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Video capsule endoscopy (VCE) represents a significant advance in examinations of digestive
diseases by providing a non-invasive method to view the small bowel. In addition, VCE
provides a valuable source for visualizing the intestinal contractions, which are mainly events
for intestinal motility assessment. However, the advantages of VCE diagnosis technique are
facing with the time consuming for reading video sequence as well as challenging to detect
the intestinal contractions. In this paper, we present our works to approach these motivations
through techniques of VCE analysis. VCE interpretations could be implemented by analyzing
spatial and temporal features. First, several image features such as color, edges, and motion
displacement are extracted. Then their temporal analyses are presented in several ways to
adapt with different tasks. Two applications utilizing this framework are developed. In the
first application, we propose a new method to reduce diagnostic time under the constraint
that all original images should be displayed to an examining doctor without skipping frames.
To realize such a system, delay time for drawing images between frames is controlled in
adaptive rate, according to the states of capturing images. Several techniques for the state
classification, delay time calculation, and log-based analysis are deployed in this application.
In the second application, we develop a three-stage procedure for the intestinal contraction
detections. Based on the characteristics of contractile patterns, the possible contractions can
be investigated using essential images features extracted from VCE such as changes in edge
of the intestinal folds and by evaluating similarities features in consecutive frames. Then true
contractions are determined through spatial analysis of directional information. To exclude as
many non-contractions as possible, we consider about information of contractions frequencies
along capsule transit time. Both the quality and quantity indices are analyzed in experiments
for performance evaluations.

1. Introduction

Visualization of the small bowel in human
has remained limitations of invasive and non-
complete diagnosis for several decades. Con-
ventional investigations involve the introduc-
tion of a probe into the patient’s gastrointesti-
nal (GI) tract. These techniques are highly in-
vasive, and can cause significant patient dis-
comfort, due to the long distances to be ex-
amined and the loop configuration of the small
bowel. Recently, video capsule endoscopy
(VCE18)) is a new diagnostic technology which
for the first time allows to implement non-
invasive examinations throughout small bowel
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regions. VCE diagnosis is particularly success-
ful in finding causes of GI bleeding of obscure
origin, Crohn’s disease, and suspected tumors
of the small bowel that are difficult to carry
out by conventional endoscopic techniques.

In this paper, we present our research for
video capsule endoscopy diagnostic assistance.
VCE diagnosis involves reading a large number
of frames, that is under extreme and careful
examinations by examining doctors. Reducing
diagnostic time is the main challenge for bright
scenario of the VCE diagnosis. In addition, in
term of GI physiology, VCE presents a valuable
image source for visualizing the intestinal con-
tractions. Recognizing the intestinal contrac-
tions from VCE provides a non-invasive method
for the GI motility assessment because rele-
vant information such as the contraction po-
sition, their frequency institutively reflect in-
testinal motility patterns during capsule tra-
jectory. With such objectives, VCE interpre-
tations are main factors to develop intelligent
systems and/or computer-assisted tools. In this

IPSJ SIG Technical Report

1 ⓒ2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.5
2009/6/9



work, we tackle utilizing spatial and temporal
image features extracted from VCE. These fea-
tures can be investigated under pattern recogni-
tion schemes. Results are highly interesting in
the diagnostic assistance because of effectively
reducing examination time as well as automati-
cally recognizing intestinal contractile patterns.

2. Related works

The sections below briefly introduce methods
in order to suggest computer-assisted applica-
tions for VCE diagnostic assistance. Based on
the purposes of these works, we categorize re-
search into four groups: image display support-
ing, digestive organ segmentation, the intesti-
nal motility assessments, and abnormal regions
detections.

- Image display supporting: Reading and
interpretation VCE are very important tasks
in clinical examinations for examining doctors.
However, the tasks become more difficult be-
cause of some specific features of the capsule
endoscopic images, e.g, luminal regions is com-
mon, angle of view is non-adjustable, or find-
ing regions are sometimes only noted on single
frames, etc. Several works proposed techniques
to assist examining doctors such as: image en-
hancement by BaoLi et al.7); image distortion
corrections in works of C.Hu et al.6); support-
ing a glanced view through 2-D map generated
from an image sequence by P.M.Szczypinski et
al. in32),33); or automatically controlling image
display by Vu et al. in37). Baopu Li et al.7)

is aimed at improving in the quality of a given
image.

- Digestive organ segmentation: In human
body, the GI tract includes digestive organs
such as esophagus, stomach, small intestine and
colon regions. Finding the points in the video
can be difficult and time-consuming, even for
an experienced viewer, e.g., images from the
stomach and intestine regions around the py-
lorus appear visually highly similar. Approach-
ing this issue, a series works of Combra et al.
in8),9),24), Lee et al. in20), Mackiewicz et al.
in22),23) proposed several methods for automat-
ically segmenting the digestive organs. Institu-
tively, results would reduce the amount of time
taken by a doctor to examine a VCE sequence.

- Abnormal regions detections: supporting
abnormal regions detections seemly is the most

complicated in field of the computer assistance
for VCE diagnosis because of diverse appear-
ances of the suspicious regions and passively
moving of the capsule device. This topic is
firstly presented in works of Boulougoura et al.
in4). Recently,3) also reports a new scheme for
detecting four types abnormal regions. There
is a point sharing that combination features of
texture and color is effective to discriminate
normal and abnormal images. Results in3),4)

implied promising results for detecting abnor-
mal regions from VCE sequence. However, in
fact these works utilize a limited database in
their experiments.4) uses only 73 clinical images
(including 33 abnormal and 38 normal images),
and3) use 75 images (including 41 normal and
34 normal images).

