
IPSJ SIG Technical Report

Consideration of Lightweight Chameleon Hash

Function (2)

Kazumasa Omote†1

Chameleon hash functions are trapdoor one-way hash functions, which pre-
vent everyone except the holder of the trapdoor information from computing the
collisions for a randomly given input. A lot of chameleon hash functions have
been proposed so far. However, many existing chameleon hash functions have
two drawbacks: (1) any chameleon hash function requires modulo operations
with a large computational complexity; (2) anyone can calculate new collisions
of most chameleon hash functions if a collision has already been generated once.
In this paper, we construct a novel chameleon hash function using only hash
function and XOR operation to solve the two problems listed above. Moreover,
we propose an efficient k-times on-line/off-line signature scheme based on the
proposed chameleon hash function. The proposed chameleon hash function is
an improvement of SCIS2009.

1. Introduction

Chameleon hash functions are trapdoor one-way hash functions, which prevent
everyone except the holder of the trapdoor information from computing the col-
lisions for a randomly given input. A lot of chameleon hash functions have been
proposed so far. Chameleon hash functions were first introduced by Krawczyk
and Rabin1), who proposed a chameleon hash function based on the discrete
log assumption. In Crypto 2001, Shamir and Tauman2) used a chameleon hash
function to develop a new paradigm, named “hash-sign-switch”, for designing an
efficient on-line/off-line signature schemes. These chameleon hash functions were
based on the discrete log assumption and the factoring assumption. Recently,
some pairing-based chameleon hash functions3)–5), a double-trapdoor chameleon
hash function6), and some ID-based chameleon hash functions3),5),7),8) have been
proposed . Especially, two chameleon hash functions7),8) are able to restrict the

†1 Japan Advanced Institute of Science and Technology (JAIST)

collision calculation of chameleon hash function using identities.
Many existent chameleon hash functions, however, have two drawbacks: (1)

any chameleon hash function requires modulo operations with a large compu-
tational complexity; (2) anyone can calculate new collisions of most chameleon
hash functions if a collision has already been generated once. As for (1), to the
best of our knowledge, all chameleon hash functions used modulo operations. We
describe about (2) in the following paragraph.

Ateniese and de Medeiros9) first pointed out the key exposure problem of
chameleon hashing: the private trapdoor key is exposed if a collision has already
been generated once in some chameleon hash functions including the original one.
As a result, anyone can also calculate new collisions of chameleon hash function
using the exposed trapdoor key. Some chameleon hash functions5),6) have another
problem: anyone can calculate new collisions if a collision has already been gen-
erated once, although the trapdoor key is not exposed. This feature is useful for
a chameleon signature, but it can be a problem in “hash-sign-switch” paradigm.
On the other hand, some schemes2),7),8) does not have the second problem listed
above. One chameleon hash function2) is based on the factoring assumption.
Some chameleon hash functions7),8) can restrict the collision calculation by iden-
tities.

In this paper, we construct a novel chameleon hash function using only hash
function and XOR operation to solve the two problems listed above. To the
best of our knowledge, all chameleon hash functions used modulo operations.
Moreover, we propose an efficient k-times on-line/off-line signature scheme based
on the proposed chameleon hash function.

The rest of the paper is organized as follows. Some definitions are provided in
Section 2. We propose an efficient chameleon hash function in Section 3, discuss
the security and efficiency analysis of the proposed scheme in Section 4, and
describe an efficient k-times on-line/off-line signature scheme in Section 5. We
finally conclude this paper in Section 6.

2. Definition

First, we give some definitions used in our scheme.
Definition 1 (Cryptographic secure hash function) A function H is a

1 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

IPSJ SIG Technical Report

cryptographic secure hash function if it satisfies the following properties10). We
define that λ is a security parameter of H.
(1) Function H maps bit strings, either of an arbitrary length or a predeter-

mined length, to strings of a fixed length λ (H : {0, 1}∗ 7→ {0, 1}λ).
(2) One-wayness: Given x, it is easy to compute H(x). Conversely, given H(x),

it is computationally infeasible to compute x.
(3) Collision resistance: For any given x, it is computationally infeasible to

find y (̸= x) such that H(x) = H(y)
Definition 2 (One-way hash chain) Select a cryptographic secure hash

function H defined by Definition 1 with security parameter λ, H : {0, 1}∗ 7→
{0, 1}λ. Pick a seed c0 randomly and apply H recursively k times to the initial
seed c0 to generate a one-way hash chain, c0, c1, . . ., ck (ci = H(ci−1), 1 ≤ i ≤ k).
Note that the one-way hash chain is also denoted as ci = Hi−1(c0) (1 ≤ i ≤ k).
One-way hash chain is a widely-used cryptographic primitive. One of the first
uses of one-way chain was for one-time passwords by Lamport11).

