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パタンウィンドウに基づく
シーケンスデータ処理と関係データ処理の統合

川 島 英 之†1,†2 北 川 博 之†1,†2 Li Xin †1

本論文はストリーム処理環境におけるパタンウィンドウなる新しいウィンドウ演算
子を提案する．この演算子は時間順序を有するシーケンスから複合イベントを検出す
るために使われる．パタンウィンドウを関係データ処理と統合するため，演算木にお
ける演算子の状態を動的に変更する機構を導入する．

Pattern Window based Integration of
Sequence Data Processing and Relational Data Processing
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This paper proposes a novel window operator, pattern-based windows, for data stream
processing. By using pattern-based windows, user-specified complex events could be ex-
tracted from data stream under the framework of Continuous Query Language (CQL), which
integrates the current data stream processing research and event processing technologies. In
the paper, pattern-based window is formally defined and the query language of pattern-based
windows is designed. A simple pattern matching algorithm is introduced to show logical
expression of the query language. We also give serial examples to show the usage of the
query language by using pattern-based windows.
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1. Introduction

Network and sensor device technologies are developing rapidly; and a variety of sensor devices

such as network cameras, wireless sensor nodes and RFID readers are widely used in our daily

lives. A variety of sensor devices such as network cameras, wireless sensor devices and RFID

readers are widely used to catch and process the data from numerous primitive physical events

which happen continually everyday.How to process this kind of primitive event streams has been

focused increasingly by database community.

One of the most important problems is the processing of a sequence of primitive events to an-

alyze raw data from sensor networks. Although stream processing techniques are discussed in

depth, event processing (sequence pattern matching) has not yet been well developed under the

framework of data stream processing systems which support by tuple semantics.

Therefore, the purpose of this paper is to design a novel event stream processing engine which

can support pattern matching over sequence, and integration of sequence and relation. In this pa-

per, we propose a novel window operator, pattern-based windows, which support event detection

under the framework of data stream processing and continuous queries. We show that we can

well integrated the existing data stream processing and event stream processing technologies. All

the general operators in data stream processing including selection, projection, join, union, and

duplicate-elimination, are supported in this research.

The rest of this paper is organized as follows: Section 2 describes related work. Section 3 il-

lustrates basic data model on stream processing. Section 4 presents our proposal, pattern-based

windows with definitions and examples. Section 5 concludes this paper and indicates future work.

2. Related Work

In this section, we describe a brief explanation to related works.

Stream processing enginessuch as StreamSpinner11), TelegraphCQ4), STREAM7) and Bore-

alis1) have been well developed over the last several years both in research and industrial commu-

nities. One stream processing semantics and language, CQL2) has been introduced by STREAM

project team. It shows a strict model of stream processing and defines three kinds of window

operators in their data model. However, all data processing systems above are awkward to express

event sequences obtained by pattern matching. It is because usual stream processing engines sup-
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port relation in which tuples are independent while sequence has a dependency of order among

tuples.

Event processing systemsuch as Cayuga5), SASE8),12) and Lahar9) are close in spirit to this

research. Cayuga3),5) is a prototype event stream processing system, which enables high-speed

processing of large sets of queries expressed in Cayuga algebra. SASE8),12) describes events in

a formalism related to regular expressions and uses some variants of a NFA model. One recent

paper8) of SASE presents a rich declarative event language referred to as SASE+. SASE+ can be

used to define a wide variety of Kleene closure patterns to extract a finite yet unbounded number

of events with a particular property from the input stream. Such patterns always appear in event

streams in RFID and sensor network applications. Paper10) and Lahar9) are event processing sys-

tems over probabilistic event streams. But the event processing systems do not deal with general

data stream processing operators such as join and duplicate-eliminating. Especially, the lack of

join dramatically loses expressive power.

In this paper, we integrate both the technologies to increase the usability of a stream processing

system.

3. Preliminary

In this paper, we utilize a data stream model similar to the data model used by CQL2).

CQL is the short form of Continuous Query Language. In2), a concrete query language and

the abstract semantics were proposed. Tuples have timestamps, and there is no order between

tuples with the same timestamps. The data model consists of streams and updatable relations for

time-driven continuous queries.

In CQL model of defining stream and updatable relations, the authors assume a discrete and

ordered time domain. Thus, the notion of timestamp is proposed to extend the conventional

stream. The attribute of timestamp is not included in schema of a stream. And one timestamp

can correspond to one element in a stream. A finite but unbounded number of elements with a

concrete given timestamp is always required by users. A relation R defines multiset of tuples at

any timestamp which is including in time domain.This definition for relation is quite ingenious to

add timestamp attribute to traditional relation model.

