
情報処理学会研究報告
IPSJ SIG Technical Report

 1 ⓒ2009 Information Processing Society of Japan

Market-based Resource Allocation for
Distributed Computing

Ikki Fujiwara†, Kento Aida†‡ and Isao Ono*

Market-based resource allocation is expected to be an effective mechanism to allocate
resources in a cloud computing environment, where the resources are virtualized and
delivered to users as services. In this paper we propose a market mechanism to
efficiently allocate multiple computation/storage services among multiple participants, or
the Cloud Service Exchange. The proposed mechanism enables users (1) to order a
combination of arbitrary services in a co-allocation or a workflow manner, and (2) to
receive future/current services at the forward/spot market. The evaluation shows that the
proposed mechanism scales up to probable situations.

1. Introduction

Cloud computing is an emerging service paradigm for distributed computing environment.
The computing resources, either software or hardware, are virtualized and allocated as
services from providers to users. QoS is an important issue for industrial users to utilize cloud
computing environment in their business. Advanced features related to QoS include
performance guarantee of a service, co-allocation of multiple services and supporting a
workflow organized by different services.

In the near future, we can expect that hundreds of providers compete to offer resource
services and thousands of users also compete to receive the services to run their complex tasks
on cloud computing environment with guaranteed QoS and limited budgets. However, an
efficient recourse allocation mechanism among resource providers and users has not been well
discussed.

In this paper, we propose a market-based resource allocation mechanism, which allows
participants to trade their services effectively by means of the double-sided combinational
auction. A market mechanism is one of the promising solutions to cope with the situation
where a large number of participants, e.g. providers and users, trade the multiple kinds of
resource services. The proposed mechanism enables the participants to trade future and
current services in the forward market and the spot market, respectively.

2. Design Goal

This section briefly discusses the requirements for the proposed mechanism.
 Economic efficiency: When the allocation is economically efficient, it is impossible

to increase a participant’s welfare without decreasing another participant’s welfare; i.e.
there is no wasted resource. Maximizing the total welfare is a sufficient condition for
economic efficiency. We employ the mixed integer programming method to strictly
maximize the total welfare.

 Predictability and flexibility: Since the supply and demand in cloud computing
environment change dynamically over time, the users may desire predictable
allocation in advance as well as flexible adjustment in runtime. The proposed
mechanism employs dual market mechanisms, the forward market for advance
reservations of resources and the spot market for immediate reservations.

 Combinational biddings: The users may want to run complex tasks with advanced
features, e.g. co-allocation. The proposed mechanism accepts combinational bids, with
which the user can express complemental requirements for resource allocation.

 Double-sided auctions: In the proposed mechanism, both resource providers and
users compete to offer/receive resources. Prices of resources are reflected by supply
and demand of resources. The conventional commodities market mechanism [1] does
not satisfy the requirement for the proposed mechanism. The proposed mechanism
employs the double-sided auction model.

3. Related Work a

Market-based resource allocation has been a hot topic in the grid literature for a decade.
Schnizler et al. [1] introduced the double-sided combinational auction into grid
service/resource allocation. In [1], resources are bundled by the resource providers and the
users cannot select combination of resources. Tan et al. [2] proposed the Stable Continuous
Double Auction (SCDA). It is not truly combinational, i.e. the users need to bid on multiple
auctions in order to receive multiple resources. Amar et al. [3] illustrated a comprehensive
grid market model including the futures market and the centralized/decentralized spot market.
However, a detailed model of the futures market is not discussed.

While the computing resource market is not yet realized at the industrial level, the

† The Graduate University for Advanced Studies (SOKENDAI)
‡ National Institute of Informatics
* Tokyo Institute of Technology

Vol.2009-HPC-121 No.34
2009/8/6

情報処理学会研究報告
IPSJ SIG Technical Report

 2 ⓒ2009 Information Processing Society of Japan

electricity market has been in practical operation for several years. For instance, Japan
Electric Power Exchange (JPEX) started the operation in 2005. According to [4], it provides
three markets: (1) the spot market for trading the electricity on the next day, (2) the forward
market for trading the electricity delivered in some weeks or months, and (3) the forward
bulletin board market for free transactions. Since the electricity and the computing service
have similar nature (i.e. they cannot be stored), we regard the electricity market as a preceding
model to the computing service market. However, the electricity market model cannot be
directly applied to cloud computing because the electricity is almost uniform whereas the
computing services vary in types and quality.

