
IPSJ SIG Technical Report

A Memory-Efficient Algorithm and Its Implementation of

Variable-Size All-to-All Communication

Bingbing Zhuang,†2 Hiroshi Nakashima†1

and Hiroshi Nagamochi†2

This paper proposes a memory-efficient algorithm of variable-size all-to-all
communication based on bitonic sort and in-place merge. The algorithm takes
O(N log2 P) computation and communication time and requires merely O(P)
extra space for the communication among P processes having N elements of
data to be exchanged for each. We also discuss another algorithm which takes
O(MP log P) time where M is the size of the largest chunk which a process must
send to another process and thus is expected to be O(N/P) in most practical
applications to make the time complexity O(N log P). We implemented the
first sort-based algorithm to show it works with reasonable efficiency.

1. Introduction

One of important motivations of parallel high-performance computing is, be-
sides obvious expectation of parallel speedup, to enlarge the size of problems to be
solved. This means that parallel algorithms must be aware of memory efficiency
as well as timing efficiency. In a sense, memory efficiency is more critical than
timing efficiency because we may allow 10% execution time extension while 10 %
memory size excess cannot be acceptable or we have to pay a huge memory/disk
swap cost.

Memory efficiency of collective communications sometimes governs that of ap-
plication programs using them. For example, if a program has a large dis-
tributed array which dominates the memory requirement of the program and
we need to perform FFT on the array, all-to-all communication for transposition
must be performed with memory awareness. Bad news to MPI users is that

†1 ACCMS, Kyoto University
†2 Graduate School of Informatics, Kyoto University

MPI_Alltoall() does not have in-place option�1 to replace the data in send-
buffer with those received. Therefore we need implement a hand-made version
of all-to-all to restrict additional space to O(1) or waste memory space as large
as the array.

The variable-size variance of all-to-all communication, e.g., MPI_Alltoallv(),
is also useful for parallel applications especially for load distribution/exchange
among parallel processes. For instance, our particle-in-cell simulator4) needs an
all-to-all distribution of particle subsets to initialize the simulation and/or to
correct unacceptable load imbalance. Unfortunately, devising and implementing
a memory efficient variable-size all-to-all is not trivial work. That is, in a fixed-
size all-to-all, a process p can exchange a fixed-size chunks with another process
q to place the chunks to their destinations, or can shift chunks along a rings
connecting processes. However, these simple techniques are not applicable for
the variable-size version because the pair of the chunks or those on the circular
shift path may have arbitrary variable sizes.

The work presented paper aims at devising memory efficient and reasonably
time efficient all-to-all algorithms applicable to memory intensive parallel ap-
plications including our particle-in-cell simulator by which we are motivated to
pursue the work. In the rest of the paper, after defining the problem to be solved,
we discuss two algorithms, one based on bitonic sort and the other with pair-
wise exchange. We also show our experiment results on the first algorithms to
evidence its reasonable timing efficiency.

2. Problem Definition and Assumptions

For the sake of explanation simplicity�2, we define our variable-size all-to-all
communication problem as follows. Let s(i, j) be a sequence of data elements
aij
1 , . . . , aij

n which a parallel process i ∈ [1, P] accommodates at initial and
a process j ∈ [1, P] finally stows in its memory. The initial layout of s(i, 1),
. . . , s(i, P) in the process i is the concatenation of them in this order denoted
by s(i, 1) • · · · • s(i, P). The stable solution for the process j is to have the

�1 Good news is that in-place option is expected to be incorporated a (near) future version of
MPI specifications.

�2 Also for the easiness of our implementation, so far.

1 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

IPSJ SIG Technical Report

concatenation s(1, j) • · · · • s(P, j) ≡ S(j), while unstable one is a permutation of
data elements in S(j).

Let |s(i, j)| be the length (or number of data elements) of the sequence s(i, j)
and N be that of the initial and final concatenation of the sequences regardless
the process accommodating it. That is, for all i ∈ [1, P], the following is satisfied.

P∑
k=1

|s(i, k)| =
P∑

k=1

|s(k, i)| = N.

The memory overhead of an algorithm is the maximum space required in addition
to that for N elements throughout the procedure to solve the problem. It is
obviously desirable that the overhead is O(1) but O(P) overhead is acceptable.
In fact, since a data element may be anything and thus may tell us neither its
initial housing process, its initial location in the process, nor its final destination
process, it is almost inevitable that an array containing |s(i, 1)|, . . . , |s(i, P)| is
given as the input for the process i besides the sequences s(i, 1) • · · · • s(i, P), as
MPI_Alltoallv() requires an input argument sendcounts[P]�1.

