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A Light Bypass Network Design

for Cascading ALU Executions

Jun Yao,†1 Hajime Shimada,†1 Takashi Nakada†1

and Yasuhiko Nakashima†1

ALU cascading is a possible solution to reduce the processor energy con-
sumption under low workload and low clock frequency executions. However, to
sufficiently use all detected cascadable pairs for a better performance, a specific
bypass network which provide internal results between simultaneously issued
producer/consumer pairs is required. This added cascading bypass network
complicates the designs of cascading enabled processors, especially when the
delay and area of wires can not be neglected. In this paper, we present a light
bypass network design which multiplexes the usage of the original forwarding
bypasses in a superscalar processor. The arbitration scheme and possible per-
formance penalties are studied in detail with our employed workloads. The
results indicate that after applying several simple additional policies on the
instruction issue, ALU cascading can still achieve a comparable performance
increase with the low cost bypass design.

1. Introduction

ALU cascading1),2), also known as data collapsing3), is originally nominated

as a performance enhancing method. Its basic idea is to collapse the execution

of dependent instructions into a single cycle, so as to save the total execution

cycles. However, as the cascaded execution of dependent instruction shall be

kept in sequence and thus requires a longer execution cycle period, the applica-

tion of ALU cascading is generally limited in media and vector processors or a

globally-asynchronous locally-synchronous processor which can use different clock

frequencies in individual pipeline stages1).

Recently, many of current power saving methods try to apply a lowered fre-

quency to reduce power under a light workload. Among them, several mechanisms
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Fig. 1 ALU Cascading.

such as pipeline stage unification (PSU) 4),5) and dynamic pipeline scaling (DPS)6)

are designed to be of voltage scaling free ones. Under these methods, it is possi-

ble to use the lowered frequency for cascading purpose, as described in paper 7).

Since energy is the product of both power and execution time, the increased

performance from cascading can help achieve further energy reduction when the

hardware extension for the cascading can be controlled under a negligible level.

Figure 1 gives an illustration of ALU cascading by executing two dependent

instructions (i1 and i2 in Fig. 1) under a halved frequency. Generally, as shown

in Fig. 1(a), a normal superscalar execution will require two consecutive cycles to

finish the two arithmetic operations as i1 and i2, by using the result forwarding

path (“(1)” in Fig. 1(a)) to bypass value R5 from i1’s execution which was gen-

erated in cycle n-1. After the frequency is scaled to half of the maximum value

in Fig. 1(b), a clock cycle period can hold two ALU operations if voltage keeps

unchanged. The cascading enabled processor connects an output of an ALU to

an input of another ALU and additionally bypasses i1’s result to i2 (“(2)” in

Fig. 1(b)). By this means, ALU cascading can utilize the latter half of the clock

cycle time for a second operation as depicted in the timeline in Fig. 1(b). It is

expected to increase the Instructions Per Cycle (IPC) for the program execu-

tion and the regained performance under a lowered frequency can benefit the

final energy reduction. If the performance portion is more weighted in metrics
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like energy-delay-product (EDP), the efficiency of cascading augmentation can be

further amplified as compared to the original low frequency execution.

However, as shown in Fig. 1(b), a specific cascading bypass route as “(2)” is

required in addition to the normal result forwarding route “(1)” to bypass the

intermediate data in a cascading pair like i1 → i2. As the delay and area of

wire are also major concerns in designing modern microprocessors, this specific

cascading bypass route may visibly increase the hardware cost since it has a similar

complexity as the normal forwarding network. Under this consideration, we give a

light bypass network design by multiplexing the usage of normal result forwarding

routes. ALU cascading and normal result forwarding are still supported in this

architecture while the retirement of the dedicated cascading bypass network can

help achieve a similar hardware complexity for the execution stage as in normal

superscalar processors. The additional delay and area penalties after supporting

ALU cascading are thereby alleviated. Based on the light bypass network design,

we studied several schemes to reduce the possible conflicts on the multiplexed

single bypass route in detail.

The rest of this paper is organized as follows. Section 2 reviews instruc-

tion scheduling methods for superscalar processors that provide additional

wakeup/selection features for ALU cascading, which serves as the background

technologies of this paper. Based on the scheduling scheme in Section 2, Sec-

tion 3 describes our proposal of a light bypass network for the execution stage to

alleviate the hardware complexity while still supporting cascading execution. Sec-

tion 4 presents the quantitative study of penalties after decreasing the hardware

supports for cascaded executions. Finally, Section 5 concludes the paper.