- Intestinal motility assessments: because
VCE is a passive device, it is ingested and pro-
pelled by peristaltic waves through the GI tract,
the image sequence captured in VCE tran-
sit time institutively provide valuable image
source for visualizing intestinal motility. Utiliz-
ing VCE for intestinal motility assessments was
carried out in11),27),28),36) by a research team
in Computer Vision Center, Universitat Au-
tonoma de Barcelona, Spain. In their works,
they claimed in36) an important issue for the
intestinal contraction detections from VCE is
that the prevalence of the intestinal contrac-
tions in an image sequence is very low, showing
a ratio about 1:50. With this imbalanced issue,
we are facing a large number of false positives,
or a large number of non-contraction could be
labeled as contractions at the output results of
classifiers.

3. Video Capsule Analysis Techniques

3.1 Spatial-temporal combinations for
VCE interpretations

The capsule endoscopic image features in-
clude a standard size of 256 x 256 pixels, 8
bit per channel in RGB color space. Common
appearance of a capsule endoscopic image is
shown in Fig. 1, in which available informa-
tion appears in a circle with radius 224 pixels.
Fig. 1 shows common parts of the GI tube that
consist of intestinal wall regions, intestinal folds
and darkness regions of intestinal lumen. These
appearances are differences in texture, shape,
color, and strongly depend on the digestive or-
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gans along transit of the capsule device. For
example, gastric regions usually appear with
fold shapes of the stomach wall, colon images
present large surface without villus-based tex-
ture. Because small bowel is the most impor-
tant region in VCE diagnosis, the feature ex-
tractions in this section focused on appearances
of the images in this region.

Fig. 1 A common appearance of a small intestinal im-
age. Left panel: an original image. Right
panel: a schematic view with corresponding ap-
pearance of the original image

In our opinion, the image features in a still
image and their temporal changes play impor-
tant role to interpret VCE sequence. Because
a VCE sequence actually involves random im-
ages, that are captured under natural move-
ments of the capsule device. The states of cap-
turing images depend on the natural character-
istics of intestinal motility patterns. Therefore
it is difficult to suggest a visual scene or a spe-
cific object from VCE sequence. This led us to
a general framework for VCE analysis includ-
ing two levels: the image feature extractions
and their temporal analysis, as shown in Fig. 2
- left panel. Based on appearance of images in
VCE sequence, if we assume that an image fea-
ture χi varying along capsule transit time can
be expressed by a function f(χi, t), then anal-
ysis of this function in temporal dimension can
provide meaningful data, e.g., to measure state
of image acquisition or to describe constituent
circle of the intestinal contractions. Utilizing
spatial image features χi in temporal dimension
could be seen in the adaptive speed technique
for a feature vector combining color similarity
and motion displacement between two consecu-
tive frames, or changes in edge of the intestinal
folds of several adjacent frames.

VCE is suffered from non-object and non-
scene characteristics, therefore we do not make
efforts to detect these relationships in VCE
analysis. Instead of that, temporal analy-
sis is to show relationships between images,

then results can be used in pattern recognition
schemes. These relationships are taken into ac-
count in different way, depending on task of the
application. For instance, the right panel in
Fig.2 presents how the framework can be uti-
lized to determine states of image acquisitions.
As shown, the image features are extracted to
make measurement of disparity of two consec-
utive frames. Through a classifier, the states
(presented in same color) are determined. Be-
sides evaluations of spatial features along tem-
poral dimension, the motion displacement (a
simple case is motion between two consecutive
frames) is taken into account in our works be-
cause the motion feature directly carries a lot
of information about spatio-temporal relation-
ships between image objects.

3.2 Color information
The use of color histograms is a promis-

ing way of quickly indexing a large number of
frames, such are found in a VCE sequence. In
our implementations, capsule endoscopic image
is divided into small blocks and a histogram
is computed for each block. The color his-
togram method30) is applied to each block by
dividing R, G, B components into a number
of bins Nbins = 16. The distance of the local
histograms is computed from the L1 distance,
Dblk(i):

Nbins∑

k=1

(|Hn
R,k−Hn+1

R,k |+|Hn
G,k−Hn+1

G,k |+|Hn
B,k−Hn+1

B,k |)
(1)

where H is the histogram of each color compo-
nent for block i and between frames < n, n +
1 >.

Block matching between frames < n, n + 1 >
is decided using a selected threshold value. The
accumulation of matching blocks reveals overall
similarity between two frames:

Sim(n) =
1

Nblk

Nblk∑

i=1

simblk(i)

With
{

simblk(i) = 1 if Dblk(i) ≤ Tblk

simblk(i) = 0 otherwise (2)

Block size value was decided heuristically
through experiments with various block size
values. Fig. 3 shows results with block size
values increasing from 4x4 pixels to 64x64 pix-
els. The gray scale presents block differenc-
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Fig. 2 The proposed framework of VCE analysis

ing with a brighter intensity showing a larger
change. With a small block size, image differ-
ences show sensitivity to the changes, whereas
a too large block size can lose the changes in
important regions. For a reasonable selection,
the image is divided into Nblk = 64 blocks with
a predetermined 32× 32 pixels block size.

3.3 Motion displacement
While the color and edge of the intestinal

folds give us interpretations of appearances in a
still image, the motion feature, here is displace-
ment between two consecutive frames, carries a
lot of information about spatial-temporal rela-
tionships between them. Particularly for pur-
pose of the controlling image display applica-
tion, the motion displacement is an important
feature because it is a very strong cue for human
vision. In this study, the Kanade-Lucas-Tomasi
(KLT) algorithm was utilized to estimate the
motion displacement. This method showed re-
liable results in2) that emphasized the accuracy
and density of measurements for real image se-
quences. As well it has been reported to be suc-
cessfully applied to conventional endoscopic im-
ages29),38). This algorithm is a feature-tracking
procedure developed for video by Tomasi and
Kanade35). It is based on earlier work by Lu-
cas and Kanade21). Extensions of the KLT
algorithm25) include support for a framework

of a multi-resolution scheme1) and constraints
of affine transformation26). Motion is usually
represented by set trajectories of the matching
points of local features. Fig. 4 shows the mo-
tion fields for some frames in a sequence that in-
cludes 16 continuous frames (upper panel). The
results of frames 1 to 6 and 8 to 14 show that
motion estimations are clear and realizable (as
shown in Fig. 4(a) and Fig. 4(c). At position
(b) (frames 6 and 7) and (d) (frames 14 and 15)
the results of the motion fields are a mess (as
shown in Fig. 4(b) and Fig. 4(d)).