The stock market deals with a variety of stocks, which can be stored and reselled unlike the
computing service. In this area, studies on dealing strategies and institutional design are
carried out recently by means of multi-agent simulations. U-Mart [5] is a test bed for

multi-agent simulations of the stock market, especially focused on futures trading. It allows
machine agents and human agents to trade future stocks at the same time. We are developing
our evaluation framework to be compatible with the U-Mart system so that human agents can
participate in experiments.

4. The Market Model

Figure 1 shows cloud computing environment with the proposed mechanism, the Cloud
Service Exchange. There is a centralized exchange including the forward market and the spot
market, where resource provider/user agents participate to sell/buy the computing/storage
resources abstracted as services. The participants interact with the spot market and the
forward market independently using the bidding language described below.

Regarding the service we assume the following conditions:
 The amount of a service can be measured in a throughput (e.g. 60 requests/sec of

service A). We use “unit” instead of “requests/sec” in the following part.
 From the provider’s point of view, a resource can be divided into arbitrary fraction

(e.g. a resource of 60 units is divided into 20 units for user1 and 40 units for user2).
 From the user’s point of view, a task can be divided into sub-tasks and executed on

multiple resources (e.g. a task of 40 units is allocated a resource of 10 units from
provider1 and that of 30 units from provider2).

 Also, a task can be migrated during the runtime (e.g. a task running on a resource from
provider1 is suspended and resumed on that from provider2).

The proposed mechanism is characterized by three properties: (1) the bidding language
defines the protocol between participants and markets, (2) the allocation scheme determines
assignment of services, and (3) the pricing scheme fixes prices at which the participants trade
their services. Below we formulate each property for each market.

4.1 Forward Market
The forward market deals with long-term advance reservations by means of the

clearinghouse auction. It makes contracts periodically. A service is divided into timeslots, e.g.
1pm-2pm, and the timeslot is traded in the market. The market accepts orders from users any
time but makes contracts every certain period, e.g. 3 hours.

4.1.1 Bidding Language
The bidding language describes the information in orders from participants to a market.
A buying order from a user includes the following information:

Fig. 1: Overview of the Cloud Resource Exchange

The Cloud Resource Exchange

provider1

has service A

needs service A and B
for a workflow
in the future

provider2

has service B

provider3

has service B
cheaper than 2's

user2 user3

needs service A and B
right now

selling order selling order

buying
order

Forward Market Spot Market

user4

needs service A and B
right now

needs service A and B
for a co‐allocation

in the future

user1

buying
order

buying
order

buying
order

selling
order

Vol.2009-HPC-121 No.34
2009/8/6

情報処理学会研究報告
IPSJ SIG Technical Report

 3 ⓒ2009 Information Processing Society of Japan

 Valuation: The maximum price at which the user wish to buy the bundle of services.
 A bundle of arbitrarily services, each of which include:

 Name: the kind of service
 Quantity: the amount (throughput) of the service
 Arrival: the earliest timeslot to start the task
 Deadline: the latest timeslot to finish the task
 Length: the total number of timeslots required to run the task

Note that valuation is given to a bundle, not to each particular service. In this way the user
can express requirements for receiving multiple services, e.g. co-allocation or workflow. A
contract is made if all services in the order are reserved for the user.

A selling order from a provider includes the following information:
 Valuation: the minimum price per timeslot at which the provider wish to sell the

service
 Name: the kind of service
 Quantity: the amount (throughput) of the service
 Timeslot: the timeslot to provide the service

Note that a selling order includes only one service at one timeslot. The provider makes
multiple orders for each service and each timeslot.

