space with the use of the PCA
technique. The eigen model, which consists of the eigen vectors and the aver-
age vector created by PCA analysis incorporated with the specific poses, is then
used to generate the in-between motion in low-dimensional space, connecting the
above poses. We define the eigen model incorporated with keyposes as keypose
space. We demonstrate that keypose-based low-dimensional motion generation
is significantly better than the low-dimensional motion generated based on eigen
model incorporated with uniform time interval spaced poses. The details of the
low-dimensional motion generation are explained below.
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Mass Distribution

Uniform Distribution (Our Method)

Local Energy

Global Energy

Global Energy

Local Energy
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Global Energy
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Fig. 6 Weight assignment in energy function: The two graphs on top display the energy flow
when the weights are set according to mass distribution of the human body. The two
graphs at the bottom show the energy flow when the weights are uniformly distributed.

4.1.1 Approach
Let a human pose, at any given time t be denoted as a line vector,

ϖ = [ϑ1
x , ϑ

1
y, ϑ

1
z , . . . , ϑ

i
x, ϑ

i
y, ϑ

i
z, . . . , ϑ

N
z ], 1 ≤ i ≤ N (3)

where ϑi
x represents normalized x position in the body center coordinate system

and i represents the i(th) marker position in the human body. Similarly, ϑ1
y

and ϑ1
z represent the normalized y and z positions in the body center coordinate

system respectively. Each pose vector has a dimension of (3 ∗ N) where N is the
number of marker positions in the body. We formulate our model by forming the
covariance matrix A, with the relevant keyposes for one dance within one cycle,

for several people. We assume that there are j = 1, . . . , µ number of people and
κ number of keyposes in one dance cycle. Given K keyposes where K = µ ∗κ, we
compute the mean pose,

ϖKp
0 =

1
K

K∑
k=1

ϖKp
k . (4)

In ϖKp
0 and ϖKp

k , Kp indicates that the poses are correlated to keyposes. We
compute the eigen vectors of the covariance matrix A:

A = QQT

where Q is a K ∗ 3 ∗ N mean subtracted pose matrix and A is a K ∗ K matrix.
The kth line of Q can be described as

Q = (ϖKp
k − ϖKp

0 ), 1 ≤ k ≤ K.

We compute the eigen vectors ΥKp
1≤k≤K by Singular Value Decomposition (SVD).

We build a linear mapping to obtain eigen keyposes as follows:

ΨKp
K′ =

K′∑
k=1

ΥKp
k

T
(ϖKp

k − ϖKp
0 ) (5)

where K ′, 1 ≤ K ′ ≤ K. Consequently, we can represent any keypose in low-
dimensional space as

ϖ̂Kp
K′ ≈ ϖKp

0 +
K′∑
k=1

ΥKp
k ΨKp

K′ . (6)

Utilizing the above computed eigen prototype for the specific space, we generate
the low-dimensional motions for various people included in our dataset. Let a
pose that belongs to the original normalized motion of any person of the training
set, which eventually lies in between any of that person’s keyposes, be denoted
as j

gΓ
IN
k . In j

gΓ
IN
k , Where k represents the dimension of the pose and IN rep-

resents that the pose lies between any of the keyposes of the person considered
j represents that the pose belongs to the j’th person in the dataset, and g rep-
resents that the pose is the g’th pose in the cycle of the particular person. Let
the dancing cycle of the relevant person contain jK poses in the cycle. Then, an
eigen pose, which interconnects the eigen keyposes, is denoted as

j
gΨ

IN
K′ =

K′∑
k=1

ΥKp
k

T
(jgΓ

IN
k − ϖKp

0 ) (7)

where 1 ≤ g ≤ jK. We define any pose that interconnects the keyposes in

c⃝ 2009 Information Processing Society of Japan

IPSJ SIG Technical Report

6

Vol.2009-CVIM-167 No.2
2009/6/9



low-dimensional representation as

j
gϖ̂

IN
K′ ≈ ϖKp

0 +
K′∑
k=1

ΥKp
k

j

g
ΨIN

K′ . (8)

K ′ controls the percentage of the dataset in low-dimensional pose space that can
be represented as

ρ =
∑K′

k=1 λk∑K
k=1 λk

(9)

where λk represents the k’th most significant eigen value, which is obtained by
SVD. The above low-dimensional motion from high-dimensional original motion
is obtained by utilizing the keypose-based eigen prototype.