3.4 Edge of the intestinal folds extrac-
tion

Among image features that can be used to de-
scribe parts of the GI tube image, edge of the in-
testinal folds plays an important factor because
it can precisely sketch intestinal muscles. To
extract edge of the intestinal folds, we first de-
ploy LoG and Canny detectors for the small in-
testinal images which are extracted from several
regions in the small bowel. Based on observa-
tions in experiments, the Canny method makes
a trade-off between performance and compu-
tation time. In our implementations, three
threshold values of the Canny detector are pre-
determined: σ of the smoothing function, lower
threshold values Tlow and upper threshold val-
ues Thigh. A selection of these values influence
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Previous Image Current Image

(a)  4 x 4 (b) 8 x 8 (c) 16 x 16 (d) 32 x 32 (e) 64 x 64

Fig. 3 Color similarity in different block size values

(a) (d)

(a)

(b) (c)

(c)

(b)

(d)

(a) (d)

(a)

(b) (c)

(c)

(b)

(d)

(a)

(b) (c)

(c)

(b)

(d)

Fig. 4 A continuous image sequence of 16 frames (upper panel). Results of
motion estimations at some positions are illustrated (bottom panel).
At (a) and (c), the results of the motion fields are reliable, while at
(b) and (d) the motion fields are not confident.

to results of the edge detections. In our im-
plementations, a pair of thresholds Tlow = 0.3
and Thigh = 0.85 are fixed, then a range of σ
is adjustable. Fig. 5 demonstrates the effect of
using the same Tlow and Thigh over a range of
sigma values. With sigma small, many noises
can appear in the detection results, whereas

with sigma too large, important edges can be
lost. Throughout experiments, a reasonable
value σ = 2.5 is determined because it could
obtain acceptable results.

Besides true edge of the intestinal folds, the
detection results can consist of edges from other
burdens in capsule endoscopic images. To elim-

IPSJ SIG Technical Report

5 ⓒ2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.5
2009/6/9



Original image σ= 2.0 σ= 2.5 σ= 3.0

Tlow = 0.3 and Thigh = 0.85

Original image σ= 2.0 σ= 2.5 σ= 3.0

Tlow = 0.3 and Thigh = 0.85

Fig. 5 Edge of intestinal folds detected by Canny edge detector over a range
of σ: σ = 2.0, σ = 2.5 and σ = 3.0. The thresholds are fixed at
Tlow = 0.3 and Thigh = 0.85.

inate non-edge of the intestinal folds, several
techniques are investigated on the edge detec-
tions. Finally, we select a safe and simple tech-
nique to determine the true edge of the intesti-
nal folds. This method is based on observations
that the intestinal folds, particularly in contrac-
tile image patterns, usually appear in a concen-
trated region. Thus, edge pixels are counted
in a region where is most of the edges appear.
The size of the region 192 x 192 pixels is large
enough to ensure that no important edges are
lost.

4. Controlling the display of VCE for
reducing diagnostic time

In a typical examination, the capsule takes
approximately 7 - 8 hours to go through the
GI tract for acquisition of images at a rate of
two frames per second. The sequence thus has
around 57,000 images that can be used for di-
agnoses. With such a large number of images,
review and interpretation of video capsule en-
doscopy can be time consuming and present a
heavy time load for physicians31).

To reduce diagnostic time, some viewing
modes are provided in the RAPID Reader13), a
CE annotation software developed by the cap-
sule manufacturer. For example, with dual-
view, two consecutive frames are simultaneously
displayed; quad-view reshapes four consecutive
images into one. Automatic-view combines suc-
cessive similar images to display representative
frames; quick-view mode allows a fast preview
by showing only highlight images. Mitigating
against reducing diagnostic time by using these
techniques is that some clinical images, includ-
ing abnormalities, may only be seen in a single

or just a few frames31). These are not easily
identifiable in the quad-view mode because im-
ages are distorted and may not even be seen
if that image is skipped. Different from these
techniques, we proposed a new method, named
as adaptive speed, for automatically control-
ling the display rate of the CE sequence based
on states of image acquisition. Adaptive speed
utilizes image features extractions to classify
states and to calculate delay time between con-
secutive frames. The main advantages are that
diagnostic time can be reduced while images are
displayed in their original form without skip-
ping any frame.

4.1 States of image acquisition condi-
tions: a classification scheme

Studies in the field of gastrointestinal motil-
ity reveal an idea for classifications into states
of changes between two consecutive frames that
correspond to the conditions of image acquisi-
tions. Here, four states of image acquisitions
can be defined. For convenience, the four states
corresponding to changes in contractions in the
small bowel are presented in Fig. 6(a)-(d).
State 1 : Images are captured in a stationary
condition. This state appears when the GI
motility is in a stable phase. Thus, the po-
sition of capsule remains almost still. State
2 : The capsule device captures images when it
moves with just gradual transitions and there
is no change in the viewing direction. State
3 : Images are captured when the capsule un-
dergoes larger movements. The strong contrac-
tions that sweep or mix the contents are consid-
ered to cause this state. State 4 : This state oc-
curs when there are brief bursts of contractions
or giant migrating contractions. This type of
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contraction makes the capsule suddenly change
direction and move.