Formulation

Let ܯ ൌ ൛݉ଵ,… ,݉|ெ|ൟ , ݉௜ ൌ ሼݒ௜, ௜ܵሽ be selling orders; ܰ ൌ ൛݊ଵ,… , ݊|ே|ൟ , ௝݊ ൌ ൛ݒ௝, ௝ܵൟ

be buying orders; ܩ ൌ ൛݃ଵ, … , ݃|ீ|ൟ be services; 1 ൑ ݐ ൑ ܶ be timeslots; and ݒ௜ and ݒ௝ be

valuation. A buying order is formulated as

௝ܵ ൌ ൛൫݃௞, ,௝,௞ݍ ௝ܽ,௞, ௝݀,௞, ௝݈,௞൯ ห 1 ൑ ݇ ൑ ൟ|ܩ|

where ݍ௝,௞ is the quantity of service ݃௞, ௝ܽ,௞ is the arrival time, ௝݀,௞ is the deadline and
௝݈,௞ is the length. Similarly, a selling order is formulated as

௜ܵ ൌ ൫݃௞, ,௜,௞ݍ ݁௜,௞൯ ; 1 ൑ ݇ ൑ |ܩ|
where ݁௜,௞ is the timeslot.

4.1.2 Allocation Scheme
The allocation scheme determines a winner of an auction. We formulate the winner

determination problem into a linear mixed integer program (MIP). Here we introduce four
series of decision variables: ݑ௝ א ሼ0,1ሽ denotes whether the buyer ௝݊ gets all services in the

bundle; ݔ௝,௞ א ሼ0,1ሽ denotes whether the service ݃௞ is allocated to the buyer ௝݊ ;
௝,௞,௧ݖ א ሼ0,1ሽ denotes whether the service ݃௞ is allocated to the buyer ௝݊ in the timeslot ݐ;
0 ൑ ௜,௝,௞,௧ݕ ൑ 1 denotes the percentage of the service allocated to the buyer ௝݊ in the timeslot
 where the service ݃௞ is owned by the seller ݉௜. The solver then maximizes the total ,ݐ
welfare ݓ by solving the MIP:

Maximize

ݓ ൌ ∑ ௝ݑ௝ݒ
|ே|
௝ୀଵ െ ∑ ∑ ∑ ∑ ௜,௝,௞,௧்ݕ௜ݒ

௧ୀଵ
|ீ|
௞ୀଵ

|ெ|
௝ୀଵ

|ே|
௜ୀଵ (1)

s.t.

∑ ௝,௞ݔ
|ீ|
௞ୀଵ െ |ܩ| ௝ݑ ൌ 0, 1 ൑ ݆ ൑ |ܰ| (2)

∑ ௝,௞,௧்ݖ
௧ୀଵ െ ௝݈,௞ ௝,௞ݔ ൌ 0, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ (3) |ܩ|

∑ ௜,௝,௞,௧ݕ
|ே|
௝ୀଵ ൑ 1, ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (4)

௝,௞,௧ݖ௝,௞ݍ െ ∑ ௜,௝,௞,௧ݕ௜,௞ݍ
|ெ|
௜ୀଵ ൌ 0, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (5)

൫ ௝ܽ,௞ െ ௝,௞,௧ݖ൯ݐ ൑ 0, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (6)
൫ݐ െ ௝݀,௞൯ݖ௝,௞,௧ ൑ 0, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (7)

൫ܽ௜,௞ െ ∑൯ݐ ௜,௝,௞,௧ݕ
|ே|
௝ୀଵ ൑ 0, ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (8)

൫ݐ െ ݀௜,௞൯∑ ௜,௝,௞,௧ݕ
|ே|
௝ୀଵ ൑ 0, ൌ 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (9)

௝ݑ א ሼ0,1ሽ, 1 ൑ ݆ ൑ |ܰ| (10)
௝,௞ݔ א ሼ0,1ሽ, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ (11) |ܩ|
௝,௞,௧ݖ א ሼ0,1ሽ, 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (13)
0 ൑ ௜,௝,௞,௧ݕ ൑ 1, 1 ൑ ݅ ൑ ,|ܯ| 1 ൑ ݆ ൑ |ܰ|, 1 ൑ ݇ ൑ ,|ܩ| 1 ൑ ݐ ൑ ܶ (14)

