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Gibbs-DMGG による類似部分配列の抽出方式 
 

河野修久† 北上始† 田村慶一† 森康真†
 

 

配列データマイニング処理では，配列データベースから非常に多くの頻出配列パ
ターンが抽出される．著者らは，既に，配列データベースに対してギブスサンプ
リング(GS)を適用し，頻出配列パターンを削減する方法を提案している．しかし
ながら，この方法では，予め，抽出する部分文字列の長さをユーザ側で指定する
必要があるほか，必ずしも精度(再現度)が良いとは限らないという問題がある．
本稿では，これら 2 つの問題を解決するために，遺伝的アルゴリズムの世代交代
モデルの 1 つである Minimal Generation Gap (MGG)と，分散遺伝的アルゴリズム
(島モデル)の考え方を GS に応用した新しい類似部分配列抽出法 Gibbs-DMGG を
提案する．また，この提案手法が従来手法よりの有効であるかを確認するために，
両者の性能評価・考察を行ったので，その結果についても報告する． 
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In the field of sequence data mining, a large quantity of frequent sequential patterns are 
extracted from a sequence database. In order to significantly reduce these frequent 
sequential patterns, we have already proposed a method of applying Gibbs sampling 
(GS) to the sequence database. However, this method involves problems such as the 
necessity of setting the length of the extracted substring beforehand, and the possibility 
of insufficient accuracy (Recall). In order to solve these problems, we propose in this 
paper a new, similar subsequence extraction method called Gibbs-DMGG. This method 
applies Minimal Generation Gap (MGG), a generation alternation model of the genetic 
algorithm, and a distributed population scheme called the Island model. Experiments 
were used to evaluate our proposed method. 

 

 

 

 

 

 

1. Introduction  

A method for extracting frequent sequential patterns from sequence databases is useful in 

many application domains. Among these uses are finding regularity in text databases and 

finding motif patterns in molecular subsequences. Motifs discovered by many biologists 

appear in PROSITE [1] and in Pfam [2][3] and are regarded as protein functions that have 

been conserved in the process of molecular evolution. There are two methods of representing 

a motif in the natural world: regular, and probabilistic expression. This is due to the fact that 

motifs include ambiguities such as a variable wildcard regions and approximate expressions. 

A sequential pattern mining method for molecular sequences was developed to extract 

variable wildcard regions included in the regular expression of frequent sequential 

patterns.[4][5] However, because the method extracts a large quantity of junk patterns, we 

have focused on reducing the number of frequent sequential patterns extracted by the method.  

The Gibbs sampling method, [6] called GS, is a key technology used to solve problems of 

frequent sequential pattern reduction. GS has the capability of extracting similar subsequences 

from sequence databases. Therefore, we have proposed a reduction of input data for sequential 

pattern mining using GS. However, two problems arise from using GS. The first problem is 

that the length of the subsequence extracted from the sequence databases must be specified in 

advance. The second problem is that the accuracy of extracting similar subsequences is not 

always stable.  

In this paper, we propose a novel method called Gibbs-DMGG (Gibbs sampling with 

Distributed MGG, where MGG is a GA with Minimal Generation Gap). [7][8] This method 

not only has the capacity to automatically determine the length of a similar subsequence but 

also provides stable accuracy in similar subsequence extraction. 

Gibbs-DMGG solves an optimization problem for GS using a genetic algorithm with the 

Minimal Generation Gap model (MGG) [7][8] and a distributed population scheme called the 

Island model GA.[9][10] MGG is a generation alternation model capable of avoiding early 

convergence and suppressing evolutionary stagnation through the dynamics of the best value 

and the variance of fitness distributions. However, because MGG is not capable of providing 

stable accuracy, we use MGG with a distributed population scheme.  

The remainder of the present paper is organized as follows: A discussion of related research 

is presented in Section 2. The Gibbs sampling algorithm is described in Section 3. The 

proposed method, Gibbs-DMGG, is described in Section 4. The performance of the proposed 

method is evaluated in Section 5, and the results of the present study are summarized in 
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Section 6. 

2. Related Work 

Since the sequential pattern mining method for molecular sequences extracts a large 

quantity of junk patterns,[4][5] we have focused on the Gibbs sampling method of reducing 

the number of frequent sequential patterns extracted.[6] The Gibbs sampling method is a key 

technology for solving problems of reducing the number of frequent sequential patterns. 