In the same manner we create the low-dimensional motion or the sequence of
low-dimensional poses relevant to a particular person, based on an eigen model
constructed with a certain number of poses that equals the same number of
keyposes used in the keypose-based model. These poses are extracted by uniform
sampling. From each dancing cycle of each person in the dataset, the same
number of poses that equals the number of keyposes in one dancing cycle are
extracted, making the time interval between each extracted pose within one cycle
of each person to be the same.

We define an eigen pose, which interconnects the eigen uniform sampling poses,
as

j
gΨ̃

IN
K′ =

K′∑
k=1

ΥUn
k

T
(jgΓ

IN
k − ϖUn

0 ) (10)

where ΥUn
k represents the eigen vectors obtained by applying SVD to uniform

sampling poses, and ϖUn
0 denotes the mean pose computed from uniform sam-

pling poses. The low-dimensional motion generated by uniform sampling pose-
based eigen prototype can be denoted as

j
gϖ̃

IN
K′ ≈ ϖUn

0 +
K′∑
k=1

ΥUn
k

j

gΨ̃
IN
K′ . (11)

4.2 Results
We used motion capture data of the Aizu-bandaisan dance of eight people

to conduct our experiments. Our dataset contains the motion data of several
dancing cycles of five female and three male dancers. We randomly selected one
dancing cycle from each person, extracted the keyposes as described in 3, and

Fig. 7 Eigen keyposes: The distribution of keyposes used in the keypose-based method plotted
onto eigen space is displayed. These eigen keyposes are constructed using the first three
most significant eigen values incorporated with the keypose model. The keyposes are
shown in different colors and shapes.

Fig. 8 Uniform sampling poses: The distribution of uniform sampled poses used in the uniform
sampling-based method plotted onto eigen space is displayed. Like the eigen keyposes,
the eigen uniform sampled poses are also constructed using the first three most sig-
nificant eigen values incorporated with the uniform sampled pose method. Uniform
sampling poses are displayed in different colors and shapes.
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Fig. 9 Eigen motion generated based on keyposes: This shows the eigen motion obtained with
the keypose eigen prototype for person five in our dataset. The red curve displays the
eigen motion for one dance cycle of person five. KP indicates the keyposes, and the
different shapes denote the eigen keyposes of the model.

constructed the keypose-based eigen model to evaluate our model. Similarly the
uniform sampling pose-based eigen model was constructed by extracting poses,
using the same randomly selected dancing cycles.

Figure 7 and figure 8 illustrate the intermediate stage of the low-dimensional
motion generation process using the keypose-based eigen model and uniform sam-
pling pose-based eigen model. Figure 7 displays the eigen keyposes, constructed
with the first three most significant eigen values incorporated with the keypose-
based model, where K ′ = 3, according to Equation 7. Figure 8 shows the uniform
sampled eigen poses, constructed in a similar manner to eigen keyposes. These
two figures illustrate that the eigen keyposes are clustered nicely, where uniform
sampled eigen poses are not effectively clustered.

Figure 9 illustrates another intermediate stage of the low-dimensional motion
representation process with a keypose-based framework. It describes the eigen
motion of one dance cycle of person five, which belongs to the keypose space.
The eigen motion j

gΨIN
K′ , is obtained according to Equation 7 where 1 ≤ g ≤ jK.

Figure 10 displays the low-dimensional motions created by the keypose-based
framework. The characters display an instance of one-, two-, three-, and four-
dimensional motions of person five beginning from the left side. Our results

Fig. 10 Low-dimensional motion representation of person five: An extraction of the low-
dimensional motion representation of person five is displayed. The characters show
one-dimensional, two-dimensional, three-dimensional, and four-dimensional motion
starting from the left side.
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Fig. 11 Variance distribution of approach 1: The graphs display the distribution of total
variance covered by the first few eigen postures in both keypose-based and uniform
sampling pose-based methods. The left side graph displays the variance distribution of
eigen key postures, and the right side graph shows the variance distribution of eigen
uniform sampling poses. Dimension indicates the number of principal components
associated with the variance.

also demonstrate that three-dimensional motion is quite impressive and efficient
for further motion analysis processes and other applications. Therefore we used
three-dimensional motions for low-dimensional motion comparison and analysis
purposes in all our experiments.