The time complexity of an algorithm is determined by two factors, computation
cost and communication cost. Computation cost is mainly for memory opera-
tions to manipulate sequences and elements in them and, of course, is calculated
taking parallel execution into account. As for communication cost, we simply as-
sume that a transmission of n data elements from a process p to a process q takes
O(n) time. That is, we neglect the constant overhead for the communication and
the latency possibly depending on the distance between them in the process net-
work. We also assume that processes are connected with a non-blocking network
through which communications between any number of non-overlapping pairs
can be performed simultaneously without any performance interference. Finally,
if a time complexity has factors of N and P with the same degree, we neglect P

to reduce, for example, N + P to N because N � P .

�1 The argument recvcounts is not necessary to be given explicitly. Since we assume the
fixed order of initial and final sequences as the fixed-size MPI_Alltoall() does, sdispls and
rdispls are also unnecessary. If it is required to specify the permutation of the sequences by
the displacement arguments, pre- and post-processing can be implemented using a in-place
sort with the in-place merger discussed later.

buffer first seq. second seq.

merged seq.

ji k

completed

next step

n√√√√ ⎯⎯⎯⎯

Fig. 1 Progress of merge process.

3. Algorithms

3.1 Fundamental Means
For designing of memory efficient algorithms, we have two fundamental means

which requires merely O(1) extra space regardless the size of data to operate on.
The first one is inter-process swap namely swap(i, j, si, sj) to exchange sequences
si and sj of size n = |si| = |sj | between the process pair i and j. This opera-
tion can be straightforwardly performed by MPI_Sendrecv_replace() which is
expected to use a fixed size data buffer to temporarily store sending data before
directly receiving data into its sendbuf (or to store receiving data which is then
copied to sendbuf). Since we have to repeat send/receive communications if the
buffer is smaller than the size of n elements, a large buffer of a few mega-bytes,
for example, is desirable but the size is still O(1) and is much smaller than N .

The second mean merge(s1, s2), which operates on the concatenation of ordered
sequences s = s1•s2 to merge the sequences replacing them, is more powerful and
complicated than the swap. The algorithm, invented by Huang and Langston2),
takes O(|s|) time while requiring O(1) extra space for stable merge. The outline
of the algorithm is as follows.
(1) Let n = |s| and split s into

√
n blocks b1, . . . , b√n so that each block has√

n elements.
(2) Rotate a part of s so that b√n has

√
n largest elements, and then Rotate

s so that b√n is placed leftmost and thus becomes b1. Then sort blocks
b2, . . . , b√n using the last elements of block as keys by a stable sorting
algorithm with O(1) extra space, for example, by selection sort taking

2 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

IPSJ SIG Technical Report

O((
√

n)2) = O(n) time.
(3) Let i = 2 and k = 1, and repeat following steps (4) to (6) until one of

termination conditions is satisfied.
(4) Find a block bj block such that i ≤ j and the block is the leftmost one

whose last element is larger than the first element of bj+1. If such a block
is not found, terminate the loop and go to the step (7).

(5) Merge two sequences, one is from k-th element of bi block to the last element
of bj and the other is bj+1, using

√
n elements preceding the left sequence

to be merged as a buffer. That is, repeat the exchange of the leftmost
element of the buffer and the larger one of two leftmost elements of the
sequences to be merged, until the last element of bj is exchanged as shown
in Fig. 1. The elements in the buffer were originally in b√n and are moved
so that they follow the merged sequence.

(6) Let i = j + 1 and k be the index of the leftmost element staying in bj+1.
(7) Rotate the subsequence from the head of the buffer to the tail of the se-

quence so that the buffer is placed rightmost and becomes b√n again. Then
sort the buffer using (e.g.) selection sort taking O((

√
n)2) = O(n) time

again.
Note that each of steps (2) and (7) takes O(n) as well as the loop from (4) to (6)
as the whole. Also note that the implementation difficulty of this algorithm lies
in the technique to use the largest

√
n elements as the buffer keeping stability,

and this difficulty is drastically reduced if we allow O(
√

n) extra space which
is practically acceptable because the space is as large as about 30 thousands
elements for the sequence having 1 billion elements�1.

