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An Investigation of Hidden Structure Model

Yu QIAO ,†1 Masayuki SUZUKI †2

and Nobuaki MINEMATSU†1

In recent years, we have been working toward a structural representation
of speech using contrastive features that are robust to non-linguistic varia-
tions. This paper generalizes the structural representation to Hidden Struc-
ture Model (HSM) by introducing hidden states and probabilistic calculations.
HSM not only can solve miss-alignment problems of events, but also can con-
duct structure-based decoding, which allows us to apply HSM to general speech
recognition tasks. This paper focuses on the fundamental theories of HSM. Dif-
ferent from HMM, HSM accounts for both the absolute and contrastive aspects
of an input sequence. We show that the state inference of HSM can be formu-
lated as a quadratical programming problem. We also introduce EM algorithm
to estimate the parameters of HSM.

1. Introduction

Speech signals inevitably exhibit large non-linguistic variations, caused by the
difference of speakers, communication channels, environment noise etc. This
poses one of the major challenging problems in speech engineering. To deal
with these variations, modern speech recognition approaches mainly make use of
statistical methods (such as GMM, HMM) to model the distributions of acoustic
features. These methods always require a large amount of data for training
and can achieve relatively high recognition rates when there is a good match
between training and testing data. But it is well-known that the performance
of speech recognizers will drop significantly if there exists a mismatch. Contrary
to this is children’s spoken language acquisition. A child does not need to hear
the voices of thousands of speakers before he (or she) can understand speech.
This fact largely indicates that there may exist robust representations of speech
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that are nearly invariant to non-linguistic variations. We consider it is by these
robust representations that children can learn speech with very biased training
data from mothers and fathers. This is also partly supported by recent advances
in neurosciences, which show that the linguistic aspect of speech and the non-
linguistic aspect are processed separately in auditory cortex14).

Inspired by these facts, Minematsu proposed an invariant structural representa-
tion of speech signals which aims at removing the non-linguistic factors in speech
signals6). Different from classical speech models, the structural representations
make use of contrastive features (f -divergence) to model the global and dynamic
aspects of speech and discard the local and static features. It can be proved that
these contrastive features are invariant to transformations and thus are robust to
non-linguistic variations. We have already demonstrated the effectiveness of this
representation in ASR2),9), speech synthesis13) CALL7), and dialect analysis5).

In this paper, we generalize the structural representation into Hidden Struc-
ture Model (HSM) by introducing hidden states and probabilistic analysis. This
generalization allows us to overcome two limitations of previous structural repre-
sentations. Compared with these, HSM unifies structure construction and struc-
ture comparison into a single framework, and avoids the misalignment of events.
Moreover, the introduction of hidden states enables HSM to conduct structure-
based decoding, different from previous structure-based matching. This further
allows us to apply HSM to general phoneme recognition other than word recog-
nition. HSM is similar to HMM in a sense that both make use of hidden states,
but different from HMM in a sense that HSM contains the probability models
of both absoulte and contrastive features. This paper proposes the probabilistic
formulation of HSM and develops the algorithms for state inference, probability
calculation and parameter estimation of HSM.

2. Review of previous structural representations

In this section, we give a brief overview on the invariant structure theory and
how to calculate structural representations from utterances6).

2.1 Theory of invariant structure
Consider feature space X and pattern P in X. Suppose P is composed of a

sequence of K events {pi}K
i=1. Each event is described as a distribution pi(x)
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in the feature space. Note x can have multiple dimensions. Assume there is an
invertible transformation h : X → Y (linear or nonlinear) which maps x into y.
In this way, pattern P in X is transformed to pattern Q in Y , and event pi(x) is
converted to event qi(y). Thus if we can find invariant metrics in both space X

and space Y , these metrics can yield robust features for classification.
Under transformation h, p(x)dx = q(y)dy and dy = |Φ(x)|dx, where Φ(x)

denotes the determinant of the Jacobian matrix of h. Thus we have q(y) =
q(h(x)) = p(x)|Φ(x)|−1. Consider f -divergence3) defined as

Df (pi, pj) =
∮

pj(x)f
(

pi(x)
pj(x)

)
dx, (1)

where f : (0,∞) → R is a real convex function and f(1) = 0. It can be proved
that f -divergence is invariant to transformation: Df (qi, qj) = Df (pi, pj)10).
Moreover, we found that all the invariant integration measures

∮
M(pi, pj)dx

must be in the form of f -divergence10). From pattern P , we can obtain a K ×K

divergence matrix DP with DP (i, j) = Df (pi, pj) and DP (i, i) = 0. Then DP

provides a structural representation of pattern P . Similarly, we can obtain struc-
ture representation DQ for pattern Q. Then we have that DQ ≡ DP , which
indicates that the structural representation is invariant to transformations.