With natural characteristics of GI motility,
the states classification task is faced with the
problem that a reasonable performance can
only be achieved by using of a very large design
set for proper training; probably much larger
than the number of frames available. Such a
difficulty can be overcome based on the above
descriptions of the states in which the color
similarity is the most discriminating feature
for separating global changes (e.g., stationary
states (State 1 ) vs. abrupt changes (State 4 )),
while motion displacement is clearly used for
discriminating small adjustments (e.g., station-
ary states (State 1 ) vs. gradually change (State
2 )). With such discriminations of feature sub-
sets, a ”divide and conquer” principle, or a deci-
sion tree classifier, is usually applied. For classi-
fying an unknown pattern into a class in succes-
sive stages, a decision function at a certain stage
can perform rather well by using the discrimi-
nating feature10). Therefore, a decision tree as
shown in Fig. 7 is proposed.

 Start 

 
Motion(n) = 0 

State 1 State 2 State 3 

State 
State 4 

 

End 

Yes 

No 

 

Sim(n)> 
Thresh1 

 Dmaxblock(n)< 
Thresh2 

  Motion(n)> 
Thresh5 

Motion(n) = 1 

 

 Dminblock(n)> 
Thresh3 

 

No No 

No No 

Yes 

Yes 

Yes 

Yes 

Motion(n)<   
Thresh4 

 

Fig. 7 A decision tree for classifying states.

A combination of threshold values of the deci-
sion tree, named as a parameter set. The opti-
mal parameter set was decided through an em-
pirical study. The idea of this task is that we
establish a series of parameter sets to enable
an exhaustive search among the predetermined
candidates to ascertain a reasonable decision

tree.
4.2 Calculating delay time
In14), Glukhovsky et al. introduced a frame-

work for controlling the in vivo camera capture
and display rate. After evaluating differences
of the multiplicity of frames, they suggested an
empirical database or a look-up table so that
the display rate is varied accordingly. However,
they leave unresolved the method needed to de-
velop this type of database, look-up table, or a
specific mathematical function. In our work, if
the delay time between two consecutive frames
is denoted by Dt, we express the correlating
function between Dt and the disparity of im-
ages by:

Dt = Θ(f(.), ξskill, ξsystem) (3)
where f(.) is a function to estimate perceptual
differences between frames by color similarity
and motion displacement. The function f(.)
can be evaluated by adopting a method that
queries the similarity/dissimilarity of images in
a CBIR system. Given a query, the overall sim-
ilarity/dissimilarity between the query and an
image in a database is obtained from a combi-
nation of individual features S(fi) as below:

f(.) =
∑

i

wiS(fi) (4)

where the coefficients wi are the weight of the
features.

The coefficient ξskill indicates if a physician
is accustomed to viewing such sequences, this
is called the skill coefficient. This coefficient is
treated differently for each state. The coeffi-
cient ξsystem is also added to (3) to ensure that
the delay time function is adaptive to various
display system platforms. A delay time Dt be-
tween frames < n, n + 1 > can be computed by
one of the parametric functions below:
- For State 1 :
Dt = A1(1− Sim(n)) + A2Motion(n) + ξsystem

- For State 2 and State 3 :
Dt =[B(1−Sim(n))+(1−B)Motion(n)]ξskill

(5)
- For State 4 :
Dt = D1(1− Sim(n)) + D2Motion(n) + ξskill

where Sim(n) and Motion(n) are calcu-
lated color similarity and motion displace-
ment, respectively. The coefficients <
A1, A2, B,D1, D2 > are multiplied by mono-
tone r and the weights of the selected features.
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25337 25344 25355 25369 25377 25384 25402 25413
(a) – A Stationary state of 195 continuous frames

7730 7735 7742 7748 7754 7760 7770 7781
(b) – A Small change of 52 continuous frames

7953 7954 7955 7958 7961 7963 7966 7968
(c) – A Larger change of 16 continuous frames

7687 7688 7689                 7690                7691   7692 7693
(d) – A Suddenly state of 7 continuous frames

State 1 (a) State 2 (b) State 3 (c) State 4 (d)

(e) – Comparisons of the different states

25337 25344 25355 25369 25377 25384 25402 25413
(a) – A Stationary state of 195 continuous frames

7730 7735 7742 7748 7754 7760 7770 7781
(b) – A Small change of 52 continuous frames

7953 7954 7955 7958 7961 7963 7966 7968
(c) – A Larger change of 16 continuous frames

7687 7688 7689                 7690                7691   7692 7693
(d) – A Suddenly state of 7 continuous frames

State 1 (a) State 2 (b) State 3 (c) State 4 (d)

(e) – Comparisons of the different states

Fig. 6 (a-d) States of image acquisition. (e) A comparative differences be-
tween images for corresponding states. Pixel values at (i, j) in each
sub-figure is plotted by maximum values from differencing of adjacent
images < t, k > shown in (a)-(d). The image differencing is calculated

by gt,k
i,j =

P
R,G,B |f t

i,j − fk
i,j |. The gray scale bar presents image dif-

ferencing with a brighter intensity showing a larger change.

In term of variability in delay time values, (5)
separately defines the functions for each state,
while the classification scheme suggests that a
principle of continuity exists between states.
Thus, a constraint that ensures ”jumping” be-
tween states occurs smoothly must exist. This
constraint intuitively creates ties between pa-
rameters A1, A2, B, D1 and D2 in (5). Fig. 8

shows distributions of delay time Dt and se-
lected features of a full sequence with smooth
changing between states. The delay time val-
ues spread in a range from 30 ms/frame to 150
ms/frame, corresponding to the disparity of im-
ages varying between stationary and suddenly
changing. For comparing image display when
the sequence is played at a fixed frame rate (i.e.,
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13 fps or a delay time with a constant value of
77 ms), the proposed method allows physicians
to flexibility review the VCE sequence.

Fig. 8 Distribution of the delay time calculated from
the motion displacement and similarity features
of a sequence.