In 1993, Lawrence et al. proposed the use of GS to extract similar subsequences from 

sequence databases.[6][11] This earlier GS method is not capable, however, of extracting 

multiple motifs from any sequence in the sequence database. Liu et al. proposed Greedy 

Two-stage Gibbs Sampling, a method capable of extracting multiple motifs from each 

sequence.[12] Moreover, stable accuracy to solve the optimization problem for GS was 

enhanced by a simulated tempering [13] and a generation alternation model called Minimal 

Generation Gap (MGG).[7][8] However, two problems with the existing methods remain. One 

is that the lengths of similar subsequences extracted by each method have to be given by the 

user even though they may be unknown. Another problem is that existing methods do not 

always have stable accuracy and there is no obvious analogy for temperature T with respect to 

free parameters in the simulated annealing method. 

The proposed method, Gibbs-DMGG, provides a solution to these problems. Gibbs-DMGG 

has not only the capacity to determine the lengths of the similar subsequences automatically 

but also stable accuracy necessary to extract similar subsequences. This capability is achieved 

through applying the island model GA to provide stable accuracy and improving Gibbs-MGG 

so that it can automatically determine the length of similar subsequences. 

 

Figure 1   Sequential database and k-subsequence set 

3. Existing Gibbs Sampling 

This section describes a method for extracting similar subsequences using existing Gibbs 

sampling GS and a method for evaluating similar subsequences (known as k-subsequences) 

extracted by GS. A k-subsequence is a substring that is extracted from each sequence in the 

sequence database, wherein the user provides the value for the length k.  Additionally, the set 

of k-subsequences extracted from each sequence in the database is called the k-subsequence 

set. The relationship between the sequence database and the k-subsequence set is shown in 

Figure 1. 

3.1 Gibbs sampling 

Consider that each sequence of the sequential database DB is defined alphbetically ∑ = 

{a1,a2,…,an}, where DB consists of t sequences. Gibbs sampling GS is the method used to 

find one k-subsequence as similar as possible to each sequence of the sequential database DB, 

where the user has to specify beforehand the length k of the subsequence extracted by GS. In 

order to find the most similar k-subsequences, GS requires a measure to evaluate 

k-subsequences extracted as candidate solutions. To compute the measure, GS includes three 

quantities related to statistical probability: a score matrix, frequency, and background 

frequency.  

The three quantities related to statistical probability in a k-subsequence set are defined as 

follows: 

(1) Score matrix 

The score matrix A = (Ai,j) of the k-subsequence set is called a profile, and the matrix 

element Ai,j is the frequency of letter aj appearing in position i for the k-subsequence set. 

(2) Frequency 

Frequency Ax of k-subsequence x = <a1a2…ak> is defined as the calculation 

A1,1×A2,2×…×Ak,k, which means that the frequency of the k-subsequence x has a higher 

probability if it is similar to the consensus of k-subsequences used in computing the 

score matrix.  On the other hand, the k-subsequence x has a lower probability if the 

frequency of x is dissimilar to the consensus. 

(3) Background frequency 

The background frequency of letter aj is computed by dividing the total number 

Paj of letter aj into the total number of letters in BS, where BS is defined as a set 

of subsequences that are collected by removing all candidate solutions from DB. 

The background frequency Px of k-subsequence x = <a1a2…ak> is defined as the 

calculation Pa1×Pa2×…×Pak. 

Sequential database k-subsequence set 

:   Extracted k-subsequence 
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1. Randomly choose a starting position ST = (st1,st2,…,stt) in 

t sequences and extract the set S = {s1,s2,…,st} of 

k-subsequences using the starting positions ST from t 

sequences. 

2. Randomly select one sequence Z from DB and compute 

DB’ = DB-{Z}, where ||DB’|| = t-1. Compute S’ = S-{Z’}, 

where Z’ is the k-subsequence extracted from sequence Z 

based on the starting point st selected in step 1 (above). 

3. Calculate the score matrix A = (Ai,j) from the 

k-subsequence set S’ consisting of t-1 elements. 

4. Calculate the background frequency Paj of each letter aj 

using set BS’, where BS’ is collected by removing S’ from 

DB’. 

