
Regular Paper

Towards Integrating Adaptation and Model

Checking for Software Components

Hsin-Hung Lin
†1 and Takuya Katayama

†1

This paper introduces a framework which converts adaptation for software
components into a model checking problem so that one can design/generate
adaptor and also perform verification with specifications. In this framework,
software components are modeled by interface Büchi automata to capture the
input/output protocol and continuous running behavior, and an adaptor is
modeled by pushdown automaton to capture the infinite capacity of storing
received messages. The adaptation with model checking includes two stages:
mismtach detection and adaptor generation. On the first stage, system be-
havior of a composable components is computed by synchronous composition.
LTL model checking is applied with given behavior mismatch property to de-
tect whether mismtaches exist. On the second stage, a special adaptor called
“coordinator” is build for the system to guide the adaptor generation with
counterexample. Also, a simple example is used for demonstration.

1. Introduction

Component-Based Software Engineering(CBSE) is a specific field of software

engineering which deals with software composed of interactive and heterogeneous

processes, called software components, or components in short. Software com-

ponents are usually considered as software entities such as subsystems, objects,

or web services. CBSE aims to put software components work together, espe-

cially when some components are evolved or reused in new design. For the issue

of reuse, coordination and adaptation are two typical approach of CBSE. Coor-

dination model, such as CORBA and J2EE,, specifies protocols of components

and/or control strategies for communications. Adaption, which is relative new

to coordination, generates an adaptor, a midiate component, to direct interac-

tions of components. Compare to coordination, adaptation is simpler and does

†1 School of Information Science, Japan Advanced Institute of Science and Technology

no change to components. This is very helpful when having some components

reused or provided by third party vendor such that they can not be modified in

order to satisfy a new design.

Besides reuse, another important issue of CBSE is verfication. Since soft-

ware protocols are usually complicated, plus large scale software systems are

demanded, one always wants to know if a design of a component-based software

will work together as specified. Among techniques of verification of software sys-

tems, software model checking is relatively popular. Given a abstract model of

a component-based software, software model checking can automatically verify

specifications represented in temporal logic. It is also very convenient that many

tools support automation of software model checking such as NuSMV and SPIN.

It is very interesting and useful if adaptation and verification of a component-

based software can be done in one approach. This research aims to propose

a framework for component adaptation with model checking. The framework

includes following parts:

(1) Formalization of software components and adaptor: behavior of software

components and adaptor are represented by interface Büchi automata and

pushdown automaton respectively. Synchronous composition is applied to

build the behavior of system without or with an adaptor.

(2) Defining component mismatch with LTL model checking: Detection of com-

ponent mismtaches over given properties can be defined as a model LTL

checking problem on LTL formulas representing these properties.

(3) Adaptor generation with model checking: a special adaptor called coordi-

nator is used to generate adaptor from counterexample.

Fig 1 shows an overview of the approach.

The structure of the rest of this paper is as follows: section 2 gives the defini-

tions of behavior interfaces for modeling components, then define the mismatch

detection problem as a LTL model checking problem; section 3 gives definition

of behavior model of adaptor and shows how this framework generates adaptor

with the guidance of coordinator; section 4 gives a simple example for detailed

demonstration of how the framework works; the remaining sections discuss about

relative work and conclusions.

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

1

process A

process B

S of tware C omponents
R epresented i n B A

M i smatch
D etecti on b y
L T L M odel
C heck i ng

S y nchronous
composi ti on

acceptance condi ti ons
and other properti es

N o need
of adaptor

M i smatch
f ound

C oordi nator
G ui ded Adaptor
G enerati on

N o mi smatch

coordi nator

Pushdown Automaton

adaptor

Pushdown Automaton

process C

L T L f ormul as

process Aprocess A

process Bprocess B

S of tware C omponents
R epresented i n B A

M i smatch
D etecti on b y
L T L M odel
C heck i ng

S y nchronous
composi ti on

acceptance condi ti ons
and other properti es

N o need
of adaptor

M i smatch
f ound

C oordi nator
G ui ded Adaptor
G enerati on

N o mi smatch

coordi nator

Pushdown Automaton

adaptor

Pushdown Automaton

process C

L T L f ormul as

Fig. 1 Overview of approach

2. Behavior Interfaces and Mismatch Detection

This section shows how mismtach detection of component-based software sys-

tem is treated as a LTL model checking problem. The first thing is to define

the model of behavior of software components, then system behavior can be

computed by synchronous composition. We then give the LTL definitions for be-

havior mismatch which is the basic and minimum condition has to be satisfied.