4.3 Experimental results
The proposed method is compared with

RAPID Version 4 (the G system, downloadable
at12)). To ensure that the conditions for the
evaluation of both systems were as similar as
possible, a GUI application (called P system)
was developed for the proposed method so that
normal diagnostic functions such as the capture
of abnormal regions, the manual adjustment of
viewing speeds and changes in viewing display,
as well as functions for navigating and verifying
suspicious regions were available. Both systems
were installed on a same PC with a Pentium IV
3.2 GHz, and 2 GB RAM.

We prepared six full sequences of patient
data. The evaluations were implemented on
both systems by the same four physicians from
the Graduate School of Medicine, Osaka City
University. Thus, forty-eight evaluations were
conducted. To facilitate unbiased evaluations,
the order of the evaluations of a certain se-
quence were established so that the number of
anterior/first evaluations on each system was
equal. The physicians were asked to indepen-
dently find and capture suspicious regions.

The main activities of the physicians as they
used the two systems were recorded. These

included: [play → stop], browsing/scanning
frames to examine suspicious regions, jumping
frames, changing manually display speed and
capturing abnormal regions. Fig. 9(a) shows
an example of the logged activities of physi-
cian MD. A for Seq. #3 under the two sys-
tems. From logs expressed in this figure, the
logged action based analysis is described below
to compare the performances of two systems
through three criteria; diagnostic time, abnor-
mal regions captured, and system operability.

Average diagnostic time by sequence is shown
in Fig. 10. From this figure, the diagnostic time
on the P system was seen as reduced for all six
sequences. The average diagnostic time for the
P system was 32.5±7 minutes and it was 42.4
± 9 minutes for the G system. The diagnostic
times using the proposed system were signifi-
cantly reduced for most evaluations (approxi-
mately 16 min. for MD. A, 6 min. for MD. B,
and 14 min. for MD. C ). The diagnostic time
of MD. D was equal in both systems.

# 1 # 2 # 3 # 4 # 5 # 6
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Fig. 10 Average diagnostic time by sequences

5. Detection of the intestinal contrac-
tions from VCE

5.1 A schematic view of intestinal con-
tractions from VCE

The characteristics of intestinal motility in
the human small bowel has been the subject of
decades of exhaustive research by physiologists
(e.g.,5),16),17),19),34)), because relevant informa-
tion in terms of the number, frequency, and dis-
tribution of intestinal contractions can indicate
the presence of different malfunctions. For ex-
ample, weak and disorganized contractions are
associated with bacterial overgrowth, intestinal
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2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30
Log of the actions of MD. A for sequence Seq_3 on G system

2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30

Log of the actions of MD. A for sequence Seq_3 on P system

Examined region

Play  → Stop Browsing/scanning Change speed

Jump Capture image Sequence
Examined region

Play  → Stop Browsing/scanning Change speed

Jump Capture image Sequence

Play  → Stop Browsing/scanning Change speed

Jump Capture image Sequence

Fig. 9 Logged actions of MD. A for Seq. #3. The upper panel shows ac-
tivities under the P system, the lower panel shows activities under G
system. Same abnormal regions captured on both system are indi-
cated by boxes

obstruction or paralytic ileus16), while dysfunc-
tions in, or absence of, contractions over a long
period can present as functional dyspepsia17).

VCE technique has recently been introduced
as a non-invasive means of inspection in GI
tract. Although this technique was not origi-
nally designed for the assessment of intestinal
motility, VCE image sequences reflect intestinal
activity during the transit time of the capsule.
They present a useful source information of vi-
sualizing intestinal contractions. As observed
in a VCE image sequence, a cycle of contrac-
tion begins at the widest state of the intestinal
lumen, then proceeds to occlude the lumen, be-
fore reaching the most extreme state of shrink-
age with extensive intestinal wrinkling. The
intestinal folds then relax again at the end of
the contraction. A schematic view of contrac-
tions along the small bowel is illustrated in Fig.
11(a) and some patterns of contraction cycles
in a sequence including 60 continuous frames
are shown in Fig. 11(b). As shown in these fig-
ures, variations in the images features through-
out the sequence of consecutive frames suggest
a possible contraction cycle. The frames show-
ing images at the most extreme stage of a con-
traction cycle are the easiest to recognize, be-
cause they are associated with shrinkage of the

circular muscle layers. Moreover, in terms of
the physiology, the duration of intestinal con-
tractions varies along the small bowel; a well-
recognized pattern of intestinal contractions, as
described above, is that the maximal rate of
contractions decreases in a series of steps from
proximal to distal regions. These characteris-
tics obviously provide useful information for de-
tecting contractions in VCE image sequences.

5.2 A three-step procedure for the in-
testinal contraction detection

We consider the contractions as dynamic
events in VCE videos and are recognized us-
ing both spatial and temporal information. The
temporal features provide the potential to de-
tect contractions through changes in the edges
pixels of the intestinal folds (edge signal), and
by evaluating the degree of similarity between
successive frames. In the context of signal pro-
cessing, the positions of possible contractions
can be located within windows including con-
secutive frames by convoluting the edge signal
with kernel functions. Relevant configurations
of these kernels are established such that vary-
ing the size of the windows reflects the con-
traction frequency gradient, which gradually re-
duces in a series of steps along the small bowel.
Based on results detecting possible contrac-
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Fig. 11 (a) A schematic view of contractions along small bowel. (b) Some
patterns of contraction cycles in a sequence including 60 continuous
frames (left to right, top to bottom). The [A] - [C] are frames at
most extreme stage of the contraction cycle.

tions, the spatial features are analyzed in order
to identify true contractions through a classi-
fier method. With this approach, the results
of temporal analysis can be tuned to prune as
many non-contraction frames as possible, and
thus the detection of contractions throughout
the whole small bowel is improved. Therefore,
we formulate the intestinal contractions based
on features below.