2. ALU Cascading

2.1 Scheduling Schemes for Cascading

According to the definition of ALU cascading introduced in papers 2), 8)–10)

and Section 1, cascadable instructions with dependence between them may be

waken up simultaneously. For this purpose, the normal instruction scheduling

method in a superscalar processor is required to be extended with cascading

supports. The key implementation is either to combine producer and consumer

instructions into a single package9) or to move the data dependence of a consumer

Table 1 A sample program block.

No. Instructions No. Instructions
i1: R1 ← mem(R8+0); i2: R2 ← mem(R8+4);
i3: R3 ← mem(R9+0); i4: R4 ← mem(R9+4);
i5: R5 ← R1 + R2; i6: R6 ← R5 + R3;
i7: R7 ← R5 + R4; i8: R6 → mem(R9+0);

Physical
Reg. No.

i 1: R1<-load(R8+0)

i 2: R2<-load(R8+4)

i 5: R5<-R1 + R2

...

...

i 1p32R1

p33R2

R5 p36

... ...

... ...

i 2

i 5

Producer
instruction

(1)

(2)

(1), (2): lookup RMT, get
i5’s producers as i1 and i2

Register Mapping Table (RMT)

(3)

(3): update RMT, save i5 as the producer of R5

Fig. 2 An RMT implementation to trace the direct producer instruction, as well as the
logical/physical register mapping.

instruction from its direct parents to its grandparents10). In either method, from

the viewpoint of the grandparent instruction, its issue will clear the corresponding

dependence relationship in its direct and the nearest indirect consumers, and

the cascadable producer/consumer can thus be waken up together if no other

unresolved dependence is in presence.

We use the scheduling method in paper 10) as the baseline scheduler in this

research. In this section, we use an example in Table 1 to briefly demonstrate

the scheduling policies to support ALU cascading.

Normally, there are two procedures performed in a decoding phase to identify

data dependences between instructions. Firstly, using the decoding of i5 to i8 in

Table 1 as an example, their direct producers can be back-traced by using the

register map table (RMT) in Fig. 2. This procedure can detect the dependences

between previously decoded instructions in the instruction window and those

currently decoding ones, which are (i1, i2)→ i5, i3→ i6, and i4→ i7. Secondly,

the dependences between i5 to i8 are checked by comparing their source and

destination registers. By this step, dependences i5 → i6, i5 → i7, and i6 → i8

can be identified.
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Fig. 3 A dedicated cascading design to support cascaded ALU executions.

Paper 10) employs the results of above two procedures to detect cascadable

instructions. Since the simultaneously decoded instructions like i5 and i6 has a

data dependence relationship as detected by comparing their source and desti-

nation registers, a two-hop away dependence chain can be established by using

i5’s parents, which can also be obtained in this decoding phase, as i1 and i2.

In this example, the two-hop dependence chain for i6’s left source operand is

(i1, i2) → i5 → i6. According to the basic idea, i1 and i2—as the grandparents

for i6—can be used instead of i5 to serve as the dependence resolving requirements

for i6’s left source operand.

Under this situation, if i3 which is the producer of i6’s right source operand, is

also issued at the same time of i1 and i2, i6 can be marked as ready at the same

time of i5, which may achieve a cascading issue of i5 and i6 consequently.

This method only detects the cascadable chances among the simultaneously

decoded instructions. However, it makes full use of the information obtained

in the normal decoding phase so as to maintain a very small hardware cost for

detecting cascadable instructions.

2.2 Operating with Dedicated Cascading Bypasses

The execution of cascadable instructions is another concern in a processor that

supports cascading. Other than using 3-1 ALUs11) which are specifically suitable

for cascading but may visibly increase the size of ALU cells, additional links to

pass cascading intermediate data is required as shown in Fig. 1. Under cascading,

the source operands of a consumer instruction may come from either the register

file, the bypassed data from previous execution cycles, and the output of the

producer in the same execution cycle which represents the cascading intermediate

data. For this purpose, a dedicated cascading bypass network is employed in

paper 10) to specifically pass the cascadable intermediate values, with a similar

topology as the normal bypass network.