2.1 Behavior Interfaces

The behavior interfaces is essential to adaptation for software components. Re-

searches about adaptation usually use LTS for modeling because of the simplicity

and full support of theories and tools. The demerit of using LTS is that messages

has to be carefully treated so that input and output can be distinguished clearly,

which leads to more complexity in formalization. In this paper we try to capture

the characteristic of input and output behavior more explicitly and introduces

Interface Büchi automata as the model of software components in this framework.

The decription in definition and compatibility constraint are inspired by the work

of the interface automata4) and extend the idea for multiple components more

than only two. Idea of Büchi automata is also used here for capture non-stoping

characteristics of software components.

Definition 1 (Interface Büchi automata) An interface Büchi automaton

is defined as a 7-tuple:

P = (Q, q0, AI , AO , AH , ∆, F)

where

• Q: finite set of states.

• q0 ∈ Q: initial state.

• AI : finite set of input alphabets.

• AO : finite set of output alphabets.

• AH : finite set of internal alphabets.

• ∆ ⊆ Q × A × Q: set of transition relations, where A = AI ∪ AO ∪ AH

• F ⊆ Qi: finite set of final states.

• Acceptance condition of interface Büchi automata is same as usual Büchi

automata

In this framework, a component-based software given a set of components has

to satisfy the compatibility condition. Compatibility means that the given set

of software components are composable, which also says that these componsnts

form a a closed system. In this system, no messages are being sent to or received

from outside the system.

Definition 2 (Compatibility) Given a set of components represented in in-

terface Büchi automata

Pi = (Qi, q
0
i , AI

i , A
O
i , AH

i , ∆i, Fi)

where i ∈ [1..n], the components are composable if

• AI
i ∩ AO

i = ∅

• AI
i ∩ AI

j = ∅, i 6= j

• AO
i ∩ AO

i = ∅, i 6= j

•
⋃

i AI
i =

⋃
i AO

i

•
⋃

i AH
i ∩

⋃
i AI

i = ∅,
⋃

i AH
i ∩

⋃
i AO

i = ∅

Given a set of software components that are composable, we can now compute

the overall behavior by synchronous composition. The result of composition is a

generalized Büchi automaton with only internal alphabets which are union of all

input/output and internal alphabets of components.

Definition 3 (Synchronous composition) Synchronous composition of a

set of composable components represented in interface Büchi automata Pi =

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

2

∆ = {

{((q1, . . . , qi, . . . , qj , . . . , qn), a, (q1, . . . , q
′

i, . . . , q
′

j , . . . , qn)) |

(q1, . . . , qi, . . . , qj , . . . , qn), (q1, . . . , q
′

i, . . . , q
′

j , . . . , qn) ∈ Q ∧

(qi, a, q′i) ∈ ∆i ∧ (qj , a, q′j) ∈ ∆j ∧

(a ∈ AI
i ∧ a ∈ AO

j) ∨ (a ∈ AO
i ∧ a ∈ AI

j)}

∪

{((q1, . . . , qi, . . . , qn), a, (q1, . . . , q
′

i, . . . , qn)) |

(q1, . . . , qi, . . . , qn), (q1, . . . , q
′

i, . . . , qn) ∈ Q ∧

(qi, a, q′i) ∈ ∆i ∧ a ∈ AH
i }

}

Fig. 2 Def. of transitions of synchronous composition of interface Büchi automata

(Qi, q
0
i , AI

i , A
O
i , AH

i , ∆i, Fi), where i ∈ [1, n], is a generalized Büchi automaton

S = (Q, q0, A, ∆, G)

where

• Q = Q1 × . . . × Qi × . . . × Qn: finite set of states.

• q0 = (q0
1 , . . . , q0

i , . . . , q0
n): initial state.

• A =
⋃

i Ai: finite set of alphabets.

• ∆ ⊆ Q × A × Q: set of transition relations.

The transition relations are defined in fig 2.

• G = {F1 ×Q2 × . . .×Qn, Q1 ×F2 × . . .×Qn, . . . , Q1 × . . .×Qn−1 ×Fn}:

sets of final states.