Stage 1 - Edge extractions to detect
possible contractions

The f(x) (with x is frame number) is denoted
as a function of edge pixels number of intestinal
folds:
f(x) =

∑

i

δ with
{

δ = 1 if i is an edge pixel
δ = 0 otherwise

(6)
The technique that we used to extract edges

of intestinal folds. The signal f(x) is normal-
ized in the range of [0, 1] and smoothed by a
Gaussian function to remove noise. The possi-
ble contractions are located where f(x) is in the
form of a triangle. These positions can be de-
tected by locating local peaks. However, not all
the signals present a perfect triangular pattern;
this depends on the length and the strength of
the contractions. Thus, a mathematical mor-
phology method is applied to create a simpler
graph than the original signal. As a result
of this process, potential contractions are lo-
cated within windows of length w (in number
of frames). Fig. 12(a) shows an example of the
processing of a sequence including 100 consec-
utive frames.

Stage 2 - Evaluation of the similarities
between consecutive frames for eliminat-

ing non-contractions
The results in Fig. 12(a) show two instances

of local maximal peaks, [A] representing a true
contraction (positive case), whereas [B] is a
false result (negative case). If a candidate con-
traction includes large regions of high similarity,
it is not a true contraction. Thus, to eliminate
the negative cases, evaluation of the similari-
ties between frames was implemented. These
evaluations were based on results using an un-
supervised clustering method adopted from15).
Because of the observation that each homoge-
neous region in consecutive frames was repre-
sented by a Gaussian distribution, the set of
regions was represented by a Gaussian Mixture
Model (GMM). The similarities were extracted
and clustered. Assuming that a possible con-
traction includes w = N frames, feature vectors
were constructed as in the configuration in Fig.
13(a). Frames were first divided into Nblocks

with a X × Y pixels size and an intensity his-
togram H including Nbins for each block was
calculated. The results of the clustering process
are then assessed to discard redundant cases. If
the largest clusters include the high similarity
values, it implies that almost all frames of a
candidate contraction are similar, suggesting a
low probability of it being a positive contrac-
tion. Figure 13(b) and (c) shows the results of
this process to eliminate negative cases of con-
tractions [B] in Fig. 12(a).

Stage 3 - Detect true contractions
through spatial features

The orientation of the edges of intestinal
wrinkles during the strongest stage of contrac-
tion was a powerful feature for discriminating
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[A] [B][A] [B]

(a) Possible contractions

Fig. 12 Possible contractions are marked on an original signal with starting
(asterisks) and ending (circles ) frames. [A] is a positive contraction;
[B] is a non-contraction.

t(a) (b) (c)

Cluster 1 Cluster 2

Cluster 3calculate sim
of Blocks t

framei framej+1

y

x

N frames
t(a) (b) (c)

Cluster 1 Cluster 2

Cluster 3calculate sim
of Blocks t

framei framej+1

y

x

N frames

Fig. 13 Configuration to get the feature vectors. (b) Results of clustering
similarity data (with K=3) of the negative case (marked as [B]) in
Fig. 12(a), the ratio of cluster 1 is 61% and of cluster 2 is 30%. (c)
Overlap the results on middle frames. Mean of similarity data are
0.6 for cluster 1 and 0.53 for cluster 2
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between contractions and non-contractions. In
order to characterize these patterns, an edge
direction histogram was used. As shown in39),
this model is robust enough to compare struc-
tural similarities between images. The frame
with the maximum edge number, after Stage 2,
was selected as representing the strongest stage
of contraction.

Figure 14(a) and Fig. 14(b) show two exam-
ples of the polar histograms H of contraction
and non-contraction cases, respectively. The
patterns of the polar histogram imply that,
in contraction cases, the directions are spread
in every direction, whereas in non-contraction
cases, the polar histogram is distributed in only
the dominant direction. To reduce the dimen-
sions of the histogram, and avoid losing im-
portant information, symmetric directions are
combined. The directions (0 − 180o) are then
divided into 16 bins of a histogram D in a Carte-
sian system, as shown in the left panel in Fig.
14(a) and Fig. 14(b). Based on the signal of the
histogram D, a simple K-nearest-neighbours
(K-NN) classifier was used to decide on the con-
traction pattern. In this learning model, the
structural similarity between two feature vec-
tors Dx and Dy was estimated by calculating
the correlation coefficient corre(x, y) according
to:

corre(x, y) =
δxy + C

δxδy + C
(7)

where δx and δy are the standard deviations
of the feature vectors Dx and Dy, respectively;
δxy is the covariance of vectors and C is a small
constant, to prevent the denominator from be-
ing zero. In our implementations, K-NN clas-
sifier trained with a data set including 1000
frames, which had been labeled manually, as
non-contraction or contraction cases. The data
set was established so that the number of con-
traction cases was equal to the number of non-
contraction cases (500 cases each).

5.3 Experimental results
Six VCE image sequences were obtained

from different positions of the small bowel.
The length of each sequence was 10 minutes.
Ground truth data for each sequence were ob-
tained by manual examination by the endo-
scopist experts. The positions of the beginning,
end, and the strongest stage of each contraction

cycle were marked.
To evaluate the performance of the method,

the data below were calculated after each stage:
- The number of true contractions detected

(True positives - TP)
- The number of wrong contractions detected

(False Positives - FP)
- The number of lost contractions (False Neg-

atives - FN)
The performances were then evaluated using
two criteria:

Sensitivity(Sens) =
TP

TP + FN
and

FalseAlarmRate(FAR) =
FP

TP + FP
(8)

The effectiveness of adapting window sizes
along the small bowel in the Stage 1 was eval-
uated by comparing this technique with the re-
sults using a fixed window size. The window
sizes were assigned based on the capsule tran-
sit through the small bowel. The FAR val-
ues obtained with adaptive changes in window
size were better than those with a fixed window
size, for all sequences. In particular, the yield
was significantly reduced FAR for Seq 2, Seq 4
and Seq 6. However, with larger window sizes
than those used for the fixed size, the detec-
tion of true contractions was reduced for Seq 4
and Seq 6. Contractions were lost in these cases
because concussive contractions appeared only
over a short time period (i.e. a few frames).
This was known as a clustering contraction (in
terms of physiology). Because at least one of
the contractions in the cluster was still observ-
able, they did not make a great impact.

