
IPSJ SIG Technical Report

Platform Independent Model Transformation

based on Architectural Patterns

Rafael Weiß,†1 Hiroshi Kazato,†1,†2

Shinpei Hayashi†1 and Motoshi Saeki †1

In this paper, we present the development of a model-driven approach to
transform platform independent models (PIMs) based on architectural pat-
terns. Model transformation is a fundamental concept in nowadays software
development to manipulate models during its lifecycle e.g. due to changing
requirements or platform technologies. We use model transformation tech-
niques to transform profile-enriched UML2 models into platform specific models
(PSMs). These PSMs could be used later as an input for common code gen-
eration frameworks to derive platform specific implementations (PSIs). As an
example of a possible architectural pattern, we define a UML profile that is
based on the well-known Model-View-Controller (MVC) pattern, an architec-
tural pattern commonly used in software engineering to isolate business logic
from user interface considerations.

1. Introduction

Model-driven Engineering (MDE)1) is a software development methodology,
which places models as primary artifacts and can be used to derive executable
code from them by means of model transformation. The goals are to increase
interoperability, maintainability and reusability of systems by specifying their
structure and behavior in a more abstract, platform independent way.

UML is the modeling language of choice for this purpose. UML models are
commonly used together with profiles that are a powerful and flexible generic ex-
tension mechanism of UML used to customize models for particular domains or
platforms. Such profile-enriched models can be used by some MDE tools such as
openArchitectureWare (oAW)2) and AndroMDA3) to attach platform specific in-

†1 Tokyo Institute of Technology
†2 NTT DATA CORPORATION

formation to UML models. Along with recent evolution in model transformation
techniques, they have shown the possibility and effectiveness of MDE in practice
to some extent.

However, there is still a lack of support for platform independence, another
crucial characteristic of MDE. Since the platform of an application may change
during its lifecycle, in response to requirement changes or platform evolutions,
MDE has to handle such a situation properly. Nevertheless, because of the di-
versity of model definitions and profiles used for the code generation, it is a
labor-intensive task to build, maintain and reuse such models.

To cope with these problems, we propose a model-driven approach called AC-
CURATE, which uses existing code generators and their profiles as building
blocks and introduce another abstraction layer over them. Through this addi-
tional abstraction layer, one can support platform evolutions more sustained by
using platform independent models for the specification of the system. To achieve
this, we define a possible example of a UML profile to describe the functional-
ities of applications, independently of any platforms. By specifying mappings
between platform independent model (PIM) and platform specific model (PSM)
elements, developers are able to use PIMs to model an application in a more
comprehensive, maintainable and platform independent manner as well as eas-
ily switch the platform specific implementation (PSI) to other platforms at any
time. The main contributions of this paper are: 1) introducing our model-driven
approach called ACCURATE, 2) arguing on model transformation techniques
for PIM-to-PSM transformations and 3) showing a possible implementation of a
model-driven toolkit that realizes the ACCURATE approach.

The rest of this paper is organized as follows. First, Sect. 2 introduces a brief
overview of the proposed ACCURATE approach and argues about the usage of
models and model transformation in a software development process. Afterwards,
Sect. 3 presents our implementation of the PIM-to-PSM transformation using
model transformation techniques. In Sect. 4, we survey some related works and
finally close with a conclusion and future work in Sect. 5.

2. ACCURATE Approach

In this section we present the ACCURATE approach. The key idea is that we

1 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

consider code generators as platform specific and introduce a platform indepen-
dent abstraction layer on top of them. Since architecture styles are essentially
immutable and independent of any platforms, we adopt them to define platform
independent models and categorize existing UML profiles according to the es-
tablished concepts defined in the styles. By defining mapping from architectural
concepts to those of the profiles, a PIM can be transformed to PSMs (and thus
a PSI) for various kinds of platforms. Furthermore, since architecture styles are
used in the earlier design stages, they help developers to elaborate requirements
into models.

The name ACCURATE comes from an acronym for ‘A Configurable Code
generator Unifying Requirements and model Transformation tEchniques’. As it
implies, requirements and model transformation techniques are used jointly to
establish a continuous workflow from basic analysis artifacts until the derivation
of PSIs. Even though the overall ACCURATE approach consists of many dif-
ferent tasks, which will be introduced shortly hereafter, the major focus of this
paper is the model transformation of a PIM into a PSM.

2.1 Overview
A brief overview of our approach is illustrated in Fig. 1. It defines the four

major activities PIM modeling, platform selection, PIM-to-PSM transformation
and code generation. These activities are carried out by two kinds of actors,
application designers and requirements engineers.