Generalized Büchi automata are only different from normal Büchi automata in

acceptance condition. Finite states of a generalized Büchi automaton is defined

as a set of sets computed from each final states of a component times states of

other components. Thus an accepted trace has to visit each set of final states

infinitely often.

Definition 4 (Acceptance Condition of GBA) For a generalized Büchi

automaton B = (Q, q0, A, ∆, G), and a trace σ = s0s1s2 . . ., where s0 = q0 and

∀i ≥ 0. ∃ai ∈ A. (si, ai, si+1), The acceptance condition of trace σ in B is:

∀Fi ∈ G. ∀K ≥ 0. j ≥ K, sj ∈ Fj

Since the acceptance condition for generalized Büchi automata is a little com-

plicate, one always wants to use equivalent Büchi automata for further use. Gen-

erally, a degeneralization process for GBA can build equivalent Büchi automata.

The idea is to generate as many copies as the number of components and remark

the final states as corresponding set of final states, then redirect transitions from

i-th copy to corresponding target state in next copy. So we can have a equivalent

Büchi automaton that accepts same language as original generalized one.

Definition 5 (Degeneralization of generalized Büchi automata) For

a generalized Büchi automaton B = (Q, q0, A, ∆, G), where F = {F1, F2, . . . , Fn}.

There is an equivalent Büchi automaton B′ = (Q′, q′0, A, ∆′, F), where

• Q′ = Q × {1, 2, . . . , n}

• q′0 = (q0, 1)

• F = F1 × {1}

• ∆′ is defined as follows:

((q1, i), a, (q2, j)) ∈ ∆′ iff

(q1, a, q2) ∈ ∆ and

j = i if q1 /∈ Fi, j = (i mod k) + 1 if q1 ∈ Fi

By now, we have defined the behavior interface of software components and

their synchronous composition. After the process of degeneralization, we have

the behavior of the system as a Büchi automaton.

2.2 Mismatch Detection by Model Checking

Given a component-based software system composed of a set of components,

we can now define the model checking problem of the system. Before proceeding

to mismatch detection, we first review the LTL model checkign problem: Given

model M and an infinite execution trace σ = s0s1 . . . of M , with a set of atomic

propositions AP and a labeling function L : S → 2AP , model checking a LTL

formulas composed of atomic propositions in AP has the following semantics:

• σ |= p iff p ∈ L(s0)

• σ |= ¬ϕ iff ¬(σ |= ϕ)

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

• σ |= �ϕ iff ∀i ≥ 0, σi |= ϕ

• σ |= ♦ϕ iff ∃i ≥ 0, σi |= ϕ

• σ |= ϕ1Uϕ2 iff ∃i ≥ 0, σi |= ϕ2 and ∀0 ≤ j < i, σj |= ϕ1

• σ |= Xϕ iff σ1 |= ϕ

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

3

Note that ϕ, ϕ1, ϕ2 are arbitary LTL formulas and σi means an execution

trace starting from i-th state of σ. Operator � means “globally” and ♦ means

“eventally” and X means “next”. Based on above semantics, LTL model checking

the model M can be defined as follows:

M |= ϕ iff foralltracesσinM, σ |= ϕ

LTL formulas have a convenient property that one can build a Büchi automaton

which accepts traces of it, thus there is a automata-theoretic approach for LTL

model checking including following steps1):

(1) Build the Büchi automaton B¬ϕ for ¬ϕ.

(2) Cmpute product of M and B¬ϕ. The resule accepts ΣM ∩ Σ¬ϕ.

(3) Check if the product accepts any sequence which is a counter example.

In the case of software components in this framework, the LTL model check-

ing problem is quite simple that the model M is the degeneralized synchronous

composition of components, a Büchi automaton. The next problem becomes

what properties to check to detect mismatches. In this framework, mismatches

depends on specification, but one least property is to guarantee the continuous

execution of the system. Thus we define the property of basic mismatch “Behav-

ior Mismatch” as follows:

Definition 6 (Behavior mismatch) Given the degeneralized synchronous

composition of a set of composable software components as a Büchi automaton,

Property of behavior mismatch is to define an atomic proposition pbmis and a

labeling function

L(s) : {pbmis|s ∈ F}

and write in the followubg form of LTL formula:

�♦pbmis

Then we can check any property with this basic property for a given set of

software components. A returned counterexample indicates that mismatches

exist, and we can proceed to adaptor generation.

