
情報処理学会研究報告
IPSJ SIG Technical Report

ビーコン配置問題と対偶問題に
対する効率的近似アルゴリズム

汪 杰 シュン†1 金 在 成†1 佐々木 方 太†1

趙 亮†1 永 持 仁†1

ビーコン配置問題とは，与えられたグラフと整数 L ≥ 0に対して，つぎの条件を満
たすような頂点集合の部分集合から最小のもの B を見つける問題である．ただし，任
意の枝 e に対して，ある B の頂点が存在し，高々L 本の枝を使って e の（少なくと
も一つの）端点に到達できる．この問題は，コンピュータネットワークにおけるリン
クの観測から始まって，特に L = 0 の場合は，頂点被覆問題（Vertex Cover）と等
価である．佐々木らは，Horton, Lopez-Ortiz (2003, L = 1相当)と Kumar, Kaur

(2006, L = 0 相当) の研究を任意の L に一般化させ，NP 困難性を示した上で厳密
解法と欲張り法に基づいた似アルゴリズムを提案している（2008）．
本稿は，問題の拡張としてロバスト被覆を考える．すなわち，任意の枝 eについて，

高々L 本の枝を使って e の端点まで到達できる B の頂点数が，ある与えられた非負
整数 re 以上でなければならない条件を付加する．我々は，この問題とそれの対偶問
題に対し，効率的な近似アルゴリズムを与える．大規模コンピュータネットワークを
用いて実験した結果，提案手法は従来法より実用的で精度も高いことがわかった．

Efficient Approximate Algorithms for the
Beacon Placement and its Dual Problem

Jiexun Wang,†1 Jaeseong Gim,†1 Masahiro Sasaki,†1

Liang Zhao†1 and Hiroshi Nagamochi†1

Given a graph and an integer L ≥ 0, the Beacon Placement Problem (BPP)
asks to find a minimum set B of nodes such that for all edges e, at least one of
the two endpoints of e can be reached from some node (called an L-beacon) in
B using at most L edges. In particular, it reduces to the Vertex Cover problem
if L = 0. BPP arises from link-monitoring in computer networks. Generaliz-
ing the works of Horton and Lopez-Ortiz (2003, L = 1) and Kumar and Kaur
(2006, L = 0), Sasaki, Zhao and Nagamochi (2008) formulated this problem
and showed its NP-hardness for all L. They also provided an exact and an

approximate algorithm.
In this paper, we first generalize the problem to a robust covering formulation

which, for all edges e, asks that there exist at least re L-beacons that can reach
at least one of the two endpoints of e, where re ∈ Z+ is a given robustness
requirement. Then we propose efficient approximate algorithms for this and
its dual problem. Studies on large-scale computer networks show the proposed
algorithms are quite efficient and accurate in practice.

1. Introduction

Link-monitoring is a fundamental issue in computer network management (see 1)，

2)，4)–7)). For that purpose, active beacon based monitoring is proposed, in which each

link e is assigned to some node b (multiple links can be assigned to the same node),

and b monitors the transfer delay of e by regularly sending probe packets to the two

endpoints of e. The transfer delay of e is estimated by the difference of the two round-

trip times of the probes. For accurate and secure monitoring, the assignment must be

appropriate. For this, generalizing the works of Horton and Lopez-Ortiz4), Kumar and

Kaur5), Sasaki, Zhao and Nagamochi8) proposed the concept of L-beacon, which can

monitor links reachable within L hops, i.e., at least one of the two endpoints of such

a link can be reached using L or less links. In particular, a 0-beacon monitors all its

incident links.

A natural question then asks, given a graph and an L ≥ 0, to find a smallest set of

L-beacons to monitor (i.e., cover) all links. This is called the Beacon Placement Prob-

lem (BPP). We note previous studies further assumed that, due to a feature of TCP/IP

networks, a bridge (i.e., a link whose removal disconnects the graph) could be assigned

to any beacon despite of the distance. In this paper, we simplify the formulation by

removing that assumption. This does not change the nature of the problem. Then it is

obvious that BPP reduces to Vertex Cover if L = 0. For any fixed L ≥ 1, it reduces to

Set Cover8). Therefore it is NP-hard for any fixed L ≥ 0.