We introduce the basic notion of chameleon hash family by Shamir and Tau-
man2). Every trapdoor hash function is associated with a pair of public key
and private key, referred to as the hash key HK and the trapdoor key TK,
respectively.

Definition 3 (Chameleon hash family) A chameleon hash family consists
of a pair (I,H):
• I is a probabilistic polynomial-time key generation algorithm that on input

1λ, outputs a pair (HK,TK) such that the sizes of HK,TK are polynomially
related to λ.

• H is a family of randomized hash functions. Every hash function in H is
associated with a hash key HK, and is applied to a message from a space
M and a random element from a finite space R. The output of the hash
function HHK does not depend on TK.

A chameleon hash family (I,H) has the following properties:
(1) Efficiency: Given a hash key HK and a pair (m, r) ∈M×R, HHK(m, r)

is computable in polynomial time.
(2) Collision resistance: There is no probabilistic polynomial time algorithm A

that on input HK outputs, with a probability which is not negligible, two

pairs (m1, r1), (m2, r2) ∈ M×R that satisfy m1 ̸= m2 and HHK(m1, r1)
= HHK(m2, r2) (the probability is over HK, where (HK, TK) ← I(1λ),
and over the random coin tosses of algorithm A).

(3) Trapdoor collisions: There exists a probabilistic polynomial time algorithm
that given a pair (HK, TK) ← I(1λ), a pair (m1, r1) ∈ M × R, and an
additional message m2 ∈M, outputs a value r2 ∈ R such that:
• HHK(m1, r1) = HHK(m2, r2).
• If r1 is uniformly distributed in R then the distribution of r2 is com-

putationally indistinguishable from uniform in R.

3. The proposed chameleon hash function

Many existent chameleon hash functions have two drawbacks: (1) any
chameleon hash function requires modulo operations with a large computational
complexity; (2) anyone can calculate new collisions of chameleon hash function
if a collision has already been generated once. These two problems are addressed
by the proposed chameleon hash function described in this section. To the best
of our knowledge, we firstly propose an efficient chameleon hash function without
modulo operations.

3.1 System parameters generation
Let H1 : {0, 1}∗ → {0, 1}λ be a hash function which satisfies only one-wayness

of a cryptographic secure hash function, and λ be a security parameter. At first,
we pick a seed c0 ∈R {0, 1}λ randomly and calculate a hash chain {c0, c1, . . . , ck}
(ci = Hi

1(c0)) (1 ≤ i ≤ k). Then, we define a public hash key HKp = (ck, cp), a
private trapdoor key TK = c0 and a hash chain space C = {c0, . . . , ck}.

A part of the hash key cp in the proposed scheme is updated every time a
collision is generated. If cp is not updated, we can easily calculate a new collision.
The cp denotes the revealed latest ci. We use cp from p ← k to p ← 0 one by
one. Note that only a user who knows TK can update cp in HKp.

3.2 A chameleon hash function
Given the hash key HKp and a pair (m, r) ∈M ×R, the proposed chameleon

hash function HHKp : {0, 1}λ × {0, 1}λ → {0, 1}λ is defined as follows:
HHKp

(m, r) = m⊕ r ⊕ cp. (1)
Note that there exists v such that ck = Hv

1 (cp). Given the hash key HKp, a pair

2 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

IPSJ SIG Technical Report

(m1, r1) and an additional message m2, we want to find a collision r2 such that
HHKp(m1, r1) = HHKp−1(m2, r2). It is necessary to update the hash key from
HHKp to HHKp−1 to obtain a new hash collision r2.