4.3 Results
We evaluated the results of low-dimensional motion representation by keypose-

based eigen model and uniform sampling pose-based eigen model. Figure 11
illustrates the total variance covered by the first few eigen vectors or princi-
pal components. The graphs show that the keypose-based principal compo-
nents cover a greater percentage of total variance than the uniform sampling
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Original

Fig. 12 A still capture of the user study: A still capture of the video that we used for the
user study is displayed. In this sequence, the character marked as A shows the low-
dimensional motion created by keyposes, and the character marked as B shows the
low-dimensional motion created by uniform sampling poses. The middle character
displays the original motion of the same person.

Table 2 Results summary of the user study: Summary of keypose-based and uniform sam-
pling pose-based low-dimensional motion representation comparison with original
motion.

90%92/102Total

91%31/34Sequence 3

85%29/34Sequence 2

94%32/34Sequence 1

PercentageRatio

90%92/102Total

91%31/34Sequence 3

85%29/34Sequence 2

94%32/34Sequence 1

PercentageRatio

pose method. They also indicate that when we generate low-dimensional poses
from high-dimensional pose space, the low-dimensional poses generated from the
keypose-based eigen prototype contain a larger amount of total information.

Further, to investigate the amount of impact that the low-dimensional motions
generated with these two methods has on human perception, we conducted a user

study. Several low-dimensional motion cycles of different people were shown to
a group of adults selected randomly, who participated in an open campus event.
Participants in the study were asked to compare both low-dimensional motions,
and select the motion that matched best to the original dancing motion of the
same person.

Figure 12 displays a still capture of the video that we used in our user study. We
randomly selected three dancing sequences from our dataset for the comparison.
Thirty-four people spared the time for us and answered our questionnaire. Each
person selected the best match for three sequences. The user study results are
summarized in Table 2.

The ratio in Table 2 represents the number of people who selected the keypose-
based low-dimensional motion representation as the best match with the original
motion compared to uniform sampling pose-based low-dimensional motion, out
of the total number of participants who participated in the user study, for each
dancing sequence. The percentage denotes the above ratio converted into a factor
of percentage. The results demonstrate that a significantly higher percentage of
participants selected the keypose-based low-dimensional motion representation
as the best match over uniform sampling pose-based method. It also indicates
that the keypose-based method can maintain the essential subtle factors of hu-
man motion in low-dimensional motion representation over the other method, as
distinguished by human perception.

In addition to the above analyses, we also analyzed the actual low-dimensional
motions (three dimensional) created according to Approach 2. Our results
demonstrate that for some people the uniform sampling pose-based method pro-
duces unnatural human postures where the keypose-based method does not. Fig-
ure 13 illustrates an example of such an occurrence. In figure 13 the left side
character, which represents the keypose-based low-dimensional motion, displays a
natural posture, while the right side character, which represents low-dimensional
motion based on uniform sampling poses, displays an unnatural posture. It shows
that the right hand has moved inside the human body in the right side character.
The middle character shows the original motion of the person.

Figure 14 describes another unnatural posture of uniform sampling pose-based
low-dimensional representation. Similarly the left side character represents the
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Fig. 13 An example of unnatural posture: The left side character shows the low-dimensional
motion representation based on keyposes. The middle character displays the original
motion. The right side character shows the low-dimensional motion obtained by
uniform sampling poses.

keypose-based low-dimensional motion, the middle character original motion,
and the right side character the uniform sampling pose-based low-dimensional
motion. In figure 14 (a) the right side character shows an unnatural head and
leg posture. Figure 14 (b), a side view of the same instance, clearly shows that
the leg of the uniform sampling pose-based character has bent to the other side
unnaturally. In the same instance, the keypose-based character shows a natural
posture.