4.1.3 Pricing Scheme
The pricing scheme calculates a price, which a provider/user actually earns/pays. The

proposed mechanism employs the K-pricing scheme for pricing. This scheme intends to
distribute the welfare generated by trading between the provider and the user. Let 0 ൑ ܭ ൑ 1

be an arbitrary fraction. The price ݌ is then calculated as ݌௜,௝,௞,௧ ൌ ௝,௞,௧൯ݖ௝ݒ൫ܭ ൅ ሺ1 െ

 .௜,௝,௞,௧൯ for each resource and timeslotݕ௜ݒሻ൫ܭ

Vol.2009-HPC-121 No.34
2009/8/6

情報処理学会研究報告
IPSJ SIG Technical Report

 4 ⓒ2009 Information Processing Society of Japan

4.1 Spot Market
The spot market deals with short-term allocation by means of the continuous auction. It

makes contracts continuously. The market matches orders whenever they come. The
contracted service is allocated to the user within the current timeslot. The bidding language,
the allocation scheme and the pricing scheme are almost same as those of the forward market
except that they have only one timeslot.

4.2 Examples
Figure 2 and 3 illustrate examples of forward trading among five participants: provider1

offers service A; both provider2 and provider3 offers service B with different prices; user1
needs service A and B simultaneously; user2 needs service A followed by B. As a result, all
the users’ needs are fulfilled. Note that provider3 wins the competition for service B because
the lower selling price makes more total welfare.

Figure 4 and 5 illustrate spot trading among participants. In this case user4 loses the
competition for service B because user3 pays higher price. Provider1 still has enough capacity
for service A, but it is not allocated to user4 since the order is combinational.

5. Simulator

We are developing a simulation environment, named W-Mart, to explore the market
behavior by means of multi-agent simulations. Figure 6 shows the overall architecture of
W-Mart. The Exchange and the agents are two main parts of W-Mart. The exchange has two
market instances, namely the forward market and the spot market, independently. Each market
mechanism is implemented on the top of MACE [1], which is a Java framework for
combinational auction. The mechanism translates the orders into a mixed integer program

$60 for all

$40 for all

$9

$15

$20

user3
<buy>

user4
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

service A 40unit

service B 30unit

service A 20unit

service B 20unit

service B 30unit

service A 10unit

service B 30unit

pays $38

could not
get

earns
$14.2

earns
$11.9

earns
$11.9

user3
<buy>

user4
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

$11.9

$11.9

$14.2

Fig. 2: Example orders in the forward market Fig. 3: Example orders in the spot
market

Fig. 5: Example allocation in the
spot market

Fig. 4: Example allocation in the forward market

Exchange

U‐Mart

Agent Agent Agent

Spot MarketForward Market

MACE

CPLEX or lp_solve

MACE

CPLEX or lp_solve

JOpt JOpt

Fig. 6: Architecture of W-Mart

0h

$60 for all

$40 for all

$9/h

$15/h

$20/h

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

1h 2h 3h 4h

service A 40unit

service B 30unit

service B 30unit

service A 10unit

service A 20unit

service B 20unit

service B 30unit

0h

pays
$56.1

pays
$32.8

earns
$16.6

earns
$22.9

earns
$50.5

user1
<buy>

user2
<buy>

provider3
<sell>

provider2
<sell>

provider1
<sell>

1h 2h 3h 4h

$6.07 $5.61

$10.77 $12.14

$6.46

$3.37

$11.23

$5.61

$11.23

$6.74

$10.77

Vol.2009-HPC-121 No.34
2009/8/6

情報処理学会研究報告
IPSJ SIG Technical Report

 5 ⓒ2009 Information Processing Society of Japan

(MIP) using JOpt, which is a Java framework for MIP. JOpt abstracts the MIPs from the
backend solver, which can be CPLEX or lp_solve.

The agents are to be implemented on the top of U-Mart, which is a Java framework for
multi-agent simulations, especially focused on the futures trading of the stock market. U-Mart
allows the machine agents and the human agents to trade simultaneously. We are planning to
enable humans to participate in the service allocation, along with the algorithmic schedulers.