Figure 3 shows the design of the execution stage with a dedicated cascading

bypass network which is a detailed version of “(2)” in Fig. 1. The shadowed units

are added specially for the cascaded execution purpose. In addition to the added

network, the cascading bypasses present a third source for each ALU input. The

multiplexer to select the correct source before ALU inputs is also require to be

extended to a two-level hierarchy, depicted as “(3)” in Fig. 3.

3. A Light Bypass Network Design for EX stage

The design of execution stage introduced in paper 10) and Section 2.2 gives an

implementation by using normal processor calculation resources for the cascad-

ing purpose, without including specific units like a 3-1 ALU which is specially

designed to execute two cascadable instructions in a whole. A dedicated bypass

network is used to pass inner data in a cascading pair so that the normal re-

sult forwarding will not be affected. However, since the delay and hardware cost

of wires are also big concerns in modern processors, the added bypass network

may introduce penalties which can not be simply ignored. For this consideration,

in this research, we designed a method to multiplex the usage of normal data

forwarding routes with cascaded execution supports, in order to prevent adding

additional networks. This section gives a detailed introduction of this network

design together with several combining schemes for arbitrating the traffics on this

designed single network.

3.1 Multiplexing the Usage of Normal Forwarding Bypasses

Figure 4 presents the proposed light network design to handle both cascading

and result forwarding. Different to the design in Fig. 3, the additional bypass

network dedicated for the transferring of cascading intermediate values has been
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(1): Cascading bypass enable (CasBypass_EN[i])
(2): Forwarding bypass enable (FwdBypass_EN[i])
(3): Forwarding network selection (FwdNetSel[i][1..2])

Data path for cascaded executionsstart

Fwd. Net.
Sel.[N][1]

ALU[N]

... ...

ALU[1]
... ...

Multiplexed result forwarding bypass network

Cas./Fwd.
Sel.[1]

... ...

... ...

... ... Cas./Fwd.
Sel.[N]

(1)

(2)

... ...start

dvalue[N] (pipe. reg.)dvalue[1] (pipe. reg.)

(3)

Fig. 4 Multiplex the usage of normal forwarding bypasses.

retired by putting another multiplexor Cas./Fwd .Sel before the data is passed

onto the bypass network. Assuming that the execution is now working on the

instructions in the current clock cycle n, the multiplexor Cas./Fwd .Sel [i] works

to handle the selection between the output from the pipeline register dvalue[i]

which stores the i-th ALU output of the cycle n-1, and the output from the i-th

ALU of the current cycle n. With the help of the newly added Cas./Fwd .Sel , the

usage of the original result forwarding network is now multiplexed. Either result

forwarding data and cascading intermediate values can be provided from this sin-

gle network. Without the dedicated cascading bypasses, the hardware extension

with ALU cascading augmentation can thereby be largely alleviated, especially

when the wire costs can not be neglected. Moreover, as shown in Fig. 4, it has

a smaller number of providers for each ALU input after removing the additional

cascading bypass network. The selection between the bypass network and ALU

inputs can thus refrain from the extended two-level multiplexer hierarchy which

was described in Fig. 3.

To pass correct values of either dvalue and ALU to the correct ALU input,

the selection signals of Cas./Fwd .Sel and Fwd .Net .Sel shall be determined af-

ter ALU resources have been allocated to the selected ready instructions. Fig-

ure 5 demonstrates the algorithms that determine the correct selection signals

(I) After issuing instructions to ALUs:
for (i=1;i≤N;i++) { /* provider index */

/* Initialization */

CasFwdSel[i].FwdBypass EN = false;

CasFwdSel[i].CasBypass EN = false;

/* Comparing and setting flags */

for (j=1;j≤N;j++) { /* consumer index */

for (k=1;k≤2;k++) { /* src1, src2 */

if (dvalue[i].preg == ALU[j].src[k].preg) {
/* Forwarding from dvalue[i], which was

* produced by ALU[i] in the last cycle,

* is required */

CasFwdSel[i].FwdBypass EN = true;

FwdNetSel[j][k] = i;

}
if (i==j)

continue;

/* Compare only between different ALUs */

if (ALU[i].dest preg == ALU[j].src[k].preg) {
/* Cascading from ALU[i] is required */

CasFwdSel[i].CasBypass EN = true;

FwdNetSel[j][k] = i;