3.3 Example
We show an example of the calculation of the proposed chameleon hash value

and the collision. Let U be a only user who knows the trapdoor key TK, C =
{c0, c1, c2, c3, c4, c5} (k = 5) be a hash chain space, and HK3 = (c5, c3) be a
public hash key. The values of c5, c4, c3 are revealed because c3 is included in
HK3. We pick a seed r ∈R {0, 1}λ, and calculate the chameleon hash value
HHK3(m, r) = m ⊕ r ⊕ c3 of a message m. Given an additional message m′,
U can find a collision r′ as follows. At first, U calculates c2 = H2

1 (c0) using
TK = c0, and updates the hash key from HHK3 = (c5, c3) to HHK2 = (c5, c2).
Then U calculates a collision r′ = m⊕m′ ⊕ r⊕ c3 ⊕ c2 such that HHK3(m, r) =
HHK2(m

′, r′).
3.4 New property
A user who knows TK can easily compute new collisions owing to a feature

of trapdoor collision. Moreover, most chameleon hash functions have a problem
that anyone can calculate new collisions even without knowing know TK, if a
collision has already been generated once. We restrict the collision calculation
of the proposed chameleon hash function: anyone can calculate only k-times
collisions. In this paper, we define k-times trapdoor collisions as a new property
of chameleon hash function.

Definition 4 (k-times trapdoor collisions)
A probabilistic polynomial time algorithm outputs r2 ∈ R only k times in Defi-
nition 3.

4. Analysis

In this section, we discuss security and efficiency about the proposed chameleon
hash function. Refer to the previous scheme12) for the comparison of features of
chameleon hash functions.

4.1 Security
We show that the chameleon hash function HHKp in Equation (1) satisfies three

kinds of properties: collision resistance, trapdoor collisions and k-times trapdoor

collisions. We can give proofs of Theorem 1 and Theorem 2 in a similar fashion
to the proofs for existing schemes2),6).

Theorem 1 (Collision resistance) The proposed chameleon hash function
satisfies collision resistance if the hash function H1 satisfies only one-wayness of
a cryptographic secure hash function.
Proof. Assume to the contrary, there exists a polynomial time algorithm A1

that on input HKp outputs, with a probability which is not negligible, two
pairs (m1, r1), (m2, r2) ∈ M × R that satisfy m1 ̸= m2 and HHK(m1, r1)
= HHK(m2, r2). Then, we can use A1 to break the one-wayness of H1 as follows:
For a randomly given instance a, define cp = a = H1(b) (The value of b is not
disclosed). A1 can output two pairs (m1, r1), (m2, r2) that satisfy m1 ̸= m2

and HHKp
(m1, r1) = HHKp−1(m2, r2) when the current hash key is HKp. We

can compute b = cp−1 = a ⊕m1 ⊕m2 ⊕ r1 ⊕ r2. Therefore, we can break the
one-wayness of H1. On the other hand, if the hash function H1 does not satisfy
collision resistance, we can compute a′ such that H1(a) = H1(a′). However, we
cannot eventually compute cp−1 from a and a′ because of one-wayness, that is
to say, we cannot update HKp. Hence the proposed chameleon hash function
satisfies collision resistance even if H1 does not satisfy collision resistance.

Theorem 2 (Trapdoor collisions) The proposed chameleon hash function
satisfies trapdoor collisions.
Proof. Assume that we are given the hash and trapdoor key pair (HKp, TK),
a pair (m1, r1) ∈ {0, 1}λ × {0, 1}λ, and an additional message m2 ∈ {0, 1}λ,
we want to find r2 ∈ {0, 1}λ such that HHKp(m1, r1) = HHKp−1(m2, r2). We
compute cp−1 = Hp−1

1 (TK) to update the hash key from HHKp to HHKp−1 . A
collision r2 can be computed in polynomial time as follows: r2 = r1⊕m1⊕m2⊕
cp ⊕ cp−1. Also, if r1 is uniformly distributed in R then the distribution of r2 is
computationally indistinguishable from uniform in R.

Theorem 3 (k-times trapdoor collisions) The proposed chameleon hash
function satisfies k-times trapdoor collisions if the hash function H1 satisfies only
one-wayness of a cryptographic secure hash function.
Proof. Assume to the contrary, there exists a polynomial time algorithm A2 that
on input (HKp, TK) (an initial p is set to k), a pair (m0, r0) ∈ {0, 1}λ×{0, 1}λ,
and (k+1) additional messages {m1, . . . , mk+1} outputs, with a probability which