Since BPP is also a special case of Set Cover, we can apply the well-known greedy

†1 京都大学大学院情報学研究科
Graduate School of Informatics, Kyoto University

1 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

情報処理学会研究報告
IPSJ SIG Technical Report

algorithm to get an O(log n)-approximation, where n is the number of nodes. Sasaki et

al8) gave an exact algorithm and an efficient implementation of the greedy algorithm

for BPP. However, they are not suitable for large-scale instances because of the long

running time (see Section 4). In this paper, we first generalize the problem to a robust

covering formulation that allows links be covered by at least re beacons for a given

robustness requirement re. Then we give improved heuristics for this and its dual prob-

lem. For BPP, the new algorithm has O(LR(m + n log R)) running time and requires

O(Rn + m) space, where m is the number of links (notice m ≥ n − 1 for a connected

graph) and R = maxe{re} is the maximum requirement. We note that in practice L

and R are small, e.g., L ≤ 10 and R ≤ 3 are enough for the whole Internet. Thus the

new algorithm is much more efficient than the previous ones. For the dual problem

of BPP, our algorithm has O(Lm) running time and requires O(m) space. We remark

that the constant factors are small too. Studies on large-scale instances show the new

algorithms are quite efficient and accurate in practice for computer networks.

2. Formulation and Algorithm Sieve for BPP

Suppose we are given a connected graph G = (V, E) with n = |V | nodes and m = |E|
edges (i.e., links). Let dist(u, v) denote the u, v-distance in G, i.e., the number of edges

on a shortest u, v-path. Let Bd(v) = {w ∈ V | dist(v, w) ≤ d} denote the set of nodes

that are reachable from a node v ∈ V using d or less edges (d is called the radius). From

the definition, we have B0(v) = {v} and Bd(v) =
∪

w∈Γ(v)
Bd−1(w), where Γ(v) denotes

the set of neighbors of v. We use Ed(v) = {e = (u, w) ∈ E | {u, w} ∩ Bd(v) 6= ∅} to

denote the set of edges that can be reached from v using d or less edges.

Problem1 (BPP) Given G = (V, E), an L ≥ 0 and robust requirements re ≥ 0

for all edges e, find a minimum set B ⊆ V such that for all edges e = (u, v),

|B ∩ (BL(u) ∪ BL(v))| ≥ re.

It can be written as the next Integer Programming.

(IP) minimize
∑
i∈V

xi

s.t
∑

i∈BL(u)∪BL(v)

xi ≥ re, ∀e = (u, v) ∈ E

xi ∈ {0, 1}, ∀i ∈ V.

(Notice BL(v) is not part of the input.) Thus previous studies treated the case of

re ≡ 1. Both of the exact and the approximate algorithms in 8) can be generalized to

this formulation straightforwardly. In this paper, we give a faster Algorithm Sieve.

Algorithm Sieve consists of two phases. In Phase 1, we try to find a feasible solu-

tion, or stops with the conclusion that no one exists. In constructing the solution, we

repeatedly check unchecked nodes v and let it be a beacon if there exists at least one

unsaturated edge e in EL(v) (i.e., e is covered by at most re − 1 beacons). In that case,

e is assigned to v. In Phase 2, we remove redundant beacons to get a minimal solution.

This is done by checking beacons in the reverse order they were added.

Checking if there exists an unsaturated edge in EL(v) can be done by a BFS (Breadth-

First Search) from v with depth L. Therefore we can implement Sieve in O(mn) time

(it is O(m) for L = 0 since each edge is searched at most twice). This running time,

however, can be Ω(mn) in general. To overcome this difficulty, we employ coverage

labels to avoid useless searching.

Leaving the correctness proof to later, first we describe a subroutine BFS(v, L) to

do BFS started from v with depth L, in which B holds the beacons found so far, ke

is the number of distinct beacons in B to which an edge e has been assigned. Bc(v)

holds the edges that will be assigned to v if v is added into B later. Ec(v) is the set of

unsaturated edges (i.e., ke < re) in Bc(v), and Er(v) = {e ∈ Ec(v) | ke = re − 1}. /*

· · · */ are comments.

Subroutine BFS(v, L)

initialize a queue Q and enqueue(v), dist(v, v) = 0, mark v as searched;

while Q is not empty {
u = dequeue();

if dist(v, u) > L { return; } /* i.e., we have done */

if L + 1 − dist(v, u) > `u,i∗ for i∗ = arg mini{`u,i} {

2 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

情報処理学会研究報告
IPSJ SIG Technical Report

`u,i∗ = L + 1 − dist(v, u);

for all e = (u, w) ∈ E {
Bc(v) = Bc(v) ∪ {e};
if ke < re { Ec(v) = Ec(v) ∪ {e}; }
if ke == re − 1 { Er(v) = Er(v) ∪ {e}; }
if w has not been searched {

enqueue(w), dist(v, w) = dist(v, u) + 1, mark w as searched;

}
}

}
}

The main procedure of Sieve is as follows, where V ′ holds the unchecked nodes, and E′

holds the unsaturated edges.