}
} /* end k loop */

} /* end j loop */

} /* end i loop */

(II) After the above setting:
for (i=1;i≤N;i++) {
if (CasFwdSel[i].FwdBypass EN

&& CasFwdSel[i].CasBypass EN)

/* Confliction on the i-th bypass */

Stall Execution();

} /* end i loop */

Fig. 5 The determining of multiplexor selection (1), (2), and (3) in Fig. 4.

for all Cas./Fwd .Sel and Fwd .Net .Sel multiplexors. In Fig. 5, we use variable

CasFwdSel to represent the multiplexer Cas./Fwd .Sel and its two elements of

FwdByass EN /CasBypass EN to denote the selection signals. The notation of

FwdNetSel [i][1..2] is adopted to denote the selection of multiplexor Fwd .Net .Sel
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between the bypass network and each ALU input. ALU [i].dest is the destina-

tion operand of the i-th ALU, while ALU [i].src[1] and ALU [i].src[2] are the two

source operands of this ALU. In addition, we use the style of a suffix “preg” to

represent the corresponding physical register number, for either ALU source and

destination operands. Other expressions have the same meanings as in Fig. 4.

In this research, we assume a same superscalar design as in paper 10). A wire-or-

style instruction scheduler as Dependence Matrices Table (DMT)12) is employed

as the baseline scheduler. In that architecture, DMT structure which stores data

dependence information is used to accelerate the wakeup/selection phase. After

the instruction selection phase, no DMT access is performed so that the issue

logics in this architecture has no information of data dependences among the

ready-to-issue instructions. The issue logic is thus required to detect correct data

paths between issued instructions, which is the major task performed in Fig. 5.

With the supports of ALU cascading, there may be normal consumer instruc-

tions whose producers are executed in previous cycles, and cascadable pairs of

which the producer and consumer will be both executed in this cycle. To detect

correct producer/consumer relationships, two kinds of comparisons are performed,

as shown in Fig. 5. One kind of comparisons is between the current ALU source

operand numbers, and the destination register number in the last cycle by refer-

ring to the pipeline register dvalue directly after the EX stage. This is for the

enabling of corresponding result forwarding route, from the execution cycle n-1

to the current cycle n. The other set of comparisons are made between the ALU

outputs and their input register numbers, which is to help enable the bypassing of

correct cascading intermediate values. Note that the algorithm in Fig. 5 is given

in loop style for clarity. The real implementation of these comparisons can be fin-

ished by comparators in parallel so that they can be finished in a single cycle. The

CasBypass EN and FwdBypass EN are the wire-or results of the corresponding

comparator outputs.

The bypass network conflicts on a single bypass route: Though this

design in Fig. 4 can sufficiently reduce the wire extensions for a cascading enabled

processor, it may possibly introduce conflicts on the multiplexed single bypass

route. The conflict happens when both result forwarding data and cascading

intermediate data try to occupy the single bypass. Specifically, as shown in Part

(II) of Fig. 5, if both ALU [i] and dvalue[i] are providers to ALUs in this cycle,

the selection will fail on the corresponding i-th bypassing route.

Under this situation, a stall of the execution of those just issued instructions

in cycle n will be triggered to maintain correct data paths, which is presented as

function “Stall Execution()” in Fig. 5. Strictly speaking, the signals CasFwdSel

and FwdNetSel are determined after instruction issue phase and the direct phase

following that is Register Read (RR) stage. The “Stall Execution()” is then ac-

tually stalling the corresponding RR stage while the EX stage in the same cycle

n is not affected. During the stall, instructions issued in cycle n-1 can still be

propagated to latter stages, which helps retire the result forwarding from these

propagating instructions. When the activity of RR stage is re-enabled in the cycle

n+1, only cascading data will occupy those bypass routes and the conflicts are

thus eliminated.

3.2 Policies to Reduce Bypass Network Conflicts

The conflicts on the multiplexed single bypass network will cause stalls of execu-

tion stage and then impede the performance increase achieved by ALU cascading.

In this section, we study several policies for the instruction issue to reduce the

possibilities of conflicts on the multiplexed bypass network.