3 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

IPSJ SIG Technical Report

Table 1 Comparison of efficiency

Comp. cost of HHK Comp. cost of a collision |HHK | Assumption
1), 2) exp. mlt. + inv. |G| DLP
2) exp. 0.1mlt. |G| Factoring
3) 2e + mlt. + h 2mlt. + 2h |G| Pairing
4) 2e + exp. + mlt. 3exp. + mlt. |G| Pairing
5) 2e + exp. + h 4exp. + 2mlt. + 2h |G| Pairing
6) exp. + h 2mlt. + inv + 2h |G| ECDLP
7) exp. + h exp. + mlt. |G| Factoring
8) exp. + 2mlt. 2exp. + 2mlt. + inv |G| DLP

Ours (Negligible)
(k−1)

2
h |H| Hash

is not negligible, ri+1 (i = 0, . . . , k) that satisfy m0 ̸= mi+1 and HHKk
(m0, r0)

= HHKk−i−1(mi+1, ri+1) (i = 0, . . . , k). Then, we can use A2 to break the one-
wayness of H1 as follows: For a randomly given instance a, define TK = c0 =
a = H1(b) and HKp = (Hk

1 (a),Hp
1 (a)). Note that the value of b is not revealed.

A2 can compute (r1, . . . , rk) by Theorem 2. Moreover, A2 outputs rk+1 that
satisfy m0 ̸= mk+1 and HHKk

(m0, r0) = HHK−1 (mk+1, rk+1) such that HK−1 =
(ck, c−1) and c0 = H1(c−1). A2 is allowed to output c−1 because we do not know
the value of TK = c0. We can compute b = c−1 = ck ⊕m0 ⊕mk+1 ⊕ r0 ⊕ rk+1.
Therefore, we can break the one-wayness of H1. As for collision resistance, H1

need not satisfy collision resistance to satisfy k-times trapdoor collisions in a
similar fashion to Theorem 1.

4.2 Efficiency
Given HKp and (m, r), the proposed chameleon hash value HHKp(m, r) is

computable using hash function H1 and XOR operation in polynomial time.
Hence the proposed chameleon hash function satisfies efficiency in Definition 3.

We compare the efficiency of our scheme with that of related schemes (see Table
1). We denote by mlt. “modulo multiplication”, by exp. “modulo exponential”,
by inv. “modulo inverse”, by e the “bilinear pairing”, and by h the hash oper-
ation. Also, we denote by |G| the size of a group and by |H| the output size of
hash function.

In Table 1, the proposed chameleon hash function is much superior to the
others in the computation cost of HHK and the size of HHK (|HHK |). The
computation cost of HHK in our scheme is negligible, since the computation of
HHK requires only XOR operation. When the current hash key is (ck, ci) in our

scheme, we have to compute ci−1 to generate a collision. So, the computation
cost of a collision requires (i − 1) times iteratively hashing c0 (1 ≤ i ≤ k),
that is, on average (k − 1)/2 times hash operations. Hence the computation
cost of a collision depends on the length of the hash chain. It can be, however,
said that this influence is not necessarily large since it is more efficient than
modulo operations such as exp. or inv. if the length of the hash chain is less than
about 100013). Therefore, the proposed chameleon hash function is comparatively
efficient.

5. The proposed k-times on-line/off-line signature

In this section, we apply the “hash-sign-switch” paradigm2) to propose an ef-
ficient on-line/off-line signature scheme based on the proposed chameleon hash
function. On the other hand, the concept of k-times signature is introduced by
Hwang14), in which it is effective when the manager wants to restrict the number
of signature generation to k times for each user.

The proposed chameleon hash function satisfies a property of k-times trap-
door collisions. The proposed on-line/off-line signature scheme innately has a
feature of restricting the number of signature generation because it is based
on the proposed chameleon hash function. So, our scheme is the k-times on-
line/off-line signature scheme. We now introduce our method for combining the
proposed trapdoor hash family (I,H) and any signature scheme (G,S,V) to get
an on-line/off-line signature scheme. For a security parameter λ, we construct
an on-line/off-line k-times signature scheme (G′,S ′,V ′).

5.1 An on-line/off-line signature scheme
The update procedure of the hash key in the proposed chameleon hash func-

tion is different from that in the existing scheme. We will adapt the proposed
chameleon hash function to an existing generic construction2).
• Key Generation Algorithm (G′):

(1) Generate a pair (SK, V K) of signing key and verification key, by ap-
plying G to the input 1λ (where G is the key generation algorithm of
the original scheme).