5. Recognition using Multifactor Tensor Analysis

5.1 Task Model
Vasilescu used tensor algebra38) to recognize human motion signatures and ap-

plied it to motion synthesizing. Later Vasilescu et al. addressed the problem
of multidimensional data analysis in image face recognition and tensor textures
using multilinear algebra39),40). Recently, several research projects have utilized
multilinear models in solving problems10),23),42). Our model presents a multi fac-
tor tensor (MFT)-based framework for decomposing motion data and recognizing
tasks and motion styles or human identities. In this model, we follow a novel
approach that considers higher order tensor factorization16),17).

As described above, dance motion consists of a set of motion sequences seg-
mented by keyposes that occur after every musical rhythm interlude. In dance
sequences, similar motion segments are often repeated in each dance cycle. Pro-
vided with a group of similar motion segments, we decompose them into a com-

(a)

(b)
Fig. 14 Another example of unnatural posture: In (a) the left side character shows the low-

dimensional motion representation based on keyposes. The middle character displays
the original motion. The right side character shows the low-dimensional motion ob-
tained by uniform sampling poses. (b) shows a side view of the same instance.

mon person invariant motion factor, which does not vary by person, and a
person dependent factor, which does vary by person. We define task as the for-
mer common factor and style as the latter dependent factor. The framework of
decomposing human motion into task and style is called a task model. In prac-
tice, we use MFT analysis to decompose human motion, and we apply the result
in recognizing tasks and human motion styles.

Before formulating our MFT model, we normalize the human motion data as
described in26). The appearance of each person is made equal to a predefined
physical model during the normalization.

5.2 Multi Factor Tensor (MFT) Analysis
We acquire motion-capture data of dance sequences of µ people for κ cycles
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Fig. 15 Three Mode MFT: Formulation of third order MFT model where position, people, and
task represent the first mode, the second mode, and the third mode respectively. The
data tensor is formulated so that slicing the tensor parallel to the task axis produces
slices that contain the data representing different tasks performed by the same person.
Similarly, slicing the tensor parallel to the people axis produces slices that contain the
data representing the same task performed by different people.

where each cycle has a duration of η frames. After the segmentation process
using music analysis, we normalize the segments and arrange them appropriately
into our data tensor, according to the different approaches described below. The
arrangement of motion segments into the data tensor is shown in Figure 15. In
the first approach, we select one task category from the motion-capture data for
each person for learning in our model. In the second approach, we leave out some
task categories from some people in formulating the model. We decompose the
MFT using SVD16) by flattening it in task-mode or people-mode, and factorize
the motion data into task factor or style factor respectively. The task is defined
as a person-invariant factor and the style as a person-dependent factor.

We consider a third order tensor:
P = Q×1 Sposition ×2 Speople ×3 Stask, (12)

where P is the tensor obtained by arranging the samples associated with all the
three dimensional factors and Q is the core tensor that controls the interaction

between the three different mode factors: position, people, and task. The mode
matrix Sposition spans the parameter space of positions, Speople spans the pa-
rameter space of people, and Stask spans the parameter space of tasks. Sposition,
Speople, and Stask represent column-based orthonormal matrices. In general, if
we think n-mode tensor, we denote Q̃ϑ,i and Q̃k,i

Q̃ϑ,i = Qϑ,i ×1 S1 · · · ×q−1 Sq−1 ×q+1 Sq+1 · · · ×n Sn

Q̃k,i = Qk,i ×1 S1 · · · ×q−1 Sq−1 ×q+1 Sq+1 · · · ×n Sn,

where Qϑ,i is the tensor belonging to the cluster being probed and Qk,i is the
tensor belonging to each cluster of training samples, and where k = 1, . . . , C

and i = 1, . . . , N are the cluster and intra-cluster indices respectively. Here,
intra-cluster means the sub-elements of each cluster, and each cluster comprises
i = 1, . . . , N intra-cluster elements. Q̃ϑ,i and Q̃k,i represent core tensors when
the whole data tensor with n-mode factors is factorized in q-mode. The Q̃ϑ,i and
Q̃k,i core tensors have a complex relationship with Sposition, Speople, and Stask

mode matrices. A cluster, which represents a set of column vectors, characterizes
a different person or a different task when collected according to the mode of
factorization. ϑ means that the particular core tensor belongs to the cluster or
class that has to be recognized. When our model is factorized in people-mode or
task-mode, C indicates the number of persons or tasks contained in the training
samples respectively. Using this factorization to consider the mode-q space, we
can decompose the mode-q component as:

Ŝq =
∑

i

∑
k∗

||Q̃θ,i ×q Sq − Q̃k∗,i ×q Sq||2, (13)

where
k∗ = arg min

k
||Q̃θ,i ×q Sq − Q̃k,i ×q Sq||2.

Here, Ŝq represents a matrix that contains the minimum distances from the
probed segment’s intra-cluster elements to the respective intra-cluster elements
of the training samples for mode-q factorization of the tensor. This matrix exists
in the tensor subdomain space, with mappings to the corresponding cluster and
intra-cluster indices. We compute the distances from each intra-cluster element
of the probed segment to the corresponding intra-cluster element of the training
samples in the tensor subdomain space. Thus we find out the minimum distance
and the related training sample in the minimization argument.
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5.3 Task and People Recognition
5.3.1 Recognizing Known Components
In this approach, we assume that all the motion segments to be probed are

known to the data tensor. Given a motion segment to be probed, we decompose
it using our framework and recognize its category or its identity. To recognize
the task category, we flatten the data tensor in task-mode, and to detect the
identity of the motion segment, we flatten the data tensor in people-mode. In
our MFT model, we assume that the samples are represented as vectors gi ∈ Rτ ,
where i = 1, . . . , N is the intra-cluster index and τ is the dimension of gi. Our
algorithm maximizes the following objective function in the recognition stage:

EΨ(gi,k, Ŝq|nq=1,W )
= max

k

∑
gi

W (Ŝq)

= max
k

∑
gi

 w1
w2

. . .
wN

 (Ŝq). (14)

Here, k denotes the cluster index of the training sample, and wi denotes a weight
for the q-mode factorization of the model. k is dependent on the mode of fac-
torization and it represents the person identity index or the task identity index
of the training samples, depending on the mode of factorization in person-mode
or task-mode respectively. The parentheses surrounding (Ŝq) indicate the mul-
tiplication process. W is the weight matrix obtained by applying weight wi to
the diagonal elements of the identity matrix. A reasonable choice of values is
selected for the weight matrix by observing the motion sequence beforehand.
Weights are assigned in increasing order by considering the number of links to
the body center.

For each training cluster in our objective function we compute the sum of the
minimum distances, found out earlier in Ŝq from each intra-cluster element of
the probed segment to the corresponding intra-cluster element of the training
samples. A higher total value of the sum of the minimum distances indicates
that there are many intra-cluster elements, which are quite similar to the probed
segment’s intra-cluster elements that belong to the particular cluster. On the
other hand, if there are fewer links from the body center to a position in the body,

they have less influence on the difference of the motion. The level one positions,
such as waist positions, which are directly connected to the body center with
one link, have quite similar kinds of motion among different types of motions.
Positions connected with two links have more dissimilarity compared to the level
one positions. Regarding this factor and our assumption that there is no elasticity
in the human body, we have assigned the weights in the weight matrix in order
to produce a larger value when there is more influence from the particular intra-
cluster element. Therefore, the cluster or the training sample that produces the
largest objective function value of our model is the most similar category to the
probed category. We can solve for the probed sequence using the above objective
function.