5. Calculate the evaluation value Ux = Ax÷Px for each of 

||Z||-k+1 k-subsequences x with the starting position i in 

the sequence Z, where 1i ||Z||-k+1. 

6. Randomly choose the starting position st’m, according to 

the distribution proportional to the evaluation value set 

that is {Ux | x belongs to the set of ||Z||-k+1 k-subsequences 

with the starting position i in sequence Z }. Update S, 

where 1m  ||Z||-k+1.  

7. Repeat steps 2~6 a preset number of times. 

Figure 2   Gibbs sampling algorithm 

 

Let ST = (st1,st2,…,stt) be the starting position of the chosen k-subsequence in DB stored 

with t sequences. Gibbs sampling GS, shown in Figure 2, computes the starting positions ST 

for every iteration processing. The processing is carried out to find the k-subsequence with the 

starting position from one sequence Z randomly chosen from among the t sequences. The 

k-subsequence extracted from the starting position is characterized as the k-subsequence with 

higher frequency but lower background frequency. 

3.2 Evaluation of subsequence 

In order to appraise similar k-subsequences which are extracted from the sequential 

database DB, relative entropy, called the F value, is used. The relative entropy is the 

difference in the distribution of the places of similar k-subsequences extracted from DB and 

the dissimilar parts that remain without being extracted. Therefore, the F value is defined as 

follows:  
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Pj is the same as the background frequency Pj of the letter aj. Qi,j is defined as follows:  
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Ci,j is a score matrix element to the portion of the similar k-subsequence extracted from DB 

and represents the number of the letter j which exists in a position i. The pseudo-count bj is 

determined by fi×B. Pseudo-counts are used to avoid a status in which Ci,j = 0 becomes Qi,j = 0. 

fi is determined by the relative frequency of the letter aj in DB. Moreover, B will be 

experimentally set to N , where N is the number of sequences in DB. 

4. New Method 

In this section, we propose a novel method called Gibbs-DMGG. This method not only is 

capable of automatically determining the length k of the similar subsequence but also provides 

stable accuracy for similar subsequence extraction. First, we introduce the optimization 

methods MGG and the Island model GA, and we describe the Gibbs sampling method using 

MGG (Gibbs-MGG). In order to automatically determine the length k of the subsequence, a 

method for improving Gibbs-MGG is proposed. Hereafter, this improved Gibbs-MGG is 

called Modified Gibbs-MGG. Finally, to secure stable extraction accuracy, we propose using 

Gibbs-DMGG by combining the Modified Gibbs-MGG with the Island model GA. 

4.1 Optimization method 

In this section, both MGG and the Island model GA, used for optimal Gibbs sampling, are 

described. 

4.1.1 MGG 

MGG, shown in Figure 3, is a generation alternation model of a GA which generates 

multiple individuals in a population and repeats the process of selection for reproduction, 

crossover, mutation, and selection for survival. The selection for reproduction denotes the 

selection of a pair of individuals by random sampling without replacement from the 

population. MGG is capable of avoiding premature convergence; since the selected pair of 

individuals in a population is randomly chosen as an object of alternation of generation, MGG 

yields solutions with low precision. Moreover, MGG suppresses evolutionary stagnation by 

preserving a specific variance of fitness distributions. Through using elite selection and 

roulette-wheel selection for survival, specific variance is preserved. 
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Figure 3   Diagram of processing in MGG 

 

 

Figure 4   Concept of the Island model GA 

4.1.2 Island model GA 

The Island model is a distributed model GA. In this model, subpopulations evolve 

separately, and their individuals migrate among these subpopulations in certain generations.  

The Island model has parameters associated with migration: the migration interval  and the 

migration rate. The migration interval is the number of generations between each migration, 

and the migration rate is the number of individuals selected for migration.  The concept of the 

Island model is shown in Figure 4.  

In the Island model, the search advances to independence with the respective island. For the 

individual, each island differs significantly. Therefore, since the diversity is greater than that 

of a single population, a stable improvement in accuracy is expected. 

 

 

Figure 5   Method for generating one child individual using crossover operation 

 

1. Randomly generate N individuals as a 

population of the initial condition. 

2. Selection for reproduction: randomly choose 

two individuals in the population. 

3. Crossover: recombine the two individuals 

selected by reproduction and generate M child 

individuals. 

4. Selection for survival: calculate the F value of 

parent individuals and M child individuals. 