In the proposed workflow, models have to run through different stages during
their lifecycle (e.g. a PIM is transformed into a PSM). The workflow has to start
with the definition of a formal specification of the structure and the functions
of the system by application designers. This PIM modeling is done using our
own UML profiles as described in the following Sect. 2.2. Using profiles for
the modeling of PIMs enables application designers to describe the functionality
of the model elements detailed enough to support a concrete mapping in the
following model transformation while still not focusing on any platform specific
details in the initial design of the system.

Furthermore, requirements engineers choose an appropriate platform combina-
tion for the system. Once the platform configuration is determined (see Sect. 2.3),
the PIM of the system can be transformed automatically to a PSM according to

Platform Selection
CodeGeneration

PIM Modeling

Req. Engineer

ApplicationDesigner

TransformationRulesTransformationRepositoryInitialPIM Source Code
PlatformConf.

FinalPSMInitialModel Fixes InitialPSM Final Model FixesTransform profiledElements
PIM-to-PSM Transformation FinalPSMInitialModel Fixes InitialPSM Final Model FixesTransform profiledElements
PIM-to-PSM Transformation

Fig. 1 ACCURATE overview.

the pre-defined mappings of the model elements. The output from this activity
that we refer to as PIM-to-PSM transformation is not only a PSM that conforms
to the designated platform, but also assures model integrity. Furthermore, com-
mon design flaws are corrected by applying model fixes at the beginning and end
of the PIM-to-PSM transformation (see Sect. 2.4). This way, the resulting PSMs
can be used directly as an input for the code generation.

Source code for the application is generated as the final artifact of the workflow.
Here we make use of existing code generator frameworks that support multiple
platforms by separating transformation rules from their execution engine and
storing these rules in the transformation repository. According to the platform
configuration, the framework chooses transformation rules from the repository
and configures a code generator specific to that platform. Since a valid PSM is
provided from the previous stage, a code generation using the ACCURATE ap-
proach is as a result less error-prone (see Sect. 2.5). In the following subsections,
these activities are explained in more detail.

2.2 PIM Modeling
The PIM is an artifact used in the early design stages to describe the structure

and functionality of a system without focusing on any technology specific details.
In this paper, we define our own profile for UML, called the ACCURATE profile,
which is adopting concepts defined in the architecture style of MVC4). The profile
has fewer stereotypes and tagged values than a common platform specific UML
profile. Thus, developers are able to easily learn and use the profile, while it is
still expressive enough to specify an application independently of any platform
specific details.

2 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

(a) PIM example.

<<stereotype>>

model

[Class]

The class provides the essential functionalities,
i.e. logic via its operations or data structures
via its attributes and associations, of the ap-
plication.

<<stereotype>>

view

[Class]

The class provides a user interface for a cer-
tain purpose, such as providing information to
or accepting request from the users of the ap-
plication.

<<stereotype>>

controller

[Class]

The class provides services as its operations,
which interpret certain events on the user in-
terface as a request to perform application
logic on the ¿modelÀ objects.

<<stereotype>>

external

[Element]

The element is not included in the scope of
the application and thus ignored in the code
generation.

(b) MVC profile.

Fig. 2 Example for using ACCURATE together with MVC.

Figure 2 illustrates a possible ACCURATE profile definition for the well-
known Model-View-Controller architecture style. According to this style,
¿modelÀ classes provide core functionalities of an application and propagate
changes to ¿viewÀ and ¿controllerÀ classes. One can model this mecha-
nism using unidirectional associations from ¿viewÀ or ¿controllerÀ classes
to ¿modelÀ classes. One might notice that a single ¿viewÀ class can only
have one ¿modelÀ class connected while a ¿modelÀ class can have unlimited
¿viewÀ classes associated. Furthermore, a ¿viewÀ class needs to be con-
nected to a ¿modelÀ class either directly or through a ¿controllerÀ class,
which always has to be associated to a ¿modelÀ class directly. Other kind of
associations (e.g. between two ¿modelÀ classes or from a ¿viewÀ class to
¿controllerÀ classes) are not restricted.

2.3 Platform Selection
Besides the abstract, platform independent description of a system, it is often

necessary to extend models for technology specific elements in order to generate
concrete PSIs for several platforms of choice. In the model-driven software de-

Table 1 Decision matrix of platform combinations.