Basically, the pipeline registers after free ALUs in the last cycle n-1 will not

occupy the normal data forwarding bypasses in the current cycle n. It is thus safe

to exclusively enable the cascading bypass in the corresponding Cas./Fwd .Sel .

multiplexor. In our implementation, these free ALUs in cycle n-1 will be pri-

oritized to issue ALU instructions in cycle n. However, if the resources of free

ALUs in the last cycle can not fulfill all the ready-to-issue instructions, those

non-free ALUs in cycle n-1 whose normal bypass routes may be enabled in the

current cycle n will be used, which may be the potential sources of conflicts.

For this purpose, we applied the following simple policies to the instruction issue

to achieve conflict reductions in the multiplexed bypass network with relatively

small hardware complexity⋆1.

(a) Prioritizing free ALUs in the last cycle (Baseline policy): As de-

⋆1 Since instructions after selection contain no data dependence information, it is relatively
difficult or too costly to apply sophisticated conflict reduction policies.
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scribed above, basically we try to issue new instructions prior onto free ALUs in

the last cycle. The corresponding FwdBypass EN can always be set to false after

these ALUs in the current cycle.

(b) Special treatment for address generation instructions (Aug-

mented policy (1)): The augmented policies are considering the usage of ALUs

which are not free in the previous cycle. Normally, the address generation part of

a memory accessing instruction will use ALU resources. By assuming a separate

load/store architecture, a memory instruction of R2 ← mem(R8 + 4) can be re-

garded as a sequential execution of tmp ← R8+4 and R2← mem(tmp). Though

the first part may be the consumer in a cascadable pair, its ALU output is a hid-

den value to other instructions and will not be the provider for other cascading.

Normal result forwarding can be safely enabled after its ALU output. This kind

of instructions can be prioritized to issue onto those ALUs which are not free in

cycle n-1.

(c) Special treatment for the last ALU instruction in a decoding

phase (Augmented policy (2)): When the search range for cascadable instruc-

tions is designed to be among those simultaneously decoded ones as introduced in

Section 2.1, the cascading opportunity detecting logics will stop at the decoding

boundary. Under this situation, the last ALU instruction in the simultaneously

decoded block will never become a producer instruction in a cascading pair, since

its possible ALU output consumers are in latter decoding phases. Using i7 in

Table 1 as an example, it is the last ALU instruction if i5 to i8 are decoded in

one cycle. Other than ALU cascading, the wakeup of i7’s consumer instructions

is guaranteed by the normal dependence resolving method and they will not be

marked as ready until i7’s issue. The CasBypass EN after i7 is always false.

Similarly to the policy (1), this kind of instructions can also be prioritized to use

the non-free ALUs in cycle n-1.

The two augmented policies (1) and (2) can be applied prior to the baseline

policy and thereby save these resources of free ALU in cycle n-1. Our experi-

ments show that by applying these two additional policies with a small hardware

complexity, conflicts on the multiplexed bypass network can be largely reduced.

The corresponding results will be studied in Section 4 in detail. Together with

the stall check logics, we can retire the dedicated cascading bypasses to achieve

Table 2 Baseline processor configuration.

Processor 8-way out-of-order issue,
64-entry RUU, 32-entry LSQ,
8 int ALU, 4 int mult/div,
8 fp ALU, 4 fp mult/div,
8 memory ports

Branch prediction 10K-entry bimode13)

(4K-entry x2 direction PHT,
2K-entry choice PHT,
12-bit history),
2K-entry BTB, 16-entry RAS,
10-cycle misprediction penalty

L1 I-cache 64KB/32B line/2-way
L1 D-cache 64KB/32B line/2-way

L2 unified cache 2MB/64B line/4-way
Memory 64 cycles first hit,

2 cycles burst interval
TLB 16-entry I-TLB,

32-entry D-TLB,
80 cycles miss latency

a cost-effective implementation.

4. Simulation Results

The design in Section 3 can be regarded as a supporting implementation for

microprocessors where ALU cascading is enabled10), in trying to keep the com-

plexity of cascading hardware extensions toward a minimum level. However, the

achievements of minimizing hardware cost consequently introduces some perfor-

mance loss because of the shortage of bypass routes, as discussed in Section 3.

Since the main purpose of supporting ALU cascading is to increase per cycle

throughput of a superscalar processor, which is represented by Instructions Per

Cycle (IPC)⋆1, we will use IPC as a measure to study the trade-off by retiring

the specific cascading bypass network.