2.2 Structuralization of an utterance
In the next, we show how to calculate a structural representation from an utter-

ance. As shown in Fig. 1, at first, we calculate a sequence of cepstrum from input
speech waveforms. Then an HMM is trained from a single cepstrum sequence and
each state of HMM is regarded as event pi. Thirdly we calculate f -divergences
between each event pair. These divergences will form a symmetric distance ma-
trix with zero diagonal, which can be seen as the structural representation. For
convenience, we can expand its upper triangle into a structure vector. It is easy
to see that this structural representation must be invariant to transformations in
feature space. In speech engineering, the non-linguistic speech variations are also
modeled as transformation of cepstrum feature space. Microphones and environ-
ment distortion modifies the cepstrum feature with an additive vector. And vocal
tract length difference is often modeled as linear transformation of cepstrum fea-
tures8). With structural representation, the speech recognition can be seen as a
structure matching problem, where the matching score of two structures DP and
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Fig. 1 Framework of structure construction.
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Fig. 2 Structure (utterance) matching by shift and rotation.

DP is given by,
D(P, Q) =

∑

i,j

|DP (i, j)−DQ(i, j)|2. (2)

It can be shown that the acoustic matching score of two utterances after shift
and rotation can be approximated as the difference of the two structure vectors
(Fig.2)6). It is noted that, different from speaker adaptive training (SAT), struc-
ture matching doesn’t need to explicitly estimate transformation parameters for
model adaptation or feature normalization.

3. Hidden Structure Model

In the previous structural representation, the distribution sequences are cal-
culated for each utterance independently. There may exist misalignment be-
tween different distribution sequences. For example, let P = {p1, p2, ...} and
Q = {q1, q2, ...} denote two distribution sequences calculated from two utterances
of the same word ’aiueo’. Assume that p3 of P comes from the phoneme ‘i’, but
q3 of Q may come from the phoneme ‘u’. Another limitation of structural rep-
resentation is that its doesn’t include any label or category information of each
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event. Although the word recognition problem can be reduced to a structure
matching, it is difficult to generalize this technique for general speech recognition
tasks.

We notice that HMM doesn’t have the above limitations. HMM avoids the
misalignment problem by using DP-matching to align a speech stream with a
sequence of HMM distributions. Moreover, HMM has flexible Viterbi decoding
to estimate the most probable hidden states, which makes HMM suitable for
solving general phoneme recognition tasks. Remind that the main advantage of
structural representation is that it makes use of contrastive features, which are
robust to non-linguist variations. Inspired by these facts, we develop Hidden
Structure Model for sequence data, which aims at combining contrastive features
with a flexible and probabilistic model. Like HMM, HSM introduces hidden
states of observations and take account for the labels of these hidden states.
Unlike HMM, HSM models the distributions of absolute and contrastive features,
which makes it more robust to speaker differences.

3.1 Preprocessing of speech sequences for HSM
The contrastive features have to be calculated from sub-sequences or segments.

For this reason, we need to divide a sequence X = x1, x2, ..., xM into a set of
segments O = o1, o2, ..., oT in a preprocessing step (Fig. 3). Generally, we can
use agglomerative clustering algorithm (ACA)11) or HMM-based decomposition
for sequence division1),9). If we use ACA, each segment is a subsequence, denoted
by, ot = xmt

, xmt+1, ..., xet
. If we use the 2nd method, each segment is modeled

as a Gaussian distribution N(ōt, Vt). For every two segments ot1 and ot2 , we use
ct1,t2 to denote the contrastive feature between them.

3.2 Introduction of Hidden Structure Model
Generally speaking, HSM is a probabilistic model for sequence data, which

takes account for the distributions of both absolute and contrastive features. To
begin with, we formally describe the elements of HSM as the following.

1) N , the number of hidden states in HSM. We denote the set of individual
states as S = {sn}N

n=1. We use qt (qt ∈ S) to denote the state corresponding to
ot in sequence O. Then the state sequence is denoted by Q = q1, q2, ..., qT .