6. Evaluation

Mixed integer programming tends to consume long time to solve a large problem. In this
section we evaluate the scalability of the proposed mechanism to confirm the practicality in
the cloud computing environment. The evaluation assesses the impact of the number of users
and timeslots on the runtime.

6.1 Experimental Setting
We carried out the stochastic simulation by generating a set of orders and running the

market mechanism. Since the evaluation aims to assess the scalability, we assume that the
rounds are independent, i.e. the result of matchmaking does not affect the next orders.

The number of timeslots has a range of {1, 24, 120, 240, 480, 720}. The case of #slots = 1
represents the spot trading and other cases represent the forward trading. The actual time span
covered by timeslots depends on the length of the timeslot. For example, #slots = 720
represents 1 month with a timeslot of 1 hour, or represents 1 year with a timeslot of 12 hours.
We refer to the example of the Japanese electricity exchange for the definition of the time
granularity. We consider this extent of granularity is also applicable to the cloud computing
environment.

The number of providers is fixed at 10, while the number of users has a range of {100, 400,
700, 1000}. Each provider offers each different service throughout the timeslots, i.e. all
services are available anytime. Each user requires 1 to 5 services chosen randomly out of 10
services to be co-allocated. The task length varies from 1 to 12 timeslots. The task beginning
time varies from 0 to (#slots − 12) timeslots after the ordering. This setting is intended to
reflect the current situation of cloud computing, where some big companies provide their own
services and many small consumers use services to execute their tasks.

Other parameters are fixed for the sake of simplicity. The quantity (throughput) of a service
is 100 units for selling and 1 unit for buying. The valuation of a service is $1/(slot・unit) for
selling and $3/(slot・unit) for buying. This setting means a loose supply-demand situation with
no price competition, where the buyer’s requirements are likely to be fulfilled.

Table 2 shows the hardware and software configuration to run the simulator. The simulation

has been conducted 10 times for each setting with different random seeds and the average
results are presented.

Number of Timeslots ܶ א ሼ1, 24, 120, 240, 480, 720ሽ
Number of Users |ܰ| א ሼ100, 400, 700, 1000ሽ
Number of Providers |ܯ| א ሼ10ሽ
Number of Services |ܩ| א ሼ10ሽ
Number of combined services 1 ൑ ݒݎݏ݊ ൑ 5 , uniform distribution
Length of a Task 1 ൑ ݈݁݊ ൑ 12 , uniform distribution ݈݁݊ ൌ 1 for spot market
Beginning time of a Task 0 ൑ ܾ݁݃ ൑ ܶ െ 12 , uniform distribution ܾ݁݃ ൌ 0 for spot market
selling quantity 100 units
buying quantity 1 unit for each service
seller’s valuation $1 per timeslot per unit
buyer’s valuation $3 per timeslot per unit
Number of simulation run 10 times

Table 1: Simulation Parameters

CPU AMD Opteron 8218 HE (2.6 GHz) × 16 cores
RAM 32GB
OS CentOS 5.1 (Linux kernel 2.6.18-92.el5)
JRE Sun Java SE 1.6.0_11
Solver ILOG CPLEX 11.200

Table 2: Simulation Environment

Fig. 7: Selling Orders in the Simulation Fig. 8: Buying Orders in the Simulation

t = 0

$1/slot・unit

$1/slot・unit

$1/slot・unit

provider4

provider2

provider1

t = T

service A : 100 units

service B : 100 units

service D : 100 units

$1/slot・unitprovider5 service E : 100 units

$1/slot・unitprovider6 service F : 100 units

$1/slot・unitprovider7 service G : 100 units

$1/slot・unitprovider8 service H : 100 units

$1/slot・unitprovider3 service C : 100 units

$1/slot・unitprovider9 service I : 100 units

$1/slot・unitprovider10 service J : 100 units

t = 0

$3/slot・unituser1

t = T

service X : 1 unit
service Y : 1 unit
service Z : 1 unit

1 to 5 services
co‐allocated

1 to 12 slots0 to (T‐12) slots

$3/slot・unituser2 service X : 1 unit

$3/slot・unituserN

service V : 1 unit
service W : 1 unit
service X : 1 unit
service Y : 1 unit
service Z : 1 unit

:: :

Vol.2009-HPC-121 No.34
2009/8/6

情報処理学会研究報告
IPSJ SIG Technical Report

 6 ⓒ2009 Information Processing Society of Japan

6.2 Results
For the forward market, the desirable matchmaking time is less than the length of a timeslot

because the allocation for the next timeslot must be determined within the current timeslot.
For the spot market, it is preferable to finish the matchmaking as soon as possible, i.e. within
1 minute. The result for the spot market is shown as “Number of Timeslots = 1”.