4.1 Simulation Methodology

We used a detailed cycle-accurate out-of-order execution simulator—Simple-

⋆1 ALU cascading is enabled together with some energy saving methods which use a lowered
frequency but maintain a fixed value of supply voltage. The improved IPC by cascading
can help further the energy reduction in these kinds of energy saving architectures.
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Table 3 Benchmark programs.

benchmark baseline cas. benchmark baseline cas.
IPC ratio IPC ratio

bzip2 3.57 17.9% gcc 2.14 5.7%
SPEC-

gzip 1.77 9.2% mcf 0.48 6.6%
int2000

parser 1.56 7.8% perlbmk 1.72 6.2%
vortex 3.14 4.2% vpr 1.50 9.6%

G721 decode 2.30 12.7% G721 encode 2.00 14.1%
Media-

GSM decode 3.10 17.1% GSM encode 3.85 19.6%
bench

MPEG2 decode 2.92 15.1% MPEG2 encode 1.43 8.4%

Scalar Tool Set14) to measure the IPC improvements by enabling ALU cascading.

Table 2 lists the configuration information of the baseline processor with an as-

sumed 12-stage pipeline. In the simulation, we assumed a separate load/store

architecture that divides the operation of memory instruction into address gen-

eration and memory access internal instructions. Thus, ALU cascading can be

applied on both ALU operation instructions (SHIFTs are also included) and ad-

dress generation instructions derived from memory accesses.

Table 3 lists the benchmarks which we used for evaluation. We chose eight

benchmarks from SPECint2000, compiled with gcc Ver. 2.7.2.3 for SimpleScalar

PISA. In addition, we selected six benchmarks from Mediabench15), after ex-

cluding those too short programs which are of less than 50M instructions. The

Mediabench programs are executed from beginning to end. For each SPECint2000

benchmark, 1.5 billion instructions are simulated with skipping first 1 billion in-

structions.

4.2 The Reduction of Bypass Network Conflict Rate by Using In-

struction Issue Policies

This section mainly focuses on the effectiveness study of the designed two aug-

mented policies (1) and (2), introduced in Section 3.2 for instruction issue, which

are mainly used to alleviate the possibility of conflicts on the single multiplexed

bypass network. Since the conflicts on the single bypass network will directly lead

to a stall in the EX stage, we use the stall rate to measure these strategies, as in

Fig. 6.

As shown in Fig. 6, in each benchmark, the horizontal axis gives four bars of dif-

ferent conflict reduction policies introduced in Section 3.2, which are the baseline

 0
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Fig. 6 Stall ratios on the single bypass network after applying different levels of conflict
reduction policies in Section 3.2.

policy, augmentations with issue policy (1), (2) and (1 + 2), respectively. The

vertical axis depicts the stall ratio, which is measured as the number of stalled

cycles divided by the number of all execution cycles which have cascaded execu-

tions. The instruction scheduling scheme introduced in paper 10) and Section 2

are used as the baseline instruction scheduler for ALU cascading supports.

It can be observed that if the instruction issue is only with a baseline con-

trol, there will be visible stalls after using normal forwarding bypasses for both

forwarding and cascading. The average stall rate will respectively be 2.3% for

SPECint2000 and 7.7% for Mediabench. Particularly, the stall ratios in bench-

mark bzip2, GSM enc., and MPEG2 dec. have been over 10%. These stall rates

have some correlations to both performance—measured as instructions per cy-

cle (IPC) in Table 3, and the program specific cascading ratio which are shown

in the 4th and 7th columns in Table 3. The cascading ratio is measured as

the ratio between cascaded consumer instructions and the total instruction num-

ber in a cascading detecting among the simultaneously decoded instructions10).

Benchmark bzip2, GSM enc., and MPEG2 dec. have comparably high IPCs and

cascading ratios. These two characteristics may result in heavier traffics of both

forwarding and cascading, which may increase the potential for conflicts on the

multiplexed bypass network.

The only exception to the above explanation is in GSM dec., which has com-
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paratively high IPC and cascading ratio like MPEG2 dec., while the stall ratios

in these two benchmarks are quite different. Further tracing data indicate that

the occupation rate of ALUs per cycle in GSM dec. is concentrating in the zone

near half of the issue width, which are 3, 4, and 5 in our environment. Differently,

MPEG2 dec. demonstrates a different trend as it experiences many execution cy-

cles in a full-width ALU occupation which is 8 in our environment and many in

a zero-ALU utilization as well. The IPC is an averaged data so that the differ-

ences in per cycle ALU occupation rate are concealed. From this viewpoint, ALU

utilization is relatively well-balanced in GSM dec. It leads to an averagely larger

number of free ALUs in the last cycle which generate no forwarding data to the

current cycle. Bypass network conflicts are therefore less likely to occur in GSM

dec.