A tuple t is conforming to the schema Stream(a1, ...,an) A stream S is a finite (but unbounded)

multiset of elements< s, τ >, where s is a tuple belonging to the schema of S andτ is the

timestamp. A relation R defines a multiset of tuples at any timeτ , denoted instantR(τ).

Based on SQL, CQL formalized streams and updatable relations through defining three black-

box classes of operators: (1)stream-to-relation operators that produce a relation from a stream;

(2)relation-to-relation operators that produce a relation from one or more other relations; and

3)relation-to-stream operators that produce a stream from a relation. Stream-to-stream operators

can be composed by the preceding three operators.

Stream-to-relation operators: all stream-to-relation operators in CQL are based on sliding

window concept over a data stream. By utilizing slide window, the operators intercept and cap-

ture a finite portion of the stream at any timestamp. In CQL, there are three kinds of windows:

time-based windows, tuple-based windows, and partitioned windows.

A time-based sliding window is specified by a time interval T and outputs relation over time by

a sliding window to capture the last portion. A tuple-base sliding window is specified by a length

N of number of tuples and capture the newest N tuples. Partitioned windows are quite different

to the prior two operators. This window partitions stream referencing subset e.g.A1,...,Ak. (A is

the name of attribute of the steam.)

Relation-to-relation operators: On relation-to-relation, CQL refers all the operators from SQL

by adding time variable to them.

Relation-to-stream operators: There are three relation-to-stream operators in CQL:

ISTREAM, DSTREAM and RSTREAM. ISTREAM (for”insert stream”) is the most commonly

used operator, which indicates a insert stream to insert tuples according to the timeτ by the dif-

ference of the relation results betweenτ andτ − 1. DSTREAM (for ”delete stream”), on the

contrary, searches the deleted tuples and insert them into a stream. RSTREAM (for ”relation

stream”) output all tuples satisfied by filter condition until now to construct an updated stream.

4. Pattern-based Windows

We first show the definition of pattern-based windows and sequence functions, then give some

examples to show the usage of pattern windows and how they can process with normal relational

operators in CQL model.

4.1 Definition

A pattern-based window on a streamS takes a specification of a sequence patternP . Intu-

itively, a pattern-based window logically selects tuples on a stream which satisfy the user-defined
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pattern. The timestamp of the last tuple of the window is timeτ . More formally, we can write the

definition of the output relationR of patternP as:

R(τ) = {< s1, τ1 >, < s2, τ2 >, ..., < sn, τ >}
τ1 < τ2 < ... < τn−1 < τ

s1, s2, ..., sn satisfy patternP

Tupless1, s2, ..., sn should be in time order and satisfy the sequence pattern. The relation only

has values when the last tuple is at the current timestampτ . Thus, in this case pattern-based win-

dows are similar to a special window, Now window “S [Now]” in CQL. But Now window only

outputs a relation with tuples in the current timestamp, while a pattern-based window outputs a

relation with tuples in different timestamps.

4.2 Syntax

We define the syntax of pattern-based windows as follows. Thestream means a stream, and

the following[...] means the pattern-based window.

stream[PATTERN BY

(START-CONDITION;

TERMINATION-CONDITION;

ITERATION-CONDITION;

FILTER-CONDITION)]

Inspiration by FOLD Clause in Cayuga Event Language6), four conditions as four parameters in a

pattern-based window are defined. Here, the meaning of the conditions is introduced followed by

a simple algorithm to indicate the logical processing of pattern matching using the four conditions.

The explanation of the parameters are as follows. (1) The first parameter, start-condition, is the

condition to start a pattern-based window. Therefore, the first tuple in a pattern-based window

should satisfy start-condition. (2) Termination-condition on the other side denotes the condition

to end a pattern-based window. When a tuple in the window meets termination-condition, the

pattern-based window is closed and should be output to the next operator. (3) Iteration-condition

is the condition of matching iteration of a window and preserving the correctness of a pattern-

based window. If iteration-condition is not met, the iteration is stopped and the window is deleted.

We can set iteration-condition as FALSE to find two directly consecutive tuples on a data stream.

(4) Filter-condition is the condition to select the tuples in the window. If we set the filter-condition

as TRUE, all the tuples after the first tuple are added to the buffer of a pattern-based window. If we

set it as FALSE on the contrary, only the first tuple and the last tuple are contained in the window.

4.3 Sequence Functions

Sequence functions are similar to aggregation functions for a relation. But the general aggre-

gation functions do not consider the time order for the tuples in a relation. Users, for example,

usually want to find the first occurred tuple in a relation. Thus aggregation functions coping with

timestamps should be introduced. In this paper, we propose five sequence functions. They are

FIRST(), LAST(), PREV(), ITER() and NUM().