Algorithm Sieve

/* Phase 1: find a feasible solution */

B = ∅, V ′ = V , E′ = E, ke = 0 for all e ∈ E;

while E′ 6= ∅ {
if V ′ is empty { halt; } (there is no feasible solution);

choose a node v ∈ V ′ and let V ′ = V ′\{v}; /* see Remark */

BFS(v, L);

if Ec(v) 6= ∅ {
B = B ∪ {v}, ke = ke + 1 for all e ∈ Bc(v)

E′ = E′ − Er(v); /* because all edges in Er(v) are now saturated */

}
}
/* Phase 2: remove redundant beacons */

`v,i = 0 for all v ∈ V and i = 1, . . . , R; /* reset the coverage labels */

for all v ∈ B in the reverse order they were added {
B = B \ {v}, ke = ke − 1 for all e ∈ Bc(v);

for all e ∈ Bc(v) {
if (ke < M) {

BFS(v, L);

ke = ke + 1 for all e ∈ Bc(v), B = B ∪ {v};
break;

}
}

}
output B

Remark. The order for checking nodes is important. From our experience, the degree-

decreasing order works well for computer networks.

Theorem1 The above algorithm Sieve can be implemented to have O(LR(m +

n log R)) running time and O(Rn + m) space.

Proof. An edge is searched if and only if we can update some coverage label of one of

its two endpoints. Since there are R labels for each vertex, and the maximum value is

L + 1, we see each edge is searched at most 2R(L + 1) times. On the other hand, for

each v, we can use a heap for finding argmini{`u,i} and updating it. It is easy to see

that other operations can be done in linear time. Therefore the total running time is

O(LR(m + n log R)). The space complexity is obviously O(Rm). By remembering ke

at nodes, we can further reduce it to O(Rn + m).

Let us show the correctness of Algorithm Sieve.

Observation1 In Algorithm Sieve, it always holds that, for all v, there is no un-

saturated edge in Ed−1(v) for d = mini{`v,i}, where we let E−1(v) = ∅.
Proof. Omitted.

Observation2 In BFS(v, L), there is no need to search nodes u satisfying L + 1 −
dist(v, u) ≤ mini{`u,i}.
Proof. Since the BFS is of depth L, we have dist(v, u) ≤ L. By L + 1 − dist(v, u) ≤
mini{`u,i}, we see d = mini{`u,i} ≥ 1 and dist(v, u) ≥ L + 1 − d. Thus all nodes

w that could be found by continuing BFS(v, L) from u must satisfy dist(u, w) =

3 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

情報処理学会研究報告
IPSJ SIG Technical Report

dist(v, w) − dist(v, u) ≤ L − (L + 1 − d) = d − 1. In other words, w ∈ Bd−1(u). On

the other hand, by the previous observation, there is no unsaturated edge in Ed−1(v).

Hence there is no need to continue the BFS for u.

Therefore we can have the next theorem.

Theorem2 Algorithm Sieve can correctly find a feasible solution for BPP or deter-

mine that there is no feasible solution.

3. Dual Problem and Algorithm

Now let us consider a dual problem of BPP.

(DP) maximize
∑
e∈E

reye

s.t
∑

e∈EL(i)

ye ≤ 1, ∀i ∈ V

ye ∈ {0, 1}, ∀e ∈ E.

For L = 0 and re ≡ 1, this is nothing but the maximum matching problem, which can

be solved in O(
√

nm) time. In this paper, we give a fast heuristic. Again we can use

the coverage label. In fact, since the coverage constraint is 1 this time, for each node

v, only one label is enough.