¿viewÀ JSF Java UI
¿modelÀ ¿controllerÀ Spring POJO EJB Spring POJO EJB
Hibernate + o – + + –
POJO + o o + + o
EJB o o + o o +

+: recommended, o: possible, –: unusual

velopment, one may achieve this e.g. by adding platform specific information to
the model elements via additional UML profiles. It should be considered that
this information not necessarily have to be information focusing on platforms
only. Thus, a PSM might e.g. contain additional information about data storage
techniques or specific middleware that the user wants to adopt for the project.

In terms of the platform selection, it should be taken into account that some
techniques should not be combined due to some technical constraints or system
design standards. One possible solution to this is to adopt architectural patterns
to define the system of choice and support the user during the platform selection
process. In case of using the MVC pattern within the ACCURATE approach, the
only remaining task for the user should be the selection of an appropriate combi-
nation of techniques for ¿modelÀ, ¿viewÀ and ¿controllerÀ parts of the
application conforming to Table 1. For example, the selection of Hibernate as
¿modelÀ together with Java Server Faces (JSF) for the ¿viewÀ and Spring
for the ¿controllerÀ is a recommended combination of implementation tech-
niques, while the combination of Hibernate for ¿modelÀ, Java UI (used as a
summary of native Java UI paradigms such as Swing or AWT) for the ¿viewÀ
and Enterprise Java Beans (EJB) as ¿controllerÀ is an unusual combination
due to technical restrictions of the data access of EJB and Hibernate. This de-
cision matrix can be used as a basic guideline for the platform selection process
since more detailed studies of a platform selection via non-functional requirements
are out of the scope of this paper and mainly driven by personal experience and
flavor of the developer.

2.4 PIM-to-PSM Transformation
To transform a PIM into a PSM, elements of a PIM need to be mapped to

conforming PSM elements in a consistent way. Thus, the overall process of trans-

3 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

forming a PIM into a PSM consists of three general tasks:
(1) Initial model fixes
(2) Transformation of profiled elements
(3) Final model fixes

To assure the correct structure of the PIM before the transformation of the
elements begins, we apply various PIM-to-PIM transformations in the first step
to guarantee a consistent PIM structure (as to be seen in Sect. 3.2). We call
these transformations the initial model fixes (see Fig. 1). Thus, the correct usage
of namespaces, profiles and packaging inside the model is checked and corrected
in the initial step of the PIM-to-PSM transformation.

After the PIM is transformed into a consistent model, the second step of the
PIM-to-PSM transformation, the transformation of profiled elements, can be trig-
gered. We regard the transformation of a PIM to a PSM as a stepwise conversion
of all contained structural elements (e.g. classes, attributes, operations and ref-
erences) of the PIM due to the defined mappings (as to be seen in Sect. 3.3).
For example, one may consider a mapping of the PIM element Customer with
the stereotype ¿modelÀ (see Fig. 2) to the PSM element Customer with the
stereotypes ¿EntityÀ, ¿KeyÀ/¿PrimaryKeyÀ and ¿FieldÀ (see Fig. 3).
One should notice that besides the transformation of stereotypes of classes and
their owned attributes and operations, it is also sometimes required to change
the type of model links (e.g. association to dependency) during the PIM-to-PSM
transformation and add all required platform specific profiles to the resulting
PSM. Furthermore, it is also required to remove unnecessary elements (such as
¿externalÀ stereotyped elements or use-cases) that where necessary during
the requirements and analysis phase of the software development process but are
not needed for the PSI generation. As a result, such elements are excluded during
the PIM-to-PSM transformation.

As the final step of the PIM-to-PSM transformation, the resulting PSM is
checked again for its correctness during the final model fixes. In this step, com-
mon design flaws such as unnamed classes or links and missing return values
of methods are corrected via PSM-to-PSM transformation. This way, we can
guarantee a more accurate and flawless PSI generation based on our generated
PSMs.

(a) EJB profile. (b) Spring and Hibernate profiles.

Fig. 3 PSM Examples.

The resulting PSMs for each selected platform combination may vary a lot.
Because of this, every PSM has to be transformed independently, which may
cause a lot of work and is more error-prone if done manually. Thus, we assume
that it is easier to learn the basic modeling technique of a PIM, select a possible
combination of platforms and leave the mapping and transformation of the PIM
into a PSM up to model-driven transformation tools.

2.5 Code Generation
Taking into account that the PSM may vary during the software development

of a system, the required code generator should also be exchangeable to sup-
port the generation of arbitrary PSIs. One possible solution for this is to apply
code generation frameworks that support various generator components. Such
pluggable code generator components are commonly named cartridges due to
their replaceable character. As a side-effect, cartridge components can be linked
to achieve very specific code generation that even conform to platform decisions
based on the MVC approach (e.g. Spring and Hibernate can be link together in
a shared PSM as to be seen in Fig. 3(b)). Since cartridges provide sets of model

4 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

transformation rules we refer them as transformation rules that are selected from
a transformation repository due to the platform selection. Since the details of
the PSM-to-PSI transformation is out of the scope of this paper, we avoid more
concrete details at this point and leave it for future work.