In pattern-based windows, attribute names are directly used to denote the attribute values of

tuple in the current iteration. FIRST() denotes the attributes in the first tuple (the tuple with the

minimum timestamp) in the relation and the matched sequence. LAST(), similarly, denotes the

last tuple (the tuple with the maximum timestamp) in a relation. FIRST() can be used in the SE-

LECT clause and in all conditions in pattern-based windows and LAST() can be only used in the

SELECT clause. In SELECT clause, they work as the normal aggregation functions and the pa-

rameter of the functions is a list of attribute names. When the functions are used in pattern-based

windows, the parameter has to be only one attribute name. The function return the attribute value

in a matching buffer for a open window. PREV() can only be used in pattern-based windows,

which represents the attribute in the previous tuple in a window. Please note that PREV() cannot

be used in the start-condition because the first tuple does not have a previous tuple. We also define

function ITER() as the current number of iteration in an open window and as the finial number of

iteration times of a window in SELECT clause. Similarly, Function NUM() is defined to return

the number of tuples in a window.

4.4 Examples

We introduce the query language through several examples. We first assume a location stream

for different persons from sensor networks. The schema of the stream is At(Person, Location),

which simply describes someone is at some place at a certain time.

People usually want to find the next event after something happened. So, we can assume the

simplest pattern with two tuples. The first tuple indicates that the some event happens at first,

then the query find the next interesting tuple by user-defined pattern. We show a relatively simple

example as follows.

Example 1. Suppose we want to find the next place where Tom go after in the laboratory. We

can formulate this query in pattern-based window as follows.
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SELECT ISTREAM(LAST(Location))

FROM At[PATTERN BY

(Person = ’Tom’ AND

Location = ’Lab’;

Person = ’Tom’;

TRUE;

FALSE)]

WHERE Location <> ’Lab’

Iteration-condition is set as TRUE and filter-condition is set as FALSE. So, tuples in iteration are

not added to the window. This pattern help to find a window with only two consecutive tuples.

The first state is that Tom is in the laboratory. The second tuple represents that Tom is at some

place. When we find such a pattern-based window, we filter the tuple in the laboratory by selection

in the WHERE clause, because we want to find some other places besides the laboratory. Finally,

ISTREAM operator is used to translate the result into a stream.

Example 2. Suppose we want to find next place where someone is after in the laboratory. We

can formulate this query in pattern-based window as follows.

SELECT ISTREAM(LAST(Location))

FROM At[PATTERN BY

(Location = ’Lab’;

Person = FIRST(Person);

TRUE;

FALSE)]

WHERE Location <> ’Lab’

In this example, we change Tom to someone in the query. Therefore, a constraint condition is

“Person = FIRST(Person)”. The attribute Person in the current iteration can be directly written

as “Person”. First tuple is quoted in the termination-condition by using FIRST(). We can force

the same person in a pattern-based window by checking equality in termination-condition and

filter-condition.

Example 3. Suppose we want to find someone first in the laboratory and the directly next

location is Room 101. We can formulate this query as follows.

SELECT ISTREAM(LAST(Location))

FROM At[PATTERN BY

( Location = ’Lab’;

Person = FIRST(Person) AND

Location = ’Room 101’;

Person <> FIRST(Person);

FALSE)]

WHERE Location <> ’Lab’

In this query, we use filter-condition to find the same person for iteration. But the iteration-

condition is set as “Person ¡¿ FIRST(Person)”, which means only direct next place “Room 101”

after “Lab” for a certain person is allowed for the pattern. Otherwise the window will be dropped.

Example 4.Suppose we have another data stream indicating the states of rooms with a schema

RoomState(Room, State). We can join pattern-based window results in Example 3 and Stream

RoomState to find someone’s state after leaving the laboratory. We can formulate this query in

pattern-based window as follows.

SELECT ISTREAM(Person, State)

FROM At[PATTERN BY

(Location = ’Lab’;

Person = FIRST(Person);

TRUE;

FALSE)],

RoomState[Range 2min]

WHERE At.Location = RoomState.Room AND

At.Location <> ’Lab’

In this query, we use two kinds of window operators in the FROM clause. The first is a pattern-

based window same to Example 2. The second is a time-based window. For the pattern-based

window performs as Now window. We obtain a new relation from the join operator only when

the current tuple meets the termination-condition of a pattern-based window. Please note that in

our model we can rename the original timestamp of a data stream as a new attribute after win-

dow operators. The new timestamps are given by relation-to-stream operators by CQL model.

This is important because the original timestamps contain the occurrence order of the tuples in a

pattern-based window.
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Example 5.Suppose we want to find that a person at first is in laboratory, finally returns home.

The passes from laboratory to home are not considered (i.e. The person may pass some places and

arrive at home indirectly or he go home from lab directly. We also want to calculate the duration

time between the laboratory and the home. We can formulate the query in pattern-based window

and sequence functions as follows.