5.3.2 Recognizing Alien Components
Unlike the previous approach, this approach has no assumptions. The motion

segments to be probed can belong to any task or person category that is known
or unknown to the data tensor. As in the first approach, we assume that the
samples are represented as vectors gi ∈ Rτ , where i = 1, . . . , N is the intra-
cluster index and τ is the dimension of gi. We use our MFT model to determine
a functional value vector F⋆

k in the tensor subdomain that characterizes the
variational difference, which is a set of the relative style/task variational values
in the tensor subdomain, for each mode-factor of every element in the training
set. We compute the relative style/task variational values of each category in
the training set, in tensor subdomain space, by formulating the MFT model with
a similar category for every category in the training set from a different cycle,
and by flattening the tensor in the appropriate mode. Considering the q-mode
factorization of the MFT model, we compute Fk

⋆ in the tensor subdomain as
follows:

Fk
⋆ = Eφ(gi, k, Ŝq|nq=1,W )

= max
k

∑
gi

W (Ŝq) + εk

= max
k

∑
gi

 w1
w2

. . .
wN

 (Ŝq) + εk, (15)

where εk represents the error value in the tensor subdomain. εk value is deter-

c⃝ 2009 Information Processing Society of Japan

IPSJ SIG Technical Report

12

Vol.2009-CVIM-167 No.2
2009/6/9



mined experimentally. Given the motion sequence to be probed, we segment it
with the musical analysis method formulated, as in the previous case, into our
framework and compute FPr

⋆ as follows:
FPr

⋆ = Eφ(gi,Pr , Ŝq |nq=1 ,W )
= max

Pr

∑
gi

W (Ŝq)

= max
Pr

∑
gi

 w1
w2

. . .
wN

 (Ŝq). (16)

where FPr
⋆ is the functional value in the tensor subdomain for the motion seg-

ment to be probed and Pr indicates that the functional value of the model is
computed while formulating the probed motion segment into our framework. We
sequentially compare the distances from this value to the trained value vector
within a threshold εPr , that is specified and identify the category of the probed
motion segment. If nothing is detected within the range of our specifications, we
assume that the probed motion segment belongs to a new category that is not
contained in our database.

5.4 Experiments
We applied the MFT model described in the previous section to task recognition

and person identification problems following two approaches to demonstrate the
efficiency of our algorithm. The experiments were conducted on dance motion
sequences from the Aizu-bandaisan, acquired by the motion-capture system. The
data were captured at the rate of 120 frames/second and the noise reduction was
done using a Gaussian filter.

For the experiments, we segmented the motion-capture data as described above.
We normalized the segmented motion data using the vectorization method. The
normalized segments were used to formulate the MFT model. The motion se-
quence to be probed could be from any cycle of the dance performance. We
conducted the experiments as follows.

5.4.1 Experiment 1
We followed the “Recognizing Known Components” method described in 5.3.1

in performing this experiment. In this approach, we assumed that the motion
segment to be probed did not belong to any alien category such as an unknown

Table 3 Recognizing Known Components: Summary of the results in recognizing known
categories.

87.5%4248Person Recognition

97.91%4748Task Recognition

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

87.5%4248Person Recognition

97.91%4748Task Recognition

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

task or an unknown person compared to the data categories that were already
contained in the data tensor.

We selected the tasks from one cycle of motion data and from every person to
formulate the MFT model in order to fulfill the assumption. As described above,
we factorized the data tensor according to different mode spaces, such as task -
mode space and people-mode space, and applied the MFT model to recognize
the required probed sequences. To recognize to which task category the required
motion segment belongs, we flattened the data tensor in task -mode. To examine
the identity of the motion segment we flattened the tensor in people-mode. Pro-
vided that a motion segment belonged to any person at a different time instance,
we recognized the task category and the identity of the person performing the
task.

For the experiment, we used 48 motion segments as probe sequences and six
tasks that were performed by eight persons during a different cycle and that were
not used as training data. The average computation time for each recognition
process took about 70 seconds. The recognition results using our model are
displayed in Table 3.

5.4.2 Experiment 2
This experiment was done according to the “Recognizing Alien Components”

method as explained in 5.3.2. In contrast to the “Recognizing Known Compo-
nents” method, we have made no assumptions that the task category and the
person category of the motion segment be familiar or contained in the data tensor
beforehand. We recognized any alien motion segment category, which is any kind
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Table 4 Recognizing Alien Components 1: Summary of the results in recognizing unknown
tasks performed by unknown people.

83.33%2024New 
Person Recognition

91.66%2224New
Task Recognition

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

83.33%2024New 
Person Recognition

91.66%2224New
Task Recognition

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

of person or task for which we have no information in our model. For this, we
left out several people’s data and selected four different tasks from four differ-
ent people in formulating the MFT model. Our main attempt was to determine
whether the motion segment to be probed was new to the database by following
elimination with no match in the tensor subdomain variation value.