3. Implementation of the PIM-to-PSM Transformation

We have developed our tool as a plug-in that can be used together with any
Eclipse distribution. It supports the user in transforming a PIM automatically
into a PSM that is conforming to the platform selection. Since the tool is following
our ACCURATE approach, the resulting PSM can be used directly afterwards
as an input for the PSM-to-PSI transformation to derive compilable source code
from the models.

The transformation of the PIM into a PSM is a very labor-intensive and error-
prone task if done manually each time. To enhance this process the ACCURATE
plug-in provides an automatic transformation of an inputted PIM into a PSM. To
achieve this, the ACCURATE plug-in offers the following major functionalities:
• Specification of the target platform according to the MVC approach
• Transformation of the PIM into a PSM that is according to the platform

selection
• Assurance of model integrity
• Offer user guidance and help system

Besides this, the plug-in can generate configuration files based on the platform
selection that can be used by common code generation frameworks such as oAW.

In the following subsections, we are going to specify the technical details of
the PIM-to-PSM transformation, introduce our strategy for assuring the model
integrity and describe in details how to transform all required elements of the
PIM into a platform specific representation.

3.1 Technical Details
One may recognize that both the PIM-to-PSM and the PSM-to-PSI transfor-

mation have to be considered as model transformations. The most common used
techniques for specifying model transformations are XMI5) manipulation (such
as JDOM6)), graph transformation and Domain Specific Languages (DSLs) that
can be used for transformations (such as xText7)). In the case of the PIM-to-

PSM transformation, we use XMI manipulation techniques for transforming the
PIM. Since most of the common UML CASE tools (such as MagicDraw8)), that
can be used for modeling the PIM, have support for exporting the model as a
XMI file, we can use XMI manipulations techniques such as JDOM directly to
modify the PIM. JDOM offers a lightweight but matured API that can be used
to specify detailed transformations of the UML model. It has to be mentioned
that JDOM is a programming language specific transformation technique based
on Java. Since our plug-in is also developed in Java, JDOM can be adopted
without any technical problem. It has to be noticed that any of the above trans-
formation techniques can be used to specify model transformations. Thus, it
depends on the developer, which technique of choice is adopted for a specific
model transformation.

As it can be seen in Fig. 1, the platform configuration is needed as an input
for the PIM-to-PSM transformation and thus need to be selected before the
PIM-to-PSM transformation can be triggered. Especially for the mapping of the
stereotyped elements to PSM elements it is necessary to know which technique
should be used for each MVC component in order to achieve a PSM that is
conforming to the platform selection. In our plug-in, the platform selection for a
MVC application is done by selecting appropriate techniques for the ¿modelÀ,
¿viewÀ and ¿controllerÀ parts of the target system from a drop-down
menu as shown in Fig. 4. In addition, if the user already has a platform decision
model available that holds the information about the selected techniques, this
model can be used as an input to derive the platform selection and preselect the
corresponding techniques in the drop-down menu. Thus, the user just has to
check, if these values are according to the requirements.

Once the platform configuration is determined, the PIM-to-PSM transforma-
tion can be triggered, which is described in the following sections.

3.2 Assuring Model Integrity
As a side-effect of the automatic transformation of a PIM into a PSM the

ACCURATE plug-in also offers some functionality to assure the model integrity
by fixing common modeling flaws. These flaws would result in errors during the
code generation process and thus cause time-consuming bug-fixing of the PIM,
which can be avoided partially through this automation. The concrete model

5 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

Fig. 4 MVC selection dialog.

fixes that are done during the PIM-to-PSM transformation are:
• Assuring the correct structure of the PIM
• Adding missing ACCURATE profile
• Removing whitespaces in element names
• Adding missing return types of operations
• Adding names for unnamed links
• Removing use-case elements
It has to be mentioned that some of these model fixes are applied before and

some after the PIM-to-PSM transformation.
It is mandatory to guarantee a consistent PIM structure before the PIM-to-

PSM transformation starts. Thus, the structure of the PIM is checked initially
and corrected if necessary. A consistent PIM structure consist at least of a XMI

root element, a Model element as its child and a Package element as a child
of the Model element. Since there is no existing specification on how a PIM
should be structured the usage of different UML modeling tools may result in
different structures for the same software system. We use the above structure as
a default PIM structure since it is well supported by common code generation
frameworks. Besides this, modeling errors may also result in a divergent PIM
structure. To approach this problem, the plug-in checks the actual structure of
the PIM and adds the missing structural elements with default names to the
PIM. Furthermore, a PIM using the ACCURATE approach needs to have the
ACCURATE profile attached to the namespace of the model XMI file. Because

a missing profile would result in errors during the PIM-to-PSM transformation,
the plug-in adds the ACCURATE profile to the model file if necessary. Since
these transformations don’t add any platform specific information to the model,
we regard these modifications as PIM-to-PIM transformations.