Subroutine DualBFS(v, L)

initialize a queue Q and enqueue(v), dist(v, v) = 0, mark v as searched;

while Q is not empty {
u = dequeue();

if dist(v, u) > L { return; } /* i.e., we have done */

if L + 1 − dist(v, u) > `u {
`u = L + 1 − dist(v, u);

for all e = (u, w) ∈ E {
if w has not been searched {

enqueue(w), dist(v, w) = dist(v, u) + 1, mark w as searched;

}
}

}
}

Algorithm DualSieve

M = ∅, `v = 0 for all v ∈ V ;

for all e = (u, v) ∈ E {
if `u ≤ 1 and `v ≤ 1 {

DualBFS(u, 2L + 1), DualBFS(v, 2L + 1);

M = M ∪ {e};
}

}

In a similar way as Sieve for BPP, we can show the next theorem.

Theorem3 In O(Lm) time and O(m) space, Algorithm DualSieve can correctly

find a feasible solution for (DP) or determine that there is no feasible solution.

4. Experimental results

To evaluate the proposed algorithm, we studied a number of networks. All were tested

on a PC with an Intel Xeon CPU X5260 (3.33GHz) and 16G RAM.

First we compared known algorithms using networks generated by GTgraph (http:

//www.cc.gatech.edu/~kamesh/GTgraph/). Based on the R-MAT model3), they are

supposed to be scale-free and small-world, which is considered good model for com-

puter networks. The results are shown in Tables 1 and 2. For easy understanding, we

also plot the data of Table 2 in a figure, where the data of LowerBound (Sasaki et al8))

are omitted. We note that 10000-node is the limit for the exact algorithm in practice

and our heuristics are fast and quite accurate.

For instances with more than 10,000 nodes, the CPLEX-based exact algorithm (with

exponential running time) and the greedy algorithm (with O(mn) running time) do not

work (in the time limit of 3000 seconds). Therefore in the following we only show the

result of Sieve and DualSieve. The next instance is also generated by GTgraph with

4 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 頂点数 1,000，枝数 1,443 の GTgraph ネットワークに対する実験結果（re ≡ 1）.

Table 1 Results for 1,000-node, 1,443-edge GTgraph network with re ≡ 1.

Exact8) Greedy8) LowerBound8) Sieve DualSieve

L |B| time (s) |B| time (s) |B| time (s) |B| time (s) |B| time (s)

0 460 0.01 474 0.00 458 0.00 472 0.00 437 0.00

1 163 0.09 183 0.01 162 0.02 178 0.00 152 0.00

2 70 0.15 78 0.00 70 0.04 80 0.00 64 0.00

3 38 0.14 44 0.02 38 0.05 43 0.00 37 0.00

4 21 0.25 26 0.02 21 0.10 24 0.00 20 0.00

5 13 0.44 15 0.06 12 0.15 15 0.00 10 0.00

6 8 0.47 12 0.07 8 0.20 11 0.00 8 0.00

7 6 0.44 7 0.09 6 0.22 8 0.00 6 0.00

8 4 0.41 6 0.11 4 0.25 5 0.00 4 0.00

9 4 0.42 5 0.13 4 0.28 4 0.00 4 0.00

表 2 頂点数 10,000，枝数 15,087 の GTgraph ネットワークに対する実験結果（re ≡ 1）.

Table 2 Results for 10,000-node, 15,087-edge GTgraph network with re ≡ 1.

Exact8) Greedy8) LowerBound8) Sieve DualSieve

L |B| time (s) |B| time (s) |B| time (s) |B| time(s) |B| time(s)

0 4558 0.10 4745 0.01 4557 0.04 4701 0.00 4343 0.00

1 1534 75.2 1752 0.02 1531 0.78 1729 0.01 1396 0.00

2 667 177.26 824 0.07 662 3.09 799 0.00 589 0.00

3 307 1018.34 372 0.26 303 7.00 373 0.01 270 0.00

4 144 792.21 170 0.48 142 12.48 176 0.01 126 0.00

5 71 185.47 86 1.30 70 17.44 88 0.01 64 0.00

6 36 137.56 48 2.95 35 19.10 44 0.01 28 0.00

7 20 65.88 28 4.70 20 23.78 25 0.01 17 0.00

8 13 65.11 17 5.18 13 27.55 16 0.00 12 0.00

9 9 67.94 12 5.52 9 30.06 12 0.00 9 0.01

10,000,000 nodes. From the table, we see that the gap of Sieve and DualSieve for this

instance is less than 2, which means the solution of Sieve (DualSieve) is within 2 times

(at least half) of the optimal value.

Finally we tried a real network. The ITDK data is an Internet router network pub-

lished by CAIDA (http://www.caida.org/), which has 192244 nodes and 607610 links.