2) State transition probability distribution B = {bi,j}, where bi,j = p(qt+1 =
sj |qt = si) (1 ≤ i, j ≤ N).

…

Sequence  of cestrum vectors   

Division or clustering

o1 o2 o3 o4 oToT-1oT-2oT-3
O3 O4

OTO2
c2,n

c3,4

O1Contrastive features

Fig. 3 Preprocessing of cepstrum sequence.

3) Initial state distribution π = {πi}, where πi = p(q1 = si) (1 ≤ i ≤ N).
4) Absolute observation probability (AOP) distribution in state j, p(ot|qt =

sj). If the segment is a subsequence, we can calculate its mean as ōt =
1

et−mt+1

∑et

i=mt
xi. We assume that AOP has a Gaussian form,

p(ōt|qt = sj) = N(ōt|µa
j ,Σa

j ). (3)
Let A = {µa

j ,Σa
j } denote the set of AOP parameters.

5) Contrastive observation probability (COP) distribution for state i and state
j, p(ct1,t2 |qt1 = si, qt2 = sj), where ct1,t2 represents the contrastive features (BD,
KL-div.2),10)) between ot1 and ot2 . COP is assumed to have a Gaussian form,

p(ct1,t2 |qt1 = si, qt2 = sj) = N(ct1,t2 |µc
i,j ,Σ

c
i,j). (4)

Let C = {µc
i,j ,Σ

c
i,j} denote the set of COP parameters.

One can see that items 1)-4) are the same as classical HMM, but item 5) is used
to describe the contrastive features. For convenience, we use a compact notation
λ = (A,B, C, π) to represent the complete model parameters, .

Consider model λ, speech sequence O = o1, o2, ..., oT and its state sequence
Q = q1, q2, ..., qT . HSM calculates the conditional probability of O given model
λ and state sequence Q as,

p(O|Q,λ) =
T∏

t=1

p(ōt|qt)

︸ ︷︷ ︸
Absolute part

∏

1≤t1,t2≤T

p(ct1,t2 |qt1 , qt2)

︸ ︷︷ ︸
Contrastive part

. (5)

An example of HSM is depicted in Fig. 4. Note if we remove the contrastive
part of Eq. 5, this probability calculation will be the same as that of HMM. On
the other hand, if we remove the absolute part, Eq. 5 reduces to a pure model
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Fig. 4 Diagram of HSM with five states. (HMM contains only the thick lines.)

of structural representation.
Introduce the following variables Z = {zi,t}, where

zi,t =

{
1 if qt = si;
0 otherwise.

It is easy to see that Z has the same information as Q. With zi,t, we can rewrite
Eq. 5 into

p(O|Q,λ) = p(O|Z, λ) =
T∏

t=1

N∏

i=1

p(ōt|si)zi,t

∏

1≤t1,t2≤T

N∏

i=1

N∏

j=1

p(ct1,t2 |si, sj)zi,t1zj,t2 .

(6)
We can calculate the probability of state sequence like HMM?1

p(Q|λ) = p(Z|λ) = p(q1)
T∏

t=2

p(qt|qt−1) =
N∏

i=1

p(si)zi,1

T∏
t=2

N∏

i=1

N∏

j=1

p(si|sj)zi,tzj,t−1 .

(7)
Therefore, we have

p(O, Q|λ) = p(O, Z|λ) = p(O|Z, λ)p(Z|λ)

=
N∏

i=1

p(si)zi,1

T∏
t=1

N∏

i=1

p(ōt|si)zi,t

T∏
t=2

N∏

i=1

N∏

j=1

p(si|sj)zi,tzj,t−1

∏

1≤t1,t2≤T

N∏

i=1

N∏

j=1

p(ct1,t2 |si, sj)zi,t1zj,t2 . (8)

?1 More generally, we can take account for the transmission probabilities of every two time
points and define p(Z|λ) =

QT
t1,t2=1

QN
i,j=1 h(qt1 = si|qt2 = sj)

zi,t1zj,t2 , where h denotes
a certain cost function. This general definition (of state probability) can be applied to the
following analysis.