3.2 Algorithm Based on Bitonic-Sort
Here we describe the first algorithm based on bitonic sort. An all-to-all commu-

nication can be considered as a parallel sorting with the following total ordering
of data elements.

ai1j1
k1

< ai2j2
k2

⇐⇒ j1 < j2 ∨ (j1 = j2 ∧ i1 < i2) ∨ (j1 = j2 ∧ i1 = i2 ∧ k1 < k2).

�1 Therefore our implementation uses O(
√

n) buffer, so far.

That is, the sorting with ordering above results in the sequence S(1) • · · · •S(P).
Since we assume

∑P
i=1 |s(i, j)| = N for all j, each part of the sorted sequence

S(j) should reside in the process j if we arrange that j has the j-th subsequence
N long.

Bitonic sort1) is one of efficient and easily-parallelizable sorting algorithms. It
operates on a bitonic sequence being the concatenation of an ascending sequence
and a descending one, or a circular rotation of this fundamental sequence. The
lower and upper halves of a bitonic sequence are easily found by scanning its
first and second halves. More specifically, for a bitonic sequence a1, . . . , a2n,
the crossing index i such that ai < a2i ↔ ai+1 ≥ a2i+1 tells us the lower (or
upper) half is the concatenation of a1, . . . , ai and an+i+1, . . . , a2n while upper
(or lower) half is ai+1, . . . , a2n+i, if ai < a2i (or ai ≥ a2i). Since it is assured
that the lower and upper halves are bitonic sequences again, iterative splitting
of a bitonic sequence a1, . . . , a2kn gives us subsequences s1, . . . , sk

2 such that
|si| = n for all i, and ak ≤ aj for all 1 ≥ i < j ≤ 2k, ak ∈ si and aj ∈ sj .

Parallel implementation of bitonic sort with P = 2p processes consists of p

phases (calls of procedure bitonic sort()) as shown in Figure 2 and 3. The k-th
phase starts from 2p−k bitonic sequences each of which lies across 2k processes,
then each sequences is split k times so that each process has a bitonic sequence
whose ascending and descending subsequences are merged to have a ascending
or descending sequence. Note that local sort() to make ascending (if UP) or
descending (if DOWN) is unnecessary for our application to all-to-all because
the initial sequence s(i, 1) • · · · • s(i, P) is an ascending sequence in our ordering
definition�2.

The procedure bitonic split() is for splitting a bitonic sequence lying across
processes i, . . . , i + 2k − 1 performed by swap(j, j + 2k−1, s′j , s

′
j+2k−1) for all j

such that i ≤ j ≤ i + 2k − 1, where s′j is a leading or trailing subsequence of
the sequence sj which j accommodates and is defined follows. Let j′ such that
i ≤ j′ ≤ i ∗ 2k − 1 and the crossing index lies in the process j′, A be true iff the
crossing index on a ascending sequence, and L be true iff j needs lower half of

�2 In our implementation, we omit reversing s(i, 1) • · · · • s(i, P) for even number processes
but give the sequence an annotation that it should be considered as reversed.

3 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

IPSJ SIG Technical Report

procedure sort(i , p) begin
if i mod 2 = 1 then local sort(UP);
else local sort(DOWN);
for k = 1 to p do begin

up ← (i − 1) mod 2k < 2k−1;
bitonic sort(i , k , up);

end
end
procedure bitonic sort(i , k , up) begin

for j = k − 1 downto 0 do begin
lower ← up;
if i ≤ 2j then bitonic split(i + 2j , lower);
else bitonic split(i − 2j ,¬lower);

end
bitonic merge(up);

end

Fig. 2 Pseudo code of parallel bitonic sort.

the bitonic sequence. Then s′j is defined as follows.
• sj itself if j �= j′ and (j′ < j ↔ A) ↔ L.
• Leading (or trailing) subsequence of sj preceding (or following) the crossing

index on j (i.e., j = j′) if ¬(A ↔ L) (or A ↔ L).
• Nothing if j �= j′ and (j′ > j ↔ A) ↔ L.

The procedure bitonic merge() is for merging a bitonic sequence on a process
performed by merge() after rotating the sequence if necessary.