As in the previous experiment, we factorized the data tensor in different mode
spaces, such as task -mode space and people-mode space, and applied the tensor
model in recognizing whether the motion segment belonged to any new category.
To recognize a new task of a known person, we flattened the data tensor in task -
mode, and to recognize a new person performing a known task, we flattened the
data tensor in people-mode. The thresholds εk and εPr were set to 0.05 times
Fk

⋆ and FPr
⋆ respectively. The average computation time for each recognition

process took about 40 seconds. The results of 24 motion segments from different
cycles where the categories were new to the data tensor are displayed in Table 4.

In addition to the above experiments, we conducted experiments to recog-
nize categories known and unknown to the training samples, and to specify the
category if known. We examined the recognition ability of the model by ex-
perimenting with known and unknown tasks performed by people known and
unknown to the data tensor. Interestingly, unlike the previous approach where
only one closest category was selected as the result in the “Recognizing Alien
Components” method, we sometimes got several categories that lay within the
specified functional variation value ranges in the tensor subdomain. The mul-
tiple categories recognized in this experiment are largely similar to each other,

Table 5 Recognizing Alien Components 2: Summary of the results in recognizing known
tasks performed by unknown and known people.

91.66%1112Task Recognition of 
Known Person

83.33%1012Task Recognition of
Alien Person

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

91.66%1112Task Recognition of 
Known Person

83.33%1012Task Recognition of
Alien Person

AccuracyCorrectly 
Recognized

No. Of 
Motion

Segments

Category

such as the same task performed by two different persons with quite similar mo-
tions. The reason for multiple results is that we examined whether the probed
motion segment’s relative functional variation value lay within the trained func-
tional variation value ranges with thresholds εk and εPr . We found that it was
difficult to set the ideal thresholds to recognize only one category as they are
determined experimentally. If the thresholds are not set appropriately, we might
miss recognizing some categories due to noise or some other reasons. There is a
trade-off between the processing time and the recognition accuracy while setting
the εk and εPr thresholds.

For fine tuning, we need to set the thresholds εk and εPr appropriately, since
the tasks that we use for the experiments are not separable completely. For task
recognition, we set εk and εPr thresholds as 0.12 times Fk

⋆ and FPr
⋆ respec-

tively. We experimented with 12 motion segments that belonged to known tasks
performed by persons unknown to the data tensor, and 10 were recognized cor-
rectly. We also experimented with 12 motion segments that belonged to known
tasks performed by people known to the data tensor, and 11 were recognized
correctly. The summary of the above results is displayed in Table 5. In each
case, first we checked whether the probed segment belonged to a new category or
not. If it were not new, then we determined in which functional variation value
range in the tensor subdomain it lay. Where we had few selections within the
specified ranges, the one with the least style variation in the tensor subdomain
was selected.
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6. Conclusion and Future Work

In this paper we introduced novel frameworks to demonstrate the importance
of keyposes in human dance motions in addressing three vital topics: how to
extract the keyposes, how to utilize the keyposes, and how to use the keyposes
for recognition. To extract the keyposes we proposed a new energy function
combined with a music analysis approach. We compared our keypose extraction
results with dancing professionals’ teachings, and the results demonstrated high
accuracy. Further, to utilize the keyposes, we generated low-dimensional motions
corresponding to keypose space and uniform sampling pose-based eigen space.
We evaluated our framework with synthetic and human perception experiments,
which demonstrated the impact on human perception of keypose based method
in low-dimensional motion space over a uniform sampling pose method. The
third topic that we presented illustrated how to recognize keyposes using MFT
analysis.

Currently, we are interested in investigating fusion of keyposes and physiol-
ogy (33),34)), and motion summary creation. We are also interested in exploring
the reasons behind human perception in low-dimensional motion space and the
percentage of motion data required to be distinguished by the human eye. Fi-
nally, we are interested in further investigating more important characteristics of
keyposes and the impact keyposes have on a given motion space.
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