Calculate the log of the above equation,

log p(O, Z|λ) =
N∑

i=1

zi,1 log πi +
T∑

t=2

N∑

i=1

N∑

j=1

zi,tzj,t−1 log bi,j+

T∑
t=1

N∑

i=1

ζi,tzi,t +
∑

1≤t1,t2≤T

N∑

i=1

N∑

j=1

ηi,j,t1,t2zi,t1zj,t2 . (9)

where ζi,t = log p(ōt|si) and ηi,j,t1,t2 = log p(ct1,t2 |si, sj)
In the next, we introduce algorithms to solve the three problems of HSM,

namely, state inference, probability calculation and parameter estimation.
3.3 State inference
Given model λ and observed stream O, the objective of state inference is to

determine Z which maximizes the following conditional probabilty,
arg max

Z
p(Z|O, λ). (10)

Using Bayesian theory, we have

p(Z|O, λ) =
p(O, Z|λ)
p(O|λ)

∝ p(O, Z|λ). (11)

Thus the problem can be reduced to find Z which maximizes Eq. 9,
maxZ log p(O, Z|λ). In HMM, the state inference problem is solved by Viterbi
algorithm in the spirit of dynamic programming. However, it is difficult to apply
this technique for HSM. In Viterbi algorithm, finding the most likely hidden se-
quence up to time point t must depend only on the observed event at t, and the
most likely sequences before t. This rule is satisfied in HMM due to its Markov
property. But in HSM, we account for the contrastive features between each two
observations. The above rule is never held in HSM.

For this reason, we propose a new technique other than dynamic programming
for HSM. We found that Eq. 9 can be reduced to a quadratic programming
problem. Expand Z = {zi,t} into an NT -dimensional vector z = [z1, z2, ..., zT ],
where zt = [z1,t, z2,t, ..., zN,t]. Introduce a matrix D = {di,t}, where

di,t =

{
ζi,t + log πi if t = 1;
ζi,t otherwise.

Similarly, we can expand D into a NT -dimensional vector d. Now, let us consider
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a tensor G = {gi,j,t1,t2} where

gi,j,t1,t2 =

{
ηi,j,t1,t2 + log bi,j if t2 = t1 + 1;
ηi,j,t1,t2 otherwise.

Let Et1,t2 = {g:,:,t1,t2} denote a slice of G when t1, t2 are fixed. We can unfold G

into an NT ×NT matrix E where,

E =




E1,1 E1,2 · · · E1,T

E2,1 E2,2 ... E2,T

...
...

. . .
...

ET,1 ET,2 · · · ET,T




Then the maximization of Eq. 9 can be written as the following 0-1 (binary)
quadratic programming (QP) problem

max
z

f(z) = zdT + zEzT, (12)

subject to: zi,t ∈ {0, 1},
∑

i

zi,t = 1.

However, the above 0-1 quadratic programming is still very hard. To circumvent
this difficulty, we relax the 0-1 constraint of z and obtain

max
z

f(z) = zdT + zEzT, (13)

subject to: 1 ≥ zi,t ≥ 0,
∑

i

zi,t = 1.

With the above constraints, Eq. 13 becomes a quadratic programming problem.
If matrix E is negative-definite, this problem can be solved in a polynomial time.
It can be shown that the relaxed QP of Eq. 13 will always have the same optimal
solution as 0-1 QP of Eq. 12. The proof is omitted due to space limitation.

3.4 Probability calculation
In this section, we study the problem of how to calculate probability p(O|λ) of

the observed sequence O given model λ, posterior probability p(qt = si|O, λ) of
t-th observation being state si, and posterior probability p(qt1 = si, qt2 = sj |O, λ)
of joint states.

Using marginal probability, we have
p(O|λ) =

∑

Z

p(O, Z|λ), (14)

p(qt = si|O, λ) = p(zi,t = 1|O, λ) =
∑

Z(zi,t=1)

p(Z|O, λ), (15)

p(qt1 = si, qt2 = sj |O, λ) = p(zi,t1zj,t2 = 1|O, λ) =
∑

Z(zi,t1zj,t2=1)

p(Z|O, λ). (16)

To directly calculate the summations of the above equations is very compu-
tationally expensive since there exist NT possible paths of Q. In HMM, these
problems are solved by forward and backward algorithms. But HSM makes use
of contrastive features, which prevent the usage of these DP-based algorithms.