After the PIM has been successfully transformed into a PSM, it is again checked
for its consistency to assure a more accurate and flawless PSI generation based on
our generated PSMs. At this point, common design flaws such as whitespaces in
model element names, unnamed links and missing return types of operations are
corrected via PSM-to-PSM transformations. As before, the plug-in checks using
JDOM if one of the above mentioned design flaws exists in the PSM and corrects
the flaw if necessary. In detail, whitespaces in names are removed directly from
the elements name. In addition, unnamed links get a default and unique name
assigned and if an operation has no return type specified, the return type is set
to void. As a last step, all remaining elements that are not necessary for the PSI
generation are removed from the PSM. This affects all fragments from the early
requirements and analysis phase of the software development process such as use-
case elements. In this example, any use-case, actor or reference to a use-case is
excluded from the PSM before the resulting PSM is finally saved.

3.3 Transformation of stereotyped elements
As stated out before, the mappings of the PIM and PSM elements vary a

lot and thus the PIM-to-PSM transformation needs to be regarded as nontrivial.
The complete PIM-to-PSM transformation has to treat all ¿modelÀ, ¿viewÀ,
¿controllerÀ and¿externalÀ elements of the PIM and transform them into
platform specific elements. For the ¿modelÀ, ¿viewÀ and ¿controllerÀ
elements this means to:
(1) Find all according elements
(2) Check the platform selection
(3) Transform these elements and their attributes, operations and references

according to the platform selection
The overall workflow of the transformation of ¿modelÀ elements is illustrated

in Fig. 5. First of all, the model file is analyzed and searched for any elements
that are associated with the stereotype ¿modelÀ. To apply the correct map-
ping to these elements to a platform specific technique, furthermore the platform

6 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

selection has to be looked up in order to trigger the correct transformation of
the elements. As to be seen in the figure, the ACCURATE plug-in supports
three different techniques for ¿modelÀ element. These are Hibernate, Plain
Old Java Objects (POJOs) and Enterprise Java Beans. Depending on the plat-
form selection, the corresponding UML profile is applied to the PSM. Afterwards,
each¿modelÀ elements’ stereotype is transformed into the proper platform spe-
cific one. For example, any ¿modelÀ element is transformed to the stereotype
¿EntityÀ if the selected platform is Hibernate. In addition, the attributes,
operations and references of these elements sometimes also need to be attached
to platform specific stereotypes. Since the PIM notation is intentionally kept
simple, it is at some point difficult to obtain a clear and unambiguous mapping
of these PIM elements. Especially, if PSM stereotypes are bound to some func-
tional and behavioral characteristics of the stereotyped elements that cannot be
retrieved from the static structure of a system only, mappings to such stereotypes
are hard to handle. For example, from an abstract view of a class in a PIM one
may have problems to distinguish if some attributes of a database class should be
mapped to the property stereotypes ¿IndexÀ or ¿KeyÀ, which are commonly
used to define the structure of database tables more precisely in a PSM. We
address this problem by simplifying the mapping of such attribute stereotypes.
Since the most essential stereotypes can be derived unambiguous from the PIM,
the remaining stereotypes are either considered as optional or derived by the
naming of the attributes. For example, if a class attribute is named key we map
the element to the stereotype ¿KeyÀ or if an attribute is named index it will
be mapped to the stereotype ¿IndexÀ.

We would like to mention at this point that since the workflow of the complete
ACCURATE process not necessarily has to executed consecutively, one may want
to stop the process after the PIM-to-PSM transformation and manually refine
the PSM. This way the user has total freedom of design, while still sparing a
lot of time and work in the PSM design process, since most of the PIM-to-PSM
transformations are already achieve automatically. Even so, the integrity of the
modified PSMs can be assured through model checks before the PSM-to-PSI
transformation takes place.