Using the results of various window sizes for
Stage 2 and Stage 3, the overall performance
of the proposed method is shown in Table 2.
The data in column 2 show the results of the
proposed method after Stage 3. Among the
contractions detected in ground truth data, a
number of contractions which do not appear in
the final results are shown in the next column.
To compare qualitative indices between previ-
ous studies and the proposed method, although
contractions in11) and27) were determined us-
ing different experimental data, average values
for Sens and FAR were used: 71.5% and 71%
in27); 73.5% and 44% in11), respectively . Note
that the values of the Sens and FAR for meth-
ods11) and27) were recomputed from data sup-
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Fig. 14 Direction histogram of a contraction (a) and a non-contraction (b).
Left side shows original frames with gradient direction at edge pix-
els, middle is a polar histogram and the right side is a Cartesian
histogram in 16 bins

Seq.
Ground-
truth
data

Fixed window size Various window sizes
window
size w

Number of
Contrac-

tion
Found

Number of
Contrac-

tion
Lost Sens FAR

Number of
Contrac-

tion
Found

Number of
Contrac-

tion
Lost Sens FAR

Seq 1 20 88 1 95% 78% 88 1 95% 78% 5
Seq 2 30 76 1 97% 62% 62 2 93% 55% 7
Seq 3 16 92 1 94% 84% 36 3 81% 64% 11
Seq 4 48 124 1 98% 62% 57 6 88% 26% 9
Seq 5 46 109 4 91% 61% 66 5 89% 38% 7
Seq 6 33 78 1 97% 59% 44 4 88% 34% 11

Average 94% 68% 89% 49%

Table 1 Results of the stage one with fixed and variable window sizes

ported in these studies, to match with the def-
initions in (8).

6. Conclusions

The VCE analysis techniques were intensively
studied and investigated to develop two appli-
cations for diagnostic assistance. Spatial and
temporal image features are main suggestions
for VCE interpretations. This led us to the
framework including two levels: the image fea-
ture extractions and their temporal analysis.
The techniques extracted the spatial image fea-
tures such as color similarity, edge of the intesti-
nal folds in still images as well as the spatial-

temporal feature by extracting motion displace-
ment of two consecutive frames.

Facing with the main challenge of reading
VCE sequence that is time consuming and
under careful examinations of examining doc-
tors, we proposed the adaptive speed technique.
This technique ensured that entire the video
sequences are displayed in the original shape
without skipping any frames; thereby enabling
the inspection of all data. In experiments, the
results confirm that the diagnostic time is re-
duced to around 32.5 ± 7 minutes per full se-
quence. Compared with a standard-view using
the existing system, Rapid Reader Version 4,
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Table 2 Recognition rates of the experimental sequences using the proposed method

Seq.# Ground-truth data Number of
contractions detected

Number of true
contractions lost

Sens FAR

Seq 1 20 48 2 90% 63%
Seq 2 30 43 4 87% 40%
Seq 3 16 25 3 81% 48%
Seq 4 48 45 8 83% 11%
Seq 5 46 43 12 74% 21%
Seq 6 33 41 9 73% 41%

Average 81% 37%

the proposed method is 10 minutes less while
the number of abnormalities found are simi-
lar under both systems. As well, the proposed
system requires less effort because of its effi-
cient operability. These results should convince
physicians that the proposed technique can be
safely used for routine clinical diagnoses.

Regarding automatic detection of the intesti-
nal contractions in VCE sequence, the contrac-
tions were labeled successfully using a three-
stage procedure. The proposed method de-
tected 81% of the total contractions and the
false alarm rate was 37%. The experimental re-
sults confirmed that, by taking account of the
frequency of the contractions, it was possible to
solve the imbalance problem of appearances of
the contractions in VCE sequence. The com-
bination of spatial and temporal features pro-
vided a workable, robust method for detect-
ing contractions, which was both quantitatively
and qualitatively superior to previous methods.
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10) de Sá, J.M.: Pattern Recognition - Concepts,
Method and Applications, Springer (2001).

11) F.Vilarino, Spyridonos, P., Vitria, J., Azpiroz,
F. and Radeva, P.: Linear Radial Patterns
Characterization for Automatic Detection of
Tonic Intestinal Contractions, in Proc. of the
CIARP, LNCS, Vol.4225, pp.178–187 (2006).

12) Given Imaging Ltd.: RAPID Software Prod-
uct, http://www.givenimaging.com
/en-us/HealthCareProfessionals
/Products/Pages/Software.aspx (2007).

13) Given Imaging Ltd.: Overview of Capsule
Endoscopy, http://www.givenimaging.com/en-
us/Patients/Pages/pagePatient.aspx (2008).

14) Glukhovsky, A., Meron, G., Adler, D. and Zi-
nati, O.: System for controlling in vivo camera
capture and display rate, Patent number PCT
WO 01/87377 A2 (2002).

15) Greenspan, H., Goldberger, J. and Mayer,
A.: A Probabilistic Framework for Spatio-
Temporal Video Representation, in Proc. of the
Int. Conf. on ECCV 2002, pp.461–475 (2002).

16) Grundy, D.: GastroIntestinal Motility - The
Integration of Physiological Mechanisms, MTP
Press Limited, Hingham, MA (1985).

IPSJ SIG Technical Report

15 ⓒ2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.5
2009/6/9



17) Hansen, M.B.: Small Intestinal Manometry,
Physiological Research, Vol. 51, pp. 541–556
(2002).