Return the individual whose fitness is highest 

and the individual chosen by roulette 

selection. 

5. Mutation: randomly choose L individuals in 

the population. Mutation is complete. 

6. Repeat steps 2~5 for m iterations, where m is 

given by the user. 

Figure 6   The Gibbs-MGG algorithm 

 

4.2 Gibbs-MGG 

Gibbs-MGG is proposed to improve the extraction accuracy of GS. The individual that is 

used with MGG is defined as a k-subsequence set. The F value of Equation (1) is used to 

compute the fitness of the individual. The processing of MGG is carried out by crossover, 

selection, and mutation operations for the individually prepared N units. 

In the crossover operation, the crossover point is randomly decided for each of M generated 

individuals, where M is given by the user beforehand. Based on M crossover points, M child 

individuals are generated from two individuals chosen by selection for reproduction. If two 

individuals are the same, the selection for reproduction is repeated until two distinct 

Selection for Reproduction  

(Randomly) 

Crossover 

Selection for Survival 

(Elite+Roulette) 

overwrite 

Migration 

Parent individuals Child individual 

Crossover point 
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individuals are selected. Figure 5 shows an example of one child individual made from two 

individuals. 

In the selection operation for survival, we return two new individuals to the population, 

where one is chosen by highest fitness (elite) selection and the other is chosen by roulette 

selection. They are chosen from two older individuals obtained by selection for reproduction 

and M child individuals generated by the crossover operation. 

In the mutation operation, L individuals are selected from the population at random, and the 

iteration processing in the GS is done only once, where L is given by the user beforehand. In 

other words, steps 2~6 of the Gibbs sampling algorithm shown in Figure 2 are repeatedly 

executed for each L individual. Figure 6 shows the Gibbs-MGG algorithm. 

4.3 Proposed method 

In the Gibbs sampling algorithm, the length k of the subsequence extracted from sequences 

has to be given by the user beforehand. In order to decide the length k automatically, we need 

to modify the Gibbs-MGG algorithm described in the previous section. Furthermore, we 

propose a new method constructed by combining the Modified Gibbs-MGG with the Island 

model GA. 

In the Gibbs-MGG algorithm, subsequences of any individual in the population have the 

same length given by the user, and the length does not change during processing. In contrast 

to the Gibbs-MGG algorithm, the Modified Gibbs-MGG algorithm is flexible in that 

subsequences allow for different lengths in the population since an optimal length for the 

subsequence must be found. Therefore, we modify the crossover and mutation operations for 

flexibility. 

In the existing crossover operation, a problem arises in that subsequences in the child 

individual (as shown in Figure 5) include two different lengths if two individuals chosen from 

the population have two different lengths on the subsequence. Unification of the two different 

lengths is proposed as a solution to the problem. 

In the modified crossover operation, unification is a method for randomly selecting either 

of two different lengths. The method is executed before the existing crossover operation. 

In the modified mutation operation, we propose randomly selecting a subsequence from 

subsequences in the individual and applying it to the change operation for the length of the 

subsequence. Figure 7 shows the change operation. Drawing a conclusion from the 

experiment, we avoid a drastic change in the length of the subsequence in the Gibbs sampling 

algorithm. Therefore, we randomly change the start and end positions of the subsequence 

within the range from -k/4 to k/4, where k denotes the length of the original subsequence 

before the change operation is executed. Therefore, the length of the subsequence after the 

change operation is the range from k/2 to 3k/2.  

 

Figure 7   The change operation for the length of the subsequence 

 

1 Randomly generate I islands (populations) containing N 

individuals as population groups for the initial condition. 

2 Perform the following work in each population: 

2.1 Selection for reproduction: randomly choose two 

individuals per population. 

2.2 Crossover: recombine two individuals selected randomly 

on the condition that the length of each subsequence is 

selected as either of two and M child individuals are 

generated.  

2.3 Selection for survival: calculate the F value of parent 

individuals and M child individuals and return the 

individual whose fitness is highest and the individual 

chosen by roulette selection. 

2.4 Migration: randomly choose L individuals in the 

population. Mutation is complete. 

2.5 Modification of sequential length: change the 

subsequence length once per several generations. 

3 Migration: migration should occur once per several 

generations. 