For the Hibernate example, the last step during the model transformation

PIM with transformed <<model>> elements

Find all <<model>> Elements

Add Profile Add Profile
Select Platform Decision

<<model>> Elements
Hibernate POJO EJBAdd Profile

Transform to <<Entity>> Transform to <<JavaObject>> Transform to <<Entity>>
Set <<Key>> & <<Index>> Set <<Key>>

Set <<KeyReference>>

PlatformConf.

Fig. 5 Transformation of ¿modelÀ elements.

is to set the stereotype ¿KeyReferenceÀ for all links between two ¿modelÀ
elements. Since UML offers different options of how to model links between model
elements, this task can be complicated. For example, Fig. 6 shows a possible
example of the two ¿modelÀ elements Entry and AddressBook, which are each
associated to a stereotype ¿EntityÀ through the xmi:id of the two classes. In
this example, both classes own an attribute holding the information about the
association between them. The association is again stored by the association’s
xmi:id within these owned attributes. Besides this, it is also a possible way to
store the reference to the classes directly in the association as owned ends (as
shown in Fig. 7). One should notice that from the viewpoint of a class the linked
class and its stereotype cannot be received directly. To address this problem,
one has to start the traversal of the elements at the association itself. Using the
JDOM API, it is possible to find UML associations quickly and unambiguously
using the build-in filter functionality. Furthermore, JDOM offers support for
traversing the parent and child elements of a given element. This way, it is in both
examples possible to reach the two referenced elements of an association easily

7 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

xmi:id = 002base_class = 200Persistence: Entity
xmi:id = 300memberEnd = 101 201Associaton

xmi:id = 001base_class = 100Persistence: Entity

xmi:id = 200xmi:type = uml:ClassAddressBook

xmi:id = 100xmi:type = uml:ClassEntry

xmi:type = 201association = 300ownedAttribute

xmi:id = 101association = 300ownedAttribute
Association

owns

owns
Fig. 6 Structure of a nested Association.

xmi:id = 002base_class = 200Persistence: Entity
xmi:id = 300memberEnd = 101 201Associaton

xmi:id = 001base_class = 100Persistence: Entity xmi:id = 100xmi:type = uml:ClassEntry

xmi:id = 200xmi:type = uml:ClassAddressBook

type = 100xmi:id = 101association = 300
ownedEnd

type = 200xmi:id = 201association = 300
ownedEnd

Association
owns

owns

Fig. 7 Structure of a separated Association.

and analyze their stereotypes. As a result, one can find ¿modelÀ-to-¿modelÀ
links and attach the desired stereotype ¿KeyReferenceÀ to the association.

The transformation for POJO or Enterprise Java Beans as technique for the
¿modelÀ classes is straightforward. Since these platforms use different stereo-
types for their elements the corresponding ¿modelÀ elements need to be either
set to ¿JavaObjectÀ in the case of POJO or to ¿EntityÀ for EJB. In the
case of Enterprise Java Beans, attributes of ¿EntityÀ classes that are named
key also get the stereotype ¿KeyÀ assigned.

The result after these transformations is a PSM that contains all
mapped ¿modelÀ elements but still owns PIM elements for the ¿viewÀ,
¿controllerÀ and ¿externalÀ classes that need to be transformed in the

following steps.
In the next step of the PIM-to-PSM transformation all ¿viewÀ classes need

to be transformed to the according platform specific stereotypes (see Fig. 8). As
for the ¿viewÀ elements, first all ¿viewÀ elements need to be found within
the model. Corresponding to the platform selection the UML profile for Java
Server Faces or a standard Java UI is attached to the PSM. In the case of JSF,
all ¿viewÀ classes need to be transformed into ¿ManagedBeanÀ classes. Fur-
thermore, the JSF profile we make use of is using UML dependencies instead of as-
sociations to connect the ¿viewÀ elements to ¿modelÀ and ¿controllerÀ
elements. Thus, any association needs to be changed to a dependency. If the
platform selection is Java UI then it is necessary to additionally check the tech-
nique used for the ¿controllerÀ components. Depending on the result, the
¿viewÀ elements are either transformed to ¿SpringServiceÀ elements if
the platform selection is Spring or otherwise transformed to ¿JavaObjectÀ.
Again, if Spring is used as the ¿controllerÀ technique all links connecting
the ¿viewÀ class to other classes need to be set to dependency. After all of
the ¿viewÀ elements have been transformed the resulting PSM contains all
mapped ¿modelÀ and ¿viewÀ elements.