Since the computation and communication cost of swap() is O(N) and the
computation cost of merge() is also O(N), the total time complexity of the al-
gorithm is O(N log2 P). As for the space complexity, we just need an array of
2P + 1 whose k-th element has the number of elements of k-th chunk in the
sequence which is a subsequence of S(i) for some i. That is, the sequence con-
sists up to three subsequences each of which is represented by the destination of
the first chunk, the number of chunks and the number of data elements in the

local_sort()

bitonic_sort() (k=1)

bitonic_split() (j=0)

bitonic_merge()

bitonic_sort() (k=2)

bitonic_split() (j=1)

bitonic_merge()

bitonic_split() (j=0)

bitonic_sort() (k=3)

bitonic_split() (j=2)

bitonic_merge()

bitonic_split() (j=1)

bitonic_split() (j=0)

Fig. 3 Progress of bitonic sort with 8 processes.

subsequence. Therefore, the space complexity is O(P).
3.3 Algorithm with Pairwise Exchange
The second algorithm is similar to pairwise exchange for fixed-size all-to-all,

but the exchanging is asymmetric. That is, a pair of processes i and j such that
i < j performs swap(i, j, si, sj) so that i gets a part of S(i) which j has but i

gives j arbitrary data elements which is not necessary a part of S(j). With this
asymmetric exchange, a process i ∈ [1, P] will have S(i) or some permutation of
its member elements by the following P − 1 communications whose global view
for P = 8 is shown Fig. 4.
(1) Repeat the following for j = 1 to i − 1. Concatenate all subsequence of

S(j) residing in i to make si and do swap(i, j, si, sj) to get a sequence sj .
(2) Repeat the following for j = i+1 to P . Assemble a sequence si not having

4 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

IPSJ SIG Technical Report

(1, 2)
(1, 3)
(1, 4) (2, 3)
(1, 5) (2, 4)
(1, 6) (2, 5) (3, 4)
(1, 7) (2, 6) (3, 5)
(1, 8) (2, 7) (3, 6) (4, 5)

(2, 8) (3, 7) (4, 6)
(3, 8) (4, 7) (5, 6)

(4, 8) (5, 7)
(5, 8) (6, 7)

(6, 8)
(7, 8)

Fig. 4 Global veiw of pairwise exchange communications.

any elements in S(i) to be swapped with sj which should be a sequence of
elements in S(i), and then do swap(i, j, si, sj).

In the algorithm, we have a free hand to compose si in the step (2). One rea-
sonable way is to compose it by elements in S(i + 1), then those S(i + 2) if not
suffice, and repeat this process until |si| = |sj |.

The time complexity of this algorithm is hard to analyze. Bad news is the
worst case complexity is O(NP) in some extreme cases. For example, if the
process 1 initially has S(P) and other processes i ∈ [2, P] have S(i − 1), the
execution is serialized with P − 1 communications of swap(i, i + 1, S(P), S(i)).
In practice, however, it is expected that initial setting is more moderate and
the time complexity is O(MP log P) where M is the maximum size of swapped
chunks in each row in Fig. 4 and is expected to be O(N/P) to make the complexity
O(N log P).

The log P factor of the time complexity is to merge received sequences. A
process i should perform merging when it does swap() with j such that j < i if i

has already received sequences in S(j). The process i also needs to merge received
sequences in S(k) such that k > i when it starts swap() with the process i + 1
if we adopt the reasonable way to compose si as discussed above. The number

of merging operations and the size of sequences to be merged are expected to
be small enough to make the time complexity O(N log P) but they could be too
large resulting in O(NP) complexity. In addition, the size of data structures
to maintain the received sequences is expected to be O(P) but can be O(P 2)
especially when we need the stability.

To summarize, this algorithm is faster than that based on bitonic sort in usual
cases, but could be slower and inefficient with respect to the memory overhead
depending on the initial setting. Therefore, we have to switch two algorithms by
examining the initial setting. The implementation of this pairwise exchange algo-
rithm is left for our future work together with the combination of two algorithms
and switching criteria.

4. Experiments

We implemented the algorithm based on bitonic sort on our T2K Open Super-
computer3) using Fujitsu’s C compiler version 3.0 and MPI library version 3.0.
We measured the performance with N = 224 data elements of 16 byte, or 256 MB
memory space, for each process. The number of processes is set to 2p varying
p from 1 to 8 to have P = 2 to 256, and each process is allocated on a core of
quad-core Opteron.