SELECT ISTREAM(FIRST(Person),

LAST(Timestamp)-FIRST(Timestamp))

FROM At[PATTERN BY

(Location = ’Lab’;

Person = FIRST(Person) AND

Location = ’Home’;

Person <> FIRST(Person) OR

Location <> ’Lab’;

Person = FIRST(Person)])

This query can find a window for a certain person with the sequence from “Lab” to “Home”. We

can see here that FIRST(), LAST() work as aggregation functions. So the relation after SELECT

clause contains only one tuple. ISTREAM then converts the relation into stream for output.

Example 6. Suppose we want to find that a person is in laboratory at first,and sometime later

he is at home. Similar to Example 5, the person might go home directly or pass some other places

and finally arrive home. The query user wants to know all the passes from the laboratory to the

home. We can formulate the query in pattern-based window and sequence functions as follows.

RSTREAM(

SELECT *

FROM At[PATTERN BY

(Location = ’Lab’;

Person = FIRST(Person) AND

Location = ’Home’;

Person <> FIRST(Person) OR

Location <> ’Lab’;

Person = FIRST(Person))]

WHERE Location <> ’Lab’ AND

Location <> ’Home’ )

In this query, different from Example 5 using aggregation, our system also can output the whole

relation by specifying RSTREAM if users need it.

4.5 Dynamic State Management

In a SPE, stateful operators such as join or aggregation manage its state. Usually the length of

state is based on either time duration (time-based window) or number of tuples (tuple-based win-

dow). Pattern window has a different feature. Until a pattern is obtained in the window, a pattern

window does not generate any tuple. This behavior is different from usual windows. Therefore

state management should be reconsidered for pattern window.

Since an output of pattern window has a time length, its counter part should be in the same

time region. Therefore as for join operator, target stream length is dynamically controlled by

each output of pattern window. A special mechanism for the control should be proposed in future

work.

4.6 Consideration

Recall the Example 4 in the previous section. It is showing an instance that how to find some-

one’s state according to the room in which the person is at that time. In this case, there are two

updating data streams. One of them is a stream of person’s location noted asAT; the other one is

the state of room noted asRoomState. First, we process theAT by our pattern-based window and

obtain one concrete relation. Similarly, we obtain a relation fromRoomStateby using time-based

window.Then, we do a join operation between them to realize the purpose of survey some person’s

state. And than, after processing by selection operator, the tuples only with attributes of Person

and State are ready to output into the purpose stream.At last, ISTREAM operator accomplishes

the final work by outputting each tuple to form the updated stream.

About the last examples, pattern-based window can output the a relation after aggregation pro-

cessing. However, Cayuga cannot do such operation because they do not consider a relation as

their output.

The most important difference from FOLD clause in Cayuga is that as a window operator, it

should be a one input construct and the pattern matching operators in Cayuga are binary con-

structs. So the constructs of the two operators are different and we can do aggregation through

pattern-based windows easily because the pattern-based window supports a whole relation output

as a kind of window operator.
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Compared with CQL2), our model of pattern-based window can be considered an extension to

the window operators of CQL. We can present one kind of snapshots of query plan which satisfies

the user’s intending query through our model.

5. Conclusions and Future Work

In this paper, we proposed a novel window operator, pattern-based window, to integrate the

current relational data stream processing research and event processing technologies. The defini-

tion of pattern-based windows is given and the query language and algorithm of pattern matching

process for pattern-based windows are designed. The usage of pattern-based windows was also

showed through several concrete examples.

As future work, we want to implement the system with pattern-based windows and consider

optimization of the pattern matching algorithm, since the performance is also very important for

stream processing systems. Probabilistic data model should be considered in future work to ex-

ploit the uncertain nature of data streams from sensor devices. Lineage will be a powerful tool for

probability computation and data traceability.
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9) Christopher Ŕe, Julie Letchner, Magdalena Balazinksa, and Dan Suciu. Event queries on
correlated probabilistic streams. InSIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pp. 715–728, 2008.

10) Zhitao Shen, Hideyuki Kawashima, and Hiroyuki Kitagawa. Lineage-based probabilistic
event stream processing. InProc. International Workshop on Sensor Network Technologies
for Information Explosion Era, 2008.

11) Yousuke Watanabe, Shinichi Yamada, Hiroyuki Kitagawa, and Toshiyuki Amagasa. Inte-
grating a stream processing engine and databases for persistent streaming data management.
In Proc. of 18th International Conference on Database and Expert Systems Applications
(DEXA2007), LNCS 4653, pp. 414–423, 2007.

12) E.Wu, Y.Diao, and S.Rizvi. High-performance complex event processing over streams.
In Proc. of ACM SIGMOD International Conference on Management of Data, pp. 407–418,
2006.

c© 2009 Information Processing Society of Japan

6

Vol.2009-UBI-23 No.7
2009/7/16