The last MVC elements that need to be transformed during the PIM-to-PSM
transformation are the ¿controllerÀ elements. As to be seen in Fig. 9, the
workflow for transforming ¿controllerÀ elements is straightforward. As be-
fore, all ¿controllerÀ elements are initially selected. Again, depending on the
platform selection, the corresponding UML profile is attached to the PSM and the
¿controllerÀ elements transformed into platform specific elements. These are
¿ServiceÀ for Spring, ¿JavaObjectÀ for POJO and ¿SessionBeanÀ for
Enterprise Java Beans. In the case of Spring as the ¿controllerÀ technique,
two additional transformations need to be triggered. First, all operations of
¿controllerÀ classes need to be mapped to ¿ServiceOperationÀ. Finally,
all links that connect ¿controllerÀ classes to other elements have again to be
changed a UML dependency. As the result, all MVC elements are transformed
into a platform specific representation that conforms to the platform selection.

Since the resulting PSM still contains all ¿externalÀ classes, which are not
necessary in a PSM, the final task during the PIM-to-PSM transformation has

8 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

PIM with transformed <<view>> elements

Find all <<view>> Elements

Add Profile
Check Controller

Select Platform Decision
<<view>> Elements

JSF
Spring

Java UIAdd Profile
Transform to <<ManagedBean>> Transform to <<JavaObject>>Transform to <<Springbean>>

Change Links to Dependency
Change Links to Dependency

else

PlatformConf.

Fig. 8 Transformation of ¿viewÀ elements.

PIM with transformed <<controller>> elements

Find all <<controller>> Elements

Add Profile Add Profile
Select Platform Decision

<<controller>> Elements
Spring POJO EJBAdd Profile

Transform to <<Service>> Transform to <<JavaObject>> Transform to <<SessionBean>>
Set <<ServiceOperation>>

PlatformConf.

Change Links to Dependency

Fig. 9 Transformation of ¿controllerÀ
elements.

to be the removal of all ¿externalÀ elements from the PSM. Since in this case
no mapping to a platform specific technique is necessary, first all ¿externalÀ
elements need to be selected from the PSM, then all references to these elements
are removed and finally the¿externalÀ elements themselves are excluded from
the PSM.

After all steps of the PIM-to-PSM transformation process the result is a PSM
that conforms to the platform selection and furthermore only contains elements
that are relevant for a possible PSI generation on the basis of the PSM. It should
be noticed that through adopting JDOM together with a plug-in environment
it is possible to structure the overall PIM-to-PSM transformation in a modu-
lar and sequential way. Besides this, the transformation can be extended easily
by adding branches for additional techniques to any of the transformations of
the stereotyped elements or add further model fixes at the beginning or end of
the PIM-to-PSM transformation. Thus, using XMI manipulation techniques for
the model transformation offers both an easy to use way of designing the trans-
formations through a matured and well-design API and flexible and extendable

mechanism to structure the complete PIM-to-PSM transformation process.

4. Related Work

There is already some existing work focusing on platform independent mod-
eling and model transformation in a different problem domain. Bezivin et al.
propose to use ATL transformation10) to transform PIMs defined by Enterprise
Distributed Object Computing into PSMs for different web service platforms9).
Even though this work is focusing on web platforms, the technique for defin-
ing the model transformation is different from our approach. Furthermore, the
proposed workflow is not focusing on a jointly combination of requirements tech-
niques for the platform selection as in our proposed approach. Billig et al.11)

define PIM-to-PSM transformations in the context of EJB by using QVT12) and
thus also use a different technique for defining model transformations. Since this
approach only focuses on Enterprise Java Beans it is also technology specific and
would cause some work to adapt to a new combination of platform alternatives.

Besides this, some other related work also defines PIMs via UML profiles. Link
et al. propose to use the GUIProfile to model PIMs and transform them into
PSMs13). Richly et al. focus on a UML profile to define PIMs for databases14). He
et al. use template role model together with PIM profiles for templates to design
PIMs, which are specific for web applications15). Ayed et al. propose a UML
profile for modeling platform independent context-aware applications16). Lopez-
Sanz et al. define a UML profile for service-oriented architectures17). Finally Fink
et al. combine UML and MOF profiles for access control specifications18). Thus,
there are a lot of approaches, which describe a PIM on a more abstract level
than a PSM. Even so, these approaches are still tailored to a specific technology
or architecture and thus need some detailed knowledge of the concrete problem
domain. Furthermore, the adoption to a different problem domain or architecture
such as MVC is hindered due to the specific notations of these PIMs.

5. Conclusion and Future Work

In this paper, we have discussed the actual situation of software development
and stated out some clear problems when trying to adopt MDE techniques to
projects that have to handle a great variety of target platforms. To address

9 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

IPSJ SIG Technical Report

this problem, we have introduced an approach called ACCURATE to handle the
lack of support for changing platforms, in respond to requirement changes or
platform evolutions. Our approach shows how to specify systems easily without
any PSM modeling skills. Furthermore, the approach offers much automation of
the development process and thus reducing costs due to a shorter time-to-market.