3. Adaptor Generation

3.1 Adaptor

When mismatches are detected, an adaptor is needed. An adaptor is a medi-

ate process that coordinates communication of components. Basic idea is that

components are communicating through adaptor so messages sent by a compo-

nent is first received by adaptor and stored, then being sent by adaptor to target

component. In this framework we consider the following characteristics of an

adaptor:

(1) An adaptor only receives messages from other components and only sends

messages that are received. This requires that an adaptor generates no

message.

(2) Any message received by an adaptor is expected to be sent immediately or

later. This requires that an adaptor has to store received message for later

delivery.

Based on above consideration, a simple storage is a stack and we then choose

pushdown automaton as the model of behavior of an adaptor. Further more,

because of no message generation, an adaptor only has two types of transitions:

push and pop, which perform receive then store and send out respectively.

Definition 7 (Adaptor) Given a set of composable interface Büchi au-

tomata Pi = (Qi, q
0
i , AI

i , A
O
i , AH

i , ∆i, Fi), i ∈ [1, n]. An adaptor is a pushdown

automaton

D = (QD, q0
D , AD, Γ, z, T)

where

• QD: finite set of states.

• q0
D: initial state.

• AD =
⋃

i AI
i =

⋃
i AO

i : finite set of alphabets.

• Γ = AD ∪ {z} ∪ {ε}: finite set of stack symbols.

• z: stack start symbol representing bottom of stack.

• T ⊆ (QD × AD × Γ) × (QD × Γ∗): set of transition relations.

T is defined as follows:

< p, a, γ >↪→< p′, aγ >: push

< p, a, γ >↪→< p′, ε >: pop

where a ∈ AD , γ ∈ Γ

Note that stack symbols are same as alphabets of an adaptor except special

symbols. The transition rules only show how the head of stack is replaced but

not regarding the whole content of stack. The system behavior can be similarly

obtained by synchronous composition of software components with an adaptor.

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

4

T ′ = {

{((q1, . . . , qi, . . . , qn, qD), a, γ) ↪→ ((q1, . . . , q
′

i, . . . , qn, q′D), aγ) |

(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q
′

i, . . . , qn, q′D) ∈ Q ∧

(qi, a, q′i) ∈ ∆i ∧ a ∈ AO
i ∧ (qD , a, γ) ↪→ (q′D, aγ) ∈ T}

∪

{((q1, . . . , qi, . . . , qn, qD), a, γ) ↪→ ((q1, . . . , q
′

i, . . . , qn, q′D), ε) |

(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q
′

i, . . . , qn, q′D) ∈ Q ∧

(qi, a, q′i) ∈ ∆i ∧ a ∈ AI
i ∧ (qD , a, γ) ↪→ (q′D , ε) ∈ T ∧ a = γ}

∪

{((q1, . . . , qi, . . . , qn, qD), a, (q1, . . . , q
′

i, . . . , qn, qD)) |

(q1, . . . , qi, . . . , qn, qD), (q1, . . . , q
′

i, . . . , qn, qD) ∈ Q ∧

(qi, a, q′i) ∈ ∆i ∧ a ∈ AH
i }

}

Fig. 3 Def. of transitions of synchronous composition of interface Büchi automata with
adaptor

The degeneralization is also similar to previous definition.

Definition 8 (Synchronous composition with adaptor) Given a set of

composable components represented in interface Büchi automata Pi =

(Qi, q
0
i , AI

i , A
O
i , AH

i , ∆i, Fi), i ∈ [1, n], and an adaptor D = (QD, q0
D, AD , Γ, z, T).

The synchronous composition is a generalized pushdown Büchi automaton

S = (Q, q0, A, Γ, z, T ′, G)

where

• Q = Q1 × . . . × Qi × . . . × Qn × QD: finite set of states.

• q0 = (q0
1 , q0

2 , . . . , q0
n, q0

D): initial state.

• A =
⋃

i AI
i =

⋃
i AO

i : finite set of alphabets.

• T ′ ⊆ (Q × A × Γ) × (Q × Γ∗): set of transition relations.