In this paper, we consider an approximation method. Let Z∗ denote the optimal
solution of Eq. 9, i.e., arg max

Z
p(O, Z|λ). Then we can approximate Eq. 14 as

p(O|λ) ≈ max
Z

p(O, Z|λ) = p(O, Z∗|λ). (17)
Introduce variables ri,t and ξi,j,t1,t2 to represent the expectations of zi,t and

zi,t1zj,t2 respectively,
ri,t = E[zi,t] =

∑

Z

p(Z|O, λ)zi,t = p(zi,t = 1|O, λ), (18)

ξi,j,t1,t2 = E[zi,t1zj,t2 ] =
∑

Z

p(Z|O, λ)zi,t1zj,t2 = p(zi,t1zj,t2 = 1|O, λ). (19)

With these, we consider the following a ‘winner takes all’ approximations,
ri,t ≈ z∗i,t, (20)

ξi,j,t1,t2 ≈ z∗i,t1z
∗
j,t2 . (21)

3.5 Parameter estimation
In this section, we discuss the problem to estimate the parameters of HSM.

Using maximum likelihood estimation, we have
arg max

λ

∏

k

p(Ok|λ), (22)

where Ok denotes the k-th training sequence. There doesn’t exist a closed form
solution for MLE of HSM. So we adopt EM algorithm4) for optimization. Note
{ri,t} and {ξi,j,t1,t2} are the hidden parameters in EM iteration here.

In the E-step, given the old parameters λold, we need to calculate the distribu-
tion of Z denoted by p(Z|O, λold). Since zi,t is binary, this problem is reduced
to estimate the expectations ri,t and ξi,j,t1,t2 . There are two methods to do this.
One is to estimate the marginal probabilities through summation as in Eq. 15
and Eq. 16. The other is to use the approximations given by Eq. 20 and Eq.
21. It is noted that these approximations are similar to the Viterbi training12)

of HMM (also known as segmental k-means), where the hidden parameters are
determined through Viterbi alignment not by calculating marginal probabilities.
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When the hidden parameters are given, we can find model parameters which
maximizes the auxiliary function Q(λ, λold),

Q(λ, λold) =
∑

k

∑

Z

p(Z|Ok, λold) log p(Z, Ok|λ). (23)

With hidden parameters rk
i,t and ξk

i,t1,j,t2
for Ok, we have

Q(λ, λold) =
∑

k

{
N∑

i=1

rk
i,1 log πi +

T∑
t=2

N∑

i=1

N∑

j=1

log bi,jξ
k
i,j,t,t−1+

T∑
t=1

N∑

i=1

ζk
i,tr

k
i,t +

∑

1≤t1,t2≤T

N∑

i=1

N∑

j=1

ηk
i,j,t1,t2ξ

k
i,j,t1,t2}. (24)

Then the optimal parameters can be calculated by,

πi =

∑
k rk

i,1∑
k

∑N
j=1 rk

j,1

, (25)

bi,j =

∑
k

∑T
t=2 ξk

i,j,t−1,t∑
k

∑N
m=1

∑T
t=2 ξk

m,j,t−1,t

, (26)

µa
i =

∑
k

∑T
t=1 ōk

t rk
i,t∑

k

∑T
t=1 rk

i,t

, (27)

Σa
i =

∑
k

∑T
t=1 rk

i,t(ō
k
t − µa

i )(ōk
t − µa

i )T
∑

k

∑T
t=1 rk

i,t

, (28)

µc
i,j =

∑
k

∑
t1,t2

ck
t1,t2ξ

k
i,j,t1,t2∑

k

∑
t1,t2

ξk
i,j,t1,t2

, (29)

Σc
i =

∑
k

∑
t1,t2

(ck
t1,t2 − µc

i,j)(c
k
t1,t2 − µc

i,j)
Tξk

i,j,t1,t2∑
k

∑
t1,t2

ξk
i,j,t1,t2

. (30)

4. Conclusions

This paper proposes Hidden Structure Model (HSM) for sequence data. HSM
generalizes our previous structural representation into a probabilistic framework,
which accounts for both absolute and contrastive features. Like HMM, HSM
makes use of hidden states. Different from HMM, HSM contains the distribu-
tions of contrastive features. We also develop algorithms for state inference,
probability calculation, and parameters estimation of HSM. Due to the usage
of contrastive features, we cannot use dynamic programming to develop HMM-
like algorithms, such as Viterbi algorithm, forward and backward algorithm, and

Baum-Welch algorithm. In this paper, we formulate the state inference into
a quadratic programming problem, and develop approximation algorithms for
probability calculation and parameter estimation. This paper only focuses on
the fundamental theories of HSM. In the next, we are going to examine the
proposed model and algorithms through experiments.
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