Furthermore, we described detailed a possible implementation of a PIM-to-
PSM transformation according to the ACCURATE approach. The prototype
tool we provided, both assures the integrity during the model transformation
and offer guidance through the software development process to the user. The
current implementation of the tool provides a workable and extendable solution
to address the stated problems. However, there are still some enhancements
that we would like to adopt to our approach in the near future. These possible
extensions can be summarized as follows:
(1) Evaluation: This paper focused on applying the ACCURATE approach

to the MVC architecture style. Since this is just one possible example for
an architecture style, we would like to evaluate our approach through a case
study and validate the usability of our approach more sustained adopting
different architecture styles.

(2) Platform decision models: As stated out before, the platform selection
could be derived automatically from a suitable input model. In the future,
we are going to introduce decision models such as Bayesian networks19)

more precisely and use them as possible standard inputs for our plug-in.
(3) PSM-to-PSI generation: In future work, we would like to focus more

detailed on how to implement existing code generation frameworks into the
ACCURATE approach and toolkit. This way, we are also going to argue
more on the technical differences between existing model transformation
techniques.

References

1) Schmidt, D. C.: Guest Editor’s Introduction: Model-Driven Engineering, Com-
puter, Vol.39, No.2, pp.25–31 (2006).

2) openArchitectureWare.org: Official openArchitectureWare Homepage,
http://www.openarchitectureware.org/.

3) AndroMDA.org: AndroMDA.org - Home, http://www.andromda.org/.

4) Reenskaug, T.: The original MVC reports,
http://heim.ifi.uio.no/∼trygver/2007/MVC Originals.pdf (2007).

5) OMG: MOF 2.0/XMI Mapping, Version 2.1.1,
http://www.omg.org/docs/formal/07-12-01.pdf (2007).

6) jdom.org: JDOM, http://www.jdom.org/.
7) Efftinge, S., Voelter, M.: oAW xText: A framework for textual DSLs,
http://www.voelter.de/data/workshops/EfftingeVoelterEclipseSummit.pdf

(2006).
8) No Magic: UML 2 diagramming, OO software modeling, Source code engineering

Tool MagicDraw UML from No Magic, http://www.magicdraw.com/.
9) Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach for

Web service platform, EDOC ’04: Proceedings of the 8th International Conference
on Enterprise Distributed Object Computing, pp.58–70 (2004).

10) eclipse.org: ATL Project, http://www.eclipse.org/m2m/atl/.
11) Billig, A., Busse, S., Leicher, A. and Süss, J.G.: Platform Independent Model

Transformation Based on TRIPLE, Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pp.493–511 (2004).

12) OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
Version 1.0, http://www.omg.org/docs/formal/08-04-03.pdf (2008).

13) Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development, ACHI ’08: Proceedings of the 1st Interna-
tional Conference on Advances in Computer-Human Interaction, pp.3–8 (2008).

14) Richly, S., Habich, D., Lehner, W.: GignoMDA - Generation of Complex Database
Applications,
http://dbs.informatik.uni-halle.de/GvD2006/gvd06 habich.pdf (2006).

15) He, C., He, F., He, K., Tu, W.: Constructing Platform Independent Models of
Web Application, SOSE ’05: Proceedings of the IEEE International Workshop on
Service-Oriented System Engineering, pp.85–92 (2005).

16) Ayed, D., Berbers, Y.: UML Profile for the Design of a Platform-Independent
Context-Aware Applications, MODDM ’06: Proceedings of the 1st Workshop on
MOdel Driven Development for Middleware, pp.1–5 (2006).

17) López-Sanz, M., Acuña, C., Cuesta, C., Marcos, E.: UML Profile for the Platform
Independent Modelling of Service-Oriented Architectures, Software Architecture,
Vol.4758, pp.304–307 (2007).

18) Fink, T., Koch, M., Pauls, K.: An MDA approach to Access Control Specifications
Using MOF and UML Profiles, Electronic Notes in Theoretical Computer Science,
Vol.142, pp.161–179 (2006).

19) Pearl, J.: Bayesian Networks: a Model of Self-Activated Memory for Evidential
Reasoning, Proceedings of the 7th Conference of the Cognitive Science Society, pp.
329–334 (1985).

10 c© 2009 Information Processing Society of Japan

Vol.2009-SE-165 No.4
2009/7/2