The transition relations are defined in fig 3.

• G = {F1 ×Q2 × . . .×Qn, Q1 ×F2 × . . .×Qn, . . . , Q1 × . . .×Qn−1 ×Fn}:

sets of final states.

Similarly, degeneralization can also be applied to generalized pushdown Büchi

automaton.

Definition 9 (Degeneralization of pushdown GBA) Given a general-

ized pushdown Büchi automaton B = (Q, q0, A, Γ, z, T, F), where F =

{F1, . . . , Fn}. There is an equivalent pushdown Büchi automaton B′ =

(Q′, q′0, A, Γ, z, T ′, F ′), where

• Q′ = Q × {1, 2, . . . , n}

• q′0 = (q0, 1)

• F ′ = F1 × {1}

• Γ′ is defined as follows:

Push:

((q1, i), a, γ) ↪→ ((q2, j), aγ) ∈ T ′ iff

(q1, a, γ) ↪→ (q2, aγ) ∈ T and

j = i if q1 /∈ Fi, j = (imodk) + 1 if q1 ∈ Fi

Pop:

((q1, i), a, γ) ↪→ ((q2, j), ε) ∈ T ′ iff

(q1, a, γ) ↪→ (q2, ε) ∈ T and a = γ and

j = i if q1 /∈ Fi, j = (imodk) + 1 if q1 ∈ Fi

Additionally, the model checking problem for a component base system with an

adaptor is the same as without an adaptor, while description of properties needs

to take consideration of head of stack. The behavior mismatch then becomes

slightly different.

Definition 10 (Behavior Mismatch with adaptor) Given the degener-

alized synchronous composition of a set of composable software components with

an adaptor, which is represented by a pushdown Büchi automaton, Property

of behavior mismatch is to define an atomic proposition pbmis and a labeling

function

L((s, γ)) : {pbmis|s ∈ Fandγ = z}

and write in the followubg form of LTL formula:

�♦pbmis

where z is start symbol of stack.

3.2 Coordinator Guided Adaptor Generation

Even the behavior of a component based system with an adaptor and how to

model checking for mismatches are known, we still need a way to generate an

appropriate adaptor. In this framework, we want to apply model checking again

but in the way to help adaptor generation. The basic idea is to build a over-

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

5

behaviored adaptor called “coordinator” then prune unwanted traces from it. A

simplest way is not to refine coordinator but to find a trace that can satisfies

all properties. We can image that if we check the negation of properties, the

returned counterexample is then an execution trace that the system can execute

without mismatches. In detail, we propose an approach to generate adaptor from

a counterexample:

(1) Given a set of composable software components, build a special adaptor

called “coordinator” that over-behave to the system. That is, take transi-

tions as many as possible the system could interactive with an adaptor.

(2) Model checking the negation of mismatch properties to get a counterexam-

ple if any. The counterexample can be simply converted to a pushdown

automaton as an adaptor of the software components.

To define a coordinator for given software components, recall that an adaptor

is represented by a pushdown automaton that uses alphabets and stack symbols

same as alphabets of all components. In the case of coordinator, it only needs one

state plus all possible transitions so that coordinator can send any alphabet on

stack head if a component may receive it; coordinator can receive any alphabet

and add it to stack head if a component may send it.

Definition 11 (Coordinator) Given a set of composable interface Büchi au-

tomata Pi = (Qi, q
0
i , AI

i , A
O
i , AH

i , ∆i, Fi), i ∈ [1, n]. A coordinaot is a pushdown

automaton

C = (QC , q0
C , AC , Γ, z, T)

where

• QC = {q0
C}: finite set of states has only the initial state.

• q0
C : initial state.

• AC =
⋃

i AI
i =

⋃
i AO

i : finite set of alphabets.

• Γ = AC ∪ {z} ∪ {ε}: finite set of stack symbols.

• z: stack start symbol representing bottom of stack.

• T = (QC × AC × Γ) × (QC × Γ∗): set of transition relations.

T is defined as follows:

< q0
C , a, γ >↪→< q0

C , aγ >: push

< q0
C , a, γ >↪→< q0

C , ε >: pop

where a ∈ AD, γ ∈ Γ

Note that transitions of coordinator have full combinations of all alphabets

so that coordinator can cover every possible communication of given software

components.