The results are shown in Table 4, in which we also show the results for re ≡ 2 and

re ≡ 3. Notice that the result for (DP) with re ≡ R is simply R times of the result with

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6 7 8 9

#b
ea

co
ns

L

Exact
Greedy

Sieve
DualSieve

図 1 頂点数 10,000，枝数 15,087 の GTgraph ネットワークに対する実験結果（re ≡ 1）.

Fig. 1 Results for 10,000-node, 15087-edge GTgraph network with re ≡ 1.

re ≡ 1 (see the formulation). Again, we can see that both of Sieve and DualSieve are

quite accurate.

5. Conclusion

In this paper, we formulated a robust version of the beacon placement problem (BPP)

and showed efficient algorithms for this and its dual problem. Experimental results show

they are fast (linear order in practice) and are quite accurate for large-scale computer

networks.

Acknowledgment

This work is partially supported by the Grant-in-Aid for Scientific Research (no.

5 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

情報処理学会研究報告
IPSJ SIG Technical Report

表 3 頂点数 10,000,000，枝数 17,421,301 の GTgraph ネットワークに対する実験結果（re ≡ 1）.

Table 3 Results for 10,000,000-node, 17,421,301-edge GTgraph network with re ≡ 1.

Sieve DualSieve

L |B| time (s) |B| time (s)

0 4593511 10.92 4244140 11.26

1 1529343 22.97 1230435 13.09

2 598350 33.56 454091 15.69

3 241308 45.01 174111 18.99

4 96997 57.80 66013 22.82

5 38368 71.50 24756 27.21

6 15005 85.11 9102 31.87

7 5890 95.70 3241 36.52

8 2269 103.32 1139 40.10

9 861 104.59 432 41.05

表 4 ITDK データに対する実験結果
Table 4 Results for the ITDK data

Greedy Sieve DualSieve

L re |B| time (s) |B| time (s) |B| time (s)

1 75713 0.33 77978 0.19 69161 0.13

0 2 n/a n/a 190914 0.25 138322 0.13

3 n/a n/a no solution 0.00 207483 0.13

1 18120 2.62 17918 0.32 15415 0.14

1 2 n/a n/a 38971 0.50 30830 0.14

3 n/a n/a 63737 0.67 46245 0.14

1 6569 33.30 6370 0.44 5552 0.17

2 2 n/a n/a 13480 0.73 11104 0.17

3 n/a n/a 21401 1.01 16656 0.17

1 2671 389.13 2596 0.56 2216 0.21

3 2 n/a n/a 5386 0.97 4432 0.21

3 n/a n/a 8394 1.36 6648 0.21

1 1128 2625.00 1112 0.68 932 0.26

4 2 n/a n/a 2290 1.22 1864 0.26

3 n/a n/a 3540 1.73 2796 0.26

20700010).

参 考 文 献

1) Bejerano Y. and Rastogi. R.: Robust Monitoring of Link Delays and Faults in IP

Networks, IEEE/ACM Trans. Networking, Vol.14, No.5, pp.1092–1103 (2006).

2) Breitbart Y., Dragan F. and Gobjuka H.: Effective Network Monitoring, in Proc.

ICCCN’04 (2004).

3) Chakrabarti. D., Zhan Y. and Faloutsos C.: R-MAT: A Recursive Model for Graph

Mining, in Proc.SIAM Intl.Conf.on Data Mining (2004).

4) Horton J.D. and Lopez-Ortiz A.: On the number of distributed measurement

points for network tomography, in Proc.ACM ICM’03, pp.204–209 (2003).

5) Kumar R. and Kaur J.: Practical Beacon Placement for Link Monitoring Using

Network Tomography, in Proc.IEEE JSAC - SAMPLING 2006 (2006).

6) Moulierac J. and Molnar M.: Active Monitoring of Link Delays in Case of Asym-

metric Routes, in Proc.IEEE ICNICONSMCL’06, pp.1–6 (2006).

7) Suha K., Guob Y., Kurosea J. and Towsley D.: Locating network monitors: Com-

plexity, heuristics, and coverage, Computer Communications 29, pp. 1564–1577

(2006).

8) Sasaki M., Zhao L. and Nagamochi H.: Security-aware beacon based network mon-

itoring, in Proc. IEEE ICCS 2008, pp.527–531 (2008).

6 c© 2009 Information Processing Society of Japan

Vol.2009-AL-125 No.7
2009/7/21