After applying augmentation policies (1), the conflicts will be largely reduced.

The average stall rate can be reduced to 1.1% in SPECint2000 and 4.6% in Me-

diabench. For most benchmarks, this policy (1) is sufficiently effective. Except

the three mentioned benchmarks with largest stall rates, conflicts on the single

bypass route will be reduced to near 1.0%. As shown in the fourth bar of each

benchmark, policy (2) also reduces some stalls but the achievement is less than

policy (1) since it only applies to the last ALU instruction in one decoding phase.

However, these two policies can be incrementally applied. As shown in the fourth

bars, the increment of policy (1 + 2) can reduce the conflicts in bzip2, GSM enc.

and MPEG2 dec. to near 1/3 of the maximum values. The new average stall

rates are 0.5% and 2.8% in SPECint2000 and Mediabench, respectively. With

these two significantly reduced stall ratio, the performance penalty caused by the

conflicts may be alleviated.

4.3 IPC Improvements

The final goal of this research is to achieve a smaller hardware cost in im-

plementing ALU cascading while keeping a comparable performance gaining by

cascaded executions. In this section, the performance loss caused by the simplified

hardware supports will be studied by using IPC measurements.

Figure 7 shows the IPC improvements which are contributed from the cascaded

instructions. These IPC improvement data along the vertical axis are normalized

by those baseline IPCs shown in Tab. 3, collected from executions without cas-
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Fig. 7 Normalized IPC improvements based on different cascading bypass implementations.

cading. We conducted five different sets of networks and issue policies according

to Section 3.2. The first bar in each benchmark represents the result with a ded-

icated cascading network design. The following four bars in each benchmark are

results with a single multiplex network, which have the same format of Fig. 6.

As shown in Fig. 7, the allowed hardware complexity will have impacts on the fi-

nal IPC improvements. With a dedicated cascading bypass network, the average

IPC improvement under a search range of simultaneously decoded instructions

becomes 3.7% in SPECint2000 and 6.4% in Mediabench, respectively. After re-

ducing the hardware complexity by using a single bypass network, the gained

IPC improvements will be largely reduced if there is only a baseline policy for

the instruction issue logic, as shown in the second bar of each benchmark. The

performance loss is correlated to the stall rate in Fig. 6. In some benchmarks like

bzip2 and G721 dec., the performance is even smaller than the baseline processor

which runs without cascading supports. This is because the stall after detecting

a conflict on a single bypass will halt the whole EX stage, which affects up to 8

instructions in our environment.

The performance loss will be alleviated after incrementally applying conflict

reduction policies. As shown in Fig. 7, policies (1) and (2) together can effectively

add back the performance gainings toward the dedicated bypass design. The large

gap is only in benchmark GSM enc., which is caused by its 11.9% stall ratio after
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these two issue policies. In average, with both (1) and (2), the IPC improvement

will be respectively increased to 3.5% and 5.1% for those two benchmark sets,

which are 94.6% and 79.7% of the maximum values. After these two policies, the

single network design can finally be regarded as applicable.

5. Conclusions

In this paper, we proposed a simplified bypass network to retire the dedicated

cascading bypassing routes for microprocessors which support ALU cascading.

The designed network uses the original result forwarding structures to incremen-

tally cover the data bypassing of intermediate values in cascaded instruction pairs.

In addition, schemes to reduce the possibility of cascading and normal result for-

warding conflicts on the single bypassing route are studied in detail. After apply-

ing the conflict reduction schemes, in average, only 0.5% and 2.8% of the execution

cycles with cascading in SPECint2000 and Mediabench are respectively required

to be stalled due to the insufficiency of bypassing routes. Originally, a processor

with dedicated cascading bypasses to support ALU cascading can achieve 3.7%

and 6.4% IPC improvements in the two sets of benchmarks, respectively. Using

the minimum hardware extensions given in this research, we can still achieve 3.5%

and 5.1% IPC improvements.
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