As for the initial setting of s(i, j) for the process i, we examined the following
four cases.

case-1: |s(i, j)| = N/P

case-2: |s(i, j)| =
⎧⎨
⎩

0 0 ≤ (j − i) mod P < P/4
N/P P/4 ≤ (j − i) mod P < P − 1
N/4 (j − i) mod P = P − 1

case-3: |s(i, j)| =
⎧⎨
⎩

0 0 ≤ (j − i) mod P < P/2
N/P P/2 ≤ (j − i) mod P < P − 1
N/2 (j − i) mod P = P − 1

case-4: |s(i, j)| =
{

0 (j − i) mod P �= P − 1
N (j − i) mod P = P − 1

Finally, we also measured the performance of MPI_Alltoallv() for all cases as
reference.

5 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

IPSJ SIG Technical Report

Table 1 Execution time in second of bitonic-sort based algorithm and MPI_Alltoallv.

bitonic-sort based MPI_Alltoallv
#proc case-1 case-2 case-3 case-4 case-1 case-2 case-3 case-4

2 2.0 — — 1.1 0.6 — — 0.8
4 4.5 — 5.1 2.0 1.0 — 1.4 0.8
8 8.4 10.2 10.2 4.1 1.3 1.4 1.4 1.0

16 15.5 19.6 19.3 10.7 2.2 2.4 2.1 1.7
32 21.1 29.1 28.8 15.1 1.7 2.2 3.3 1.7
64 30.6 44.0 42.5 26.9 2.5 2.8 3.7 1.6

128 39.2 57.5 59.1 39.7 2.7 3.2 3.8 1.4
256 52.9 75.0 78.6 54.9 3.5 3.9 4.5 1.4

The measured execution times are shown in Table 1. Although execution times
vary depending on the initial settings, they are fit well to the time complexity
O(N log2 P). In fact, if we can neglect the execution time of merge(), the time
for one swap() is in the range 1.4–1.5 s in case-1, 1.7–2.1 s in case-2, 1.7–2.2 s in
case-3, and 0.7–1.5 s in case-4. These numbers mean that the throughput of one
swap() is 120–380 MB/s, which is not excellent but reasonable.

The absolute execution time up to 78.6 s for 256 process in case-3 is much larger
than that of MPI_Alltoallv() which takes up to 4.5 s, but is acceptable for many
purposes including our motivated example of load (re-)distribution in particle-in-
cell simulation. Note that the execution time of one minute or so is significantly
shorter than a straightforward solution relying on (local) disk storage, which
might take 6–7 minutes for our 16-core nodes providing the effective throughput
for swap-in/out of the node disk is 20MB/s. Finally, the execution time of 4096
processes is expected to be about 2.5 minutes which is still significantly better
than the solution with disk storage.

5. Conclusion

In this paper, we discussed two memory-efficient algorithms of variable-size
all-to-all communication. The first algorithm based on bitonic sort takes
O(N log2 P) computation and communication time with O(P) extra memory
space. The second algorithm with asymmetric pairwise exchange will be faster
than the first in usual cases because its O(MP log P) time complexity is expected
to be O(N log P) if the data size M of each exchange is O(N/P).

We implemented the first algorithm on our T2K Open Supercomputer and

measured its performance using up to 256 CPU cores. This evaluation confirmed
that the execution time is proportional to N log2 P and the absolute value up to
78.6 s with 256 MB data for each of 256 processes is acceptably small.

Our urgent future work is to analyze the behavior of the second pairwise
exchange algorithm in detail to find criteria to bound its time complexity to
O(N log N) and memory overhead to O(P). Then we will implement a combined
algorithm to switch two algorithms according to the criteria.

Acknowledgments A part of this research work is pursued as a Grant-in-
Aid Scientific Research #20300011 supported by the MEXT Japan.

References

1) Batcher, K.E.: Sorting Networks and their Applications, Proc. AFIPS Spring Joint
Computer Conf., Vol.32, pp.307–314 (1968).

2) Huang, B.-C. and Langston, M.A.: Fast Stable Merging and Sorting in Constant
Extra Space, Computer J., Vol.35, No.6, pp.643–650 (1992).

3) Nakashima, H.: T2K Open Supercomputer: Inter-University and Inter-Disciplinary
Collaboration on the New Generation Supercomputer, Intl. Conf. Informatics Ed-
ucation and Research for Knowledge-Circulating Society, pp.137–142 (2008).

4) Nakashima, H., Miyake, Y., Usui, H. and Omura, Y.: OhHelp: A Scalable Domain-
Decomposing Dynamic Load Balancing for Particle-in-Cell Simulations, Proc. Intl.
Conf. Supercomputing, pp.90–99 (2009).

6 c© 2009 Information Processing Society of Japan

Vol.2009-HPC-121 No.2
2009/8/4