18) Iddan, G., Meron, G., Glukovsky, A. and
Swain, P.: Wireless Capsule Endoscope, Na-
ture, Vol.405, p.417 (2000).

19) Imam, H., Sanmiguel, C., Larive, B., Yasser,
B. and Soffer, E.: Study of intestinal flow
by combined videofluoroscopy manometry, and
multiple intraluminal impedance, AJP- Gas-
trointestinal and Liver Physiology, Vol.286, pp.
263–270 (2004).

20) Lee, J., Oh, J., Yuan, X. and Tang, S.: Au-
tomatic Classification of Digestive Organs in
Wireless Capsule Endoscopy Videos, in Proc.
of the ACM Symposium on Applied Comput-
ing, ACM SAC 2007 (2007).

21) Lucas, B. and T.Kanade: An Iterative Image
Registration Technique with an Application to
Stereo Vision, in Proc. of the Int. Joint Conf.
on Artificial Intelligence, pp.674–679 (1981).

22) Mackiewicz, M., Berens, J. and Fisher, M.:
Wireless Capsule Endoscopy video segmenta-
tion using Support Vector Classifiers and Hid-
den Markov Models, in Proc. of the Int. Conf.
on Medical Image Understanding and Analyses
(2006).

23) Mackiewicz, M., Berens, J., Fisher, M. and
Bell, G.: Colour and Texture based GastroIn-
testinal tissue discrimination, in Proc. of the
IEEE Int. Conf. on Acoustics, Speech and Sig-
nal Processing, Vol.2, pp.597 – 600 (2006).

24) M.Coimbra and Cunha, J. P.S.: MPEG-7 vi-
sual descriptors - Contributions for automated
feature extraction in Capsule Endoscopy, IEEE
Trans. Circuits and Systems for Video Technol-
ogy, Vol.16, No.5, pp.628–637 (2006).

25) S. Birchfield: KLT: Kanade-Lucas-Tomasi
Feature Tracker, http://www.ces.clemson.edu/
stb/klt/ (2006).

26) Shi, J. and Tomasi, C.: Good Features to
Track, in Proc. of the IEEE Int. Conf. on Com-
puter Vision and Pattern Recognition, pp.593–
600 (1994).

27) Spyridonos, P., F.Vilarino, Vitria, J., Azpiroz,
F. and Radeva, P.: Identification of Intestinal
Motility Events of Capsule Endoscopy Video
Analysis, in Proc. of the Int. Conf. on Ad-
vanced Concepts for Intelligent Vision Systems,
LNCS, Vol.3708, pp.531–537 (2005).

28) Spyridonos, P., F.Vilarino, Vitria, J., Azpiroz,
F. and Radeva, P.: Anisotropic Feature Ex-
traction from Endoluminal Images for Detec-
tion of Intestinal Contractions, in Proc. of
the Int. Conf. on Medical Image Computing
and Computer-Assisted Intervention, LNCS,
Vol.4191, pp.161–168 (2006).

29) Suchit, P., Sagawa, R., Echigo, T. and Yagi,
Y.: Deformable Registration for Generating
Dissection Image of an Intestine from Annu-
lar Image Sequence, in Proc. of the Int. Conf.
on Computer Vision for Biomedical Image Ap-
plications, LNCS, Vol.3765, pp.271–280 (2005).

30) Swain, M. and Ballard, D.: Color Indexing,
International Journal of Computer Vision, Vol.
7, No.1, pp.11–32 (1991).

31) Swain, P. and Fritscher-Ravens, A.: Role of
video endoscopy in managing small bowel dis-
ease, GUT, Vol.53, pp.1866–1875 (2004).

32) Szczypinski, P.M.: Selecting a motion estima-
tion method for a model of deformable rings,
in Proc. of the Int. Conf. on Signals and Elec-
tronic Systems, pp.297–300 (2006).

33) Szczypinski, P.M., Sriram, P. V. J., Sriram,
R.D. and Reddy, D.N.: Model of Deformable
Rings for Aiding the Wireless Capsule En-
doscopy Video Interpretation and Reporting,
in Proc. of the Int. Conf. on CVG 2004, pp.
167–172 (2006).

34) Thomas, E.A., Sjovall, H. and Bornstein, J.:
Computational model of the migrating motor
complex of the small intestine, AJP- Gastroin-
testinal and Liver Physiology, Vol.286, pp.564–
572 (2004).

35) Tomasi, C. and Kanade, T.: Detection and
Tracking of Point Features, Technical report
(1991).

36) Vilarino, F., Kuncheva, L. and Radeva, P.:
ROC curves and video analysis optimization in
intestinal capsule endoscopy, Pattern Recogni-
tion Letter, Vol.27, No.8, pp.875–881 (2006).

37) Vu, H., Echigo, T., Sagawa, R., , Yagi, K.,
Shiba, M., Higuchi, K., Arakawa, T. and Yagi,
Y.: Adaptive Control of Video Display for Di-
agnostic Assistance by Analysis of Capsule En-
doscopic Images, in Proc. of the Int. Conf. on
Pattern Recognition, pp.980–983 (2006).

38) Wu, C. H., Chen, Y. C., Liu, C. Y., Chang,
C.C. and Sun, Y.N.: Automatic extraction and
visualization of human inner structures from
endoscopic image sequences, in Proc. of the
IS&T/SPIE, Vol.5369, pp.464–473 (2004).

39) Zhou, W., Bovik, A., Sheikh, H. and Si-
moncelli, E.: Image Quality Assessment: From
Error Measurement to Structural Similar-
ity, IEEE Transactions on Image Processing,
Vol.13, pp.600–613 (2004).

IPSJ SIG Technical Report

16 ⓒ2009 Information Processing Society of Japan

Vol.2009-CVIM-167 No.5
2009/6/9