We give the unformal algorithm of converting an counterexample to an adaptor

as follows:

(1) Given a counter example C in the form of infinite sequence of configurations

vwω , where v = c0 . . . ci and w = ci+1 . . . cn. A configuration of a pushdown

system is in the form: (p, w) where p ∈ Q is a state of the pushdown system

and w ∈ Γ∗ is a finite word of stack symbol indicates the stack content.

(2) Take every pi in the trace as the states of adaptor

(3) For every pair of configurations cj = (pj , wj) and cj+1 = (pj+q , wj+1),

generate a transition between pj and pj+1 by comparing wj and wj+1.

Note that when j = n, j + 1 = i + 1.

(a) if |wj | − |wj+1| = 1, generate a pop transition < pj , a, a >↪→<

qj+1, ε >, where a = head(wj).

(b) if |wj | − |wj+1| = −1, generate a push transition < pj , a, γ >↪→<

qj+1, aγ >, where a = head(wj) and γ ∈ Γ.

(4) for all sates {p1, p2, . . . , pn}, apply a projection function: proj(p) =

(q1, . . . , qn), where p = ((q1, . . . , qn, qD, k). Merge all different states that

have same projection as well as their transitions.

Then we can have an adaptor that has a set of states after merged with a set

of generated transition rules.

4. Example

This section gives a simple example in detail to demonstrate the application

of the framework. Consider a two-components system has behaviors draw in fig

4, we can easily figure out that the two components are compatible but have

behvior mismatch, or specifically, reordering mismatch. We will now using the

behavior mismatch property for the following demonstration.

The synchronous composition of the two components results in only one state

that has no transition going out. It is obviously that behavior mismatch exists

and we need ad adaptor to solve it. Because the trivil situation in this example,

we omit the mismatch detection step.

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

6

!a

!c

? b

C 1 !b

? c

? a

C 2!a

!c

? b

C 1 !a

!c

? b

C 1 !b

? c

? a

C 2 !b

? c

? a

C 2

Fig. 4 An explanatory example

�������

�������

������ � ������ � �	 �����	 ����

�	 ��� � �	 ��
 �

�����
 �

�����
 � �	 ��
 ��	 ��� �

�������

�������

������ � ������ � �	 �����	 ����

�	 ��� � �	 ��
 �

�����
 �

�����
 � �	 ��
 ��	 ��� �

Fig. 5 explanatory example composition with coordinator

To generate an adaptor, first we build a coordinator for this system, which

only has one state and all push/pop transitions for all alphabets a, b, and c, we

can compute the synchronous composition of the two component with coordi-

nator to get a generalized pushdown Büchi automaton as shown in fig 5. After

degeneralization, we get a pushdown Büchi automaton in fig 6.

Now we want apply model check of pushdown system with the neagtion of

behavior mismatch property. The system behavior is then convert to a model

of pushdown system that has no input alphabet. After checking the negation

of behavior mismatch property and a counterexample returned. An adaptor for

this example is generated as shown in fig 7.

5. Related Work

In the field of component adaptation, there are several researches that pro-

posed solutions for the component mismatch problem. In general, researches of

component adaptation can be categorized by using what behavior interfaces: for

�������

�������

������ �

������ �

�	 �����	 ����

�	 ��� �

�	 ��
 ������
 �
�����
 �

�	 ��
 �

�	 ��� �

�������

�������

������ � ������ � �	 �����	 ����

�	 ��� �

�	 ��
 ������
 �

�����
 �

�	 ��
 �

�	 ��� �

�������

�������

������ �

������ �

�	 �����	 ����

�	 ��� �

�	 ��
 ������
 �
�����
 �

�	 ��
 �

�	 ��� �

�������

�������

������ � ������ � �	 �����	 ����

�	 ��� �

�	 ��
 ������
 �

�����
 �

�	 ��
 �

�	 ��� �

Fig. 6 explanatory example degeneralization with coordinator

������

�� � � ���

����	 �

�� � � �	 � ����
 �

�� � � �
 �

����	 �

�� � � �
 �

�� � � �	 �����
 �

������

�� � � ���

����	 �

�� � � �	 � ����
 �

�� � � �
 �

����	 �

�� � � �
 �

�� � � �	 �����
 �

Fig. 7 explanatory example adaptor

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

7

example, automata are used by D. M. Yellin, et al2); process algebra modeling

is used by A. Bracciali, et al10); Labeled transition system (LTS) is used by P.