4 Repeat steps 2~5 a preset number of times. 

Figure 8   The Gibbs-DMGG algorithm 

 

As shown in Figure 7, the start and end positions of the subsequence are determined inside 

the respective shaded areas. The change operation for the length of the subsequence is not 

necessarily made by the mutation operation each time. It refers to the number of sequences in 

the sequence database for each of several generations. 

When the subsequence length is determined automatically, the initial value of the length 

becomes very important. One problem is that, if the initial length is too long, Gibbs-MGG is 
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incapable of finding a length shorter than the initial length of the subsequences. On the other 

hand, if the initial length is too short, Gibbs-MGG is incapable of finding a highly accurate 

length. 

 In order to solve this problem, the Island model is used in conjunction with Modified 

Gibbs-MGG. In the novel Gibbs-DMGG method, to prevent aggravation of the extraction 

accuracy, we prepare multiple populations (as shown in Figure 8) by applying an initial value 

of the subsequence length to a different item in each population. For each population, 

processing is usually done independently. However, individual movement in each population, 

called migration, is performed once per several generations. 

5. Performance Evaluation 

To confirm the effectiveness of the new similar subsequence extraction method, an 

evaluation experiment was conducted using the Leucine Zipper dataset (registration number 

PS00036, from PROSITE). The computer environment used for the evaluation was a 

2.66-GHz Intel® Core™2 Quad with 2 GB of memory, 2 GB of SWAP memory, a 227 GB 

HDD, and Fedora 9 as the operating system. The characteristics of the Leucine Zipper dataset 

in PROSITE are shown in Table 1. The motif appearing in the dataset is formed with a 

maximum of 16 letters and is represented as follows: <[KR]-x(1,3)-[RKSAQ]-N-x(2)-[SAQ](2) 

-x-[RKTAENQ]-x-R-x-[RK]>. The symbol [KR] is an ambiguous character and denotes 

allowance of the selection of any character included in the set {K, R}. The symbol x(1,3) 

between two ambiguous characters, [KR] and [RKSAQ], denotes a range from one to three 

wildcards, where the wildcard is a special character that can be used to substitute for any other 

character.  The symbol [SAQ](2) denotes [SAQ]-[SAQ]. 

5.1 Performance measure 

In order to evaluate the performance of Gibbs-DMGG, we define both Recall and Precision 

as performance measures. Precision can be seen as a measure of exactness or fidelity, whereas 

Recall is a measure of completeness. 

The number of sequences included in the sequence database is assumed to be n. A set of the 

motif domain which exists in the sequence database is represented as A = {A1,A2,…,An}, 

where Ai is a motif region appearing in the sequence with the value i as the sequence identifier 

sid and 1in. A set of regions extracted from the sequence database is represented as B = 

{B1,B2,…,Bn}, where  Bi is a region extracted from the sequence with the value i of the 

sequence identifier sid using Gibbs-DMGG. ||A|| is defined as ∑||Ai|| [1in], where ||Ai|| 

denotes the length of region Ai. Furthermore, AB is defined as {C1,C2,…,Cn}, where Ci = 

AiBi denotes the region of overlap between Ai and Bi. At this time, Recall is defined as 

||C||/||A||, and Precision is defined as ||C|/||B||. 

Table 1   Characteristics of the Leucine Zipper dataset 

Number of 

sequences 

Maximum 

length 

Minimum 

length 

Total length 

188 1383 125 73673 

 

Table 2   Relationship between the sequence database and extracted subsequence 

sid Sequences Extracted 

subsequences 

1 

2 

3 

4 

5 

TATKFATFKT 

KATFAFTFAF 

AAKAKATFTK 

FAKATATFAA 

AATFTKFTTF 

ATFK 

FAFT 

AKAK 

ATFA 

AATF 

 

Consider computing Recall and Precision using Table 2, where the length k of the 

subsequence is the value of 4, the motif is represented as <ATF>, and the computational 

results are rounded to hundredths.  

The total number ||A|| of letters included in motif regions can be computed from 

||A1||+||A2||+…+||A5|| with ||A|| = 15. Since the total number ||B|| of letters in the extracted 

regions can be calculated equally, the result is ||B|| = 20 using k = 4. Since all motif domains 

are contained in the subsequence of sid = 1, the result is ||C1|| = 3. Since only "F" is contained 

in the subsequence of the sequence of sid = 2 among motifs <ATF>, the result is ||C2|| = 1. In 

the following, since the result is ||C3|| = 0, ||C4|| = 3, and ||C5|| = 3, ||C|| is calculable with 10. 