Figure 9 shows the overall runtime consumed by the market mechanism to perform a round
of matchmaking. For the forward market, it takes more than 5 minutes with 720 timeslots and
1000 users. However, it will be still shorter than the length of a timeslot, which we assume to
be 1 hour or 12 hours. For the spot market, it takes less than 1 second. The overall runtime is
essentially proportional to |ܯ| ൈ |ܰ| ൈ |ܩ| ൈ ܶ, which is the number of iteration to build the
model and parse the result.

Figure 10 shows the runtime of the solver, i.e. excluding the time to build the model, etc. It
takes less than 3 seconds in the worst case. The solver runtime is mainly affected by the
number of variables in the model, which is rather proportional to the length of services and
tasks than the number of timeslots.

The simulation results show that the proposed mechanism will scale beyond 720 timeslots,

1000 users, 10 providers and 10 services. In addition, the current implementation of the
market mechanism is not intended to maximize the speed; it leaves room for performance
improvement. Consequently, we conclude that the proposed mechanism will work practically
with probable situations in the cloud computing environment.

7. Conclusions and Future Work

In this paper we proposed the market-based resource allocation mechanism on cloud
computing environment. It allows users to order an arbitrary combination of services to
different providers. The proposed mechanism runs the forward market and the spot market
independently to make predictable and flexible allocation at the same time. The evaluation
showed that the proposed mechanism scales up to the probable situations in the cloud
computing environment.

Our goal is to establish an efficient market-based resource allocation mechanism suitable
for cloud computing. We are interested in the behavior of the exchange, particularly the
interaction between the spot market and the forward market. We anticipate that a forward
price shows a forecast of a spot price in the future. We are going to investigate the market
behavior including such an interaction by means of multi-agent simulations.

References

[1] B. Schnizler, D. Neumann, D. Veit, and D. Weinhardt, "Trading grid services – a
multi-attribute combinatorial approach," European Journal of Operational Research, vol.
187, no. 3, pp. 943-961, 2008.

[2] Z. Tan and J. R. Gurd, "Market-based grid resource allocation using a stable continuous
double auction," Proc. 8th IEEE/ACM Int. Conf. on Grid Computing (Grid 2007), pp.
283-290, 2007.

[3] L. Amar, J. Stosser, and E. Levy, "Harnessing migrations in a market-based grid OS,"
Proc. 9th IEEE/ACM Int. Conf. on Grid Computing (Grid 2008), pp. 85-94, 2008.

[4] K. Hoki, "Outline of Japan Electric Power Exchange (JEPX)," Transactions of the
Institute of Electrical Engineers of Japan, vol. 125, no. 10, pp. 922-925, 2005.

[5] H. Sato, Y. Koyama, K. Kurumatani, Y. Shiozawa, and H. Deguchi, "U-Mart: A Test Bed
for Interdisciplinary Research in Agent Based Artificial Market," Evolutionary
Controversies in Economics, pp. 179-190, 2001.

Fig. 9: Overall Runtime Fig. 10: Solver Runtime

0

50

100

150

200

250

300

350

100 400 700 1000

O
ve
ra
ll
Ru

nt
im

e
[s
ec
]

Number of Users

720

480

240

120

24

1

Number of Timeslots

0

0.5

1

1.5

2

2.5

3

100 400 700 1000

So
lv
er
 R
un

ti
m
e
[s
ec
]

Number of Users

720

480

240

120

24

1

Number of Timeslots

Vol.2009-HPC-121 No.34
2009/8/6