Inverardi, et al8), C. Canal, et al12) and M. Tivoli, et al13). Except2) that applied

adaptation only between two components, other solutions are based on direct

composition of all behavior of components with deadlock elimination. Further

more, adaptor generation by direct composition has ordering problem by LTS

modeling. This problem is only be solved by12) by using Petri-net modeling

when ordering is needed. Compare to this paper, we propose an framework

that integrates component adaptation and model checking while other researches

only consider model checking a parallel procedure for component-based software

design. By using pushdown automaton to model behavior of an adaptor, the

ordering problem is not a problem in our approach. Finally, by our knowledge,

only work of J. Cubo, et al14) concerned about model checking but they yet did

not integrate model checking with adaptor generation.

6. Conclusion and Future Work

This paper gives an framework of component adaptation with LTL model check-

ing. The LTL model checking should at least check the liveness property to find

behavior mismatch. In our approach software components are modeled by in-

terface Büchi automata which capture the input/output protocol characteristics

and continuous executing behavior of components such as web services. An adap-

tor is modeled by pushdown automaton which has a stack to remember received

messages for sending out later. The LTL model checking of pushdown automata

requires other algorithm than regular LTL model checking and we apply MOPED

for model checking pushdown system. We also demonstrated our approach with

an example and the result showed well.

Though our approach has the ability of automated adaptor generation, the

tool is still under development. The tool will be capable of reading behavior

interfaces and specified properties of a set of components, then do the detection

of component mismatches and adaptor generation if needed.

References

1) Moshe Y. Vardi, and Pierre Wolper: “An automata-theoretic approach to auto-
matic program verification,” Proc. First IEEE Symp. on Logic in Computer Science,
1986, pp. 322-331

2) Daniel M. Yellin and Robert E. Strom: “Protocol Specifications and Component
Adaptors”, ACM Transactions on Programming Languages and Systems, Vol.19,
No.2, pp. 292-333, 1997.

3) Javier Esparza, David Hansel, Peter Rossmanith, Stefan Schwoon: “Efficient Al-
gorithms for Model Checking Pushdown Systems,” CAV 2000: 232-247.

4) Luca de Alfaro and Thomas A. Henzinger: “Interface Automata”, Proceedings of
the Ninth Annual Symposium on Foundations of Software Engineering (FSE’01),
2001.

5) Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled, “Model Checking”,
MIT Press, 2002.

6) Stefan Schwoon: “Model-Checking Pushdown Systems” , Ph.D. Dissertation, Tech-
nischen Universität München, 2002.

7) Gerard J. Holzmann: “The SPIN Model Checker: Primer and Reference Manual”.
Addison Wesley, September, 2003

8) P. Inverardi and M. Tivoli: “Software Architecture for Correct Components As-
sembly,” Formal Methods for Software Architectures, pp. 92-121, 2003.

9) Steffen Becker, Antonio Brogi, Ian Gorton, Sven Overhage, Alexander Ro-
manovsky, Massimo Tivoli: “Towards an Engineering Approach to Component
Adaptation,” Architecting Systems with Trustworthy Components 2004: 193-215

10) Andra Bracciali, Antonio Brogi and Carlos Canal: “A formal approach to com-
ponent adaptation”, Journal of System and Software, Special Issue on Automated
Component-Based Software Engineering, 2004.

11) Carlos Canal, Juan Manuel Murillo, Pascal Poizat: “Software Adaptation,”
L’OBJET 12(1): 9-31 (2006)

12) Carlos Canal, Pascal Poizat, Gwen Salaün: “Model-Based Adaptation of Behav-
ioral Mismatching Components,” IEEE Trans. Software Eng. 34(4): 546-563 (2008)

13) Massimo Tivoli, Paola Inverardi: “Failure-free coordinators synthesis for
component-based architectures,” Science of Computer Programming 71(3): 181-212
(2008)

14) Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel, Pascal Poizat: “A
Model-Based Approach to the Verification and Adaptation of WF/.NET Compo-
nents,” Electr. Notes Theor. Comput. Sci. 215: 39-55 (2008)

c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.7
2009/7/3IPSJ SIG Technical Report

8