Therefore, the Recall and Precision of this subsequence are calculated as Recall = 10/15 = 

66.7% and Precision = 10/20 = 50.0%. 

5.2 Experimental results 

In order to conduct a performance evaluation of the proposed method, we changed each 

parameter of Gibbs-DMGG.  First, we experimented by changing the number of islands. 

Table 3 gives the following parameters: 5 individuals in the population; 5 child individuals 

generated from a pair of parents; one mutation for one generation; 4800 generations until the 

termination of the execution; the number of islands is the value of 6, 10, 15, and 30; the 

number of trials is the value of 10 for computing the average Recall and the average 

Precision. 

Regarding the number of islands, an average Recall of 99% or more denotes quite good 

extraction accuracy. In terms of Precision, the best value was achieved with 15 islands. 
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Table 3   Comparison of extraction performance by changing the number of islands 

Number of 

islands 

The number of computational results with the same 

range of  length Recall Precision 
CPU time 

(sec) 

Number of 

generations 
54~60 61~70 71~80 81~90 91~114 

6 1 2 4 2 1 99.33 21.19 600.0 4800 

10 0 3 5 1 1 99.29 20.67 985.8 4800 

15 1 4 4 1 0 99.28 22.62 1447.7 4800 

30 0 1 8 0 1 99.33 20.62 2670.6 4800 

 

Table 4   Comparison of extraction performance by changing the number of individuals in the population 

Number of 

individuals 

The number of computational results with the same 

range of  length Recall Precision 
CPU time 

(sec) 

Number of 

generations 
54~60 61~70 71~80 81~83 

5 1 4 4 1 99.28 22.62 1447.7 4800 

10 0 5 5 0 99.26 21.64 3119.6 9600 

20 0 1 8 1 99.12 20.93 6870.0 19200 

 

 

 

Figure 9   The extraction performance of Gibbs sampling 

 

The difference in extraction results when the number of individuals in a population is 

changed was investigated using the case of the 15 islands that produced the best result (Table 

3). Parameters other than the number of islands, the number of individuals, and the number of 

generations were used in the experiment (Table 3). The number of individuals in a mother 

group was changed to 5, 10, and 20, and the number of trials was 10. The number of 

generations was proportional to the change in the number of individuals and caused them to 

increase. The length of the subsequence, the average Recall, and the average Precision are 

shown in Table 4. Finally, the extraction performance of Gibbs sampling is shown in Figure 9.  

Based on the information in Table 4, it is clear that the increase in the population is not 

proportional to the improvement in Precision. When the number of individuals is increased, 

however, the length in extracted substrings becomes larger. 

The experimental results show that the extraction of a similar subsequence was most 

accurately attained with 15 islands and 5 individuals. At this time, the length of the 

subsequence extracted was approximately 70, and the Recall was 99% or greater. Based on the 

information in Figure 9, the Recall of Gibbs Sampling is around 85%. It is clear that the 

proposed method improves extraction performance. Moreover, the length of similar 

subsequences extracted by Gibbs-DMGG frequently results in almost 70 and is approximately 

equal to the user defined length providing for the maximum recall in executing the existing 
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method. Therefore, it can be said that the partial array length extracted by this method is 

appropriate.  

We successfully obtained similar subsequences with a region 1/5 that of the original 

database and 5 times the length of the motif (where the Leucine Zipper dataset includes a 

motif length ranging from 14 to 16 and an average of 392 letters for one sequence). As the 

extracted subsequence has not resulted in considerable, unnecessary, or even partial deletion 

from the original sequence database, the proposed method is considered an effective similar 

subsequence extraction method. 

6. Conclusion 

We have proposed a new similar subsequence extraction method, Gibbs-DMGG, which 

applies MGG and the Island model to Gibbs sampling. We successfully extracted similar 

subsequences that have 1/5 the original sequence database and 99% or greater Recall without 

specifying the length of the extracted subsequence. However, neither insertion nor deletion in 

the sequence was considered in the present study. Therefore, to improve conformity rates, 

further studies considering insertion and deletion to the sequence should be undertaken.  
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