(2) Generate a pair (HKp, TK) of hash key and trapdoor key, by applying
I to the input 1λ (where I is the key generation algorithm of the

4 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

IPSJ SIG Technical Report

trapdoor hash family).
The signing key is (SK, HKp, TK) and the verification key is (V K, HKp).

• The Signing Algorithm (S ′): Given a signing key (SK, HKp, TK), the
signing algorithm operates as follows.
(1) Off-line phase:

– Choose at random (m′, r′) ∈R M×R, and compute HHKp(m′, r′)
using HKp.

– Run the signing algorithm S with the signing key SK to sign the
message HHKp(m′, r′). Denote the outputs SSK(HHKp(m′, r′)) by
Σ.

– Store the pair (m′, r′), the hash value HHKp(m′, r′), and the sig-
nature Σ. (The hash value HHKp

(m′, r′) is stored only to avoid its
recomputation in the on-line phase).

(2) On-line phase: Given a message m, the on-line phase proceeds as fol-
lows.
– Retrieve from memory the pair (m′, r′), the hash value

HHKp(m′, r′), and the signature Σ.
– Find r ∈ R such that HHKp−1(m, r) = HHKp(m′, r′)
– Send (r,Σ) as a signature of m.

• The Verification Algorithm: (V ′): To verify that the pair (r,Σ) is indeed a
signature of the message m, with respect to the verification key (V K, HKp),
compute HHKp−1(m, r) and use the verification algorithm V (of the original
signature scheme) to check that Σ is indeed a signature fo the hash value
HHKp−1(m, r) with the verification key V K.

We now analyze the security of the resultant on-line/off-line signature scheme.
5.2 Security
The most general known security notion of a signature scheme is security

against existential forgery on adaptively chosen message attacks. The scheme2)

defined the security notion about on-line/off-line signature based on chameleon
hash function.

We can give a proof Theorem 4 in a similar way to the proof in the previous
scheme2) except for the update procedure of the hash key, because the update
procedure of the proposed chameleon hash function is different from that in the

previous scheme2).
Theorem 4 Let (G, S, V) be a signature scheme and let (I, H) be a trapdoor

hash family. Let (G′, S ′, V ′) be the resultant on-line/off-line signature scheme.
Suppose that (G′, S ′, V ′) is existentially forgeable by a Q-adaptive chosen message
attack in time T with success probability ϵ. Then one of the following cases holds:
(1) There exists a probabilistic algorithm that, given a hash key HKp, finds

collisions of HHKp in time T + TG + Q(TH + TS) with success probability
≥ ϵ

2 (where TG is the running time of G, TH is the running time required
to compute functions in H, and TS is the running time of S).

(2) The original signature scheme (G, S, V) is existentially forgeable by a
generic Q-chosen message attack in time T + Q(TH + TCOL) + TI with
success probability ≥ ϵ

2 (where TCOL is the time required to find collisions
of the trapdoor hash function given the hash key and the trapdoor key, and
TI is the running time of algorithm I).

Proof. Suppose that F ′ is a probabilistic algorithm that, given a verification
key (HK, V K), forges a signature with respect to the signature scheme (G′, S ′,
V ′) by a Q-chosen message attack in time T with success probability ϵ. Let
{mi}Qi=1 denote the Q queries that the forger F ′ sends to the signing oracle, and
let {(ri, Σi)}Qi=1 denote the corresponding signatures produced by the oracle. Let
m, (r,Σ) denote the output of F ′. We can give a proof of case 1 in a similar
fashion to that in the existing scheme2). We only give the difference of proof in
case 2 described below. If case 2 holds, we define a probabilistic algorithm F
that forges a signature with respect to (G,S,V) by a generic Q-chosen message
attack like that in the scheme2). The main difference between the previous proof
and this proof is the hash update procedure. This hash update is used when F
simulates the forger F ′ on input (V K,HK). Hence we have only to show that
F can simulate the forger F ′ on input (V K, HK). When F ′ queries the oracle
with a message mi, F finds ri ∈ R such that HHKp−1(mi, ri) = HHKp(m′

i, r
′
i)

and proceeds as if the signature obtained by the signing oracles S′ was (ri, Σi).
We underline that F can calculate the next hash key HKp−1 from the current
hash key HHKp since F knows the trapdoor key TK. The rest of the proof can
be done in a similar fashion to that in scheme2).

5 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

IPSJ SIG Technical Report

5.3 Efficiency
The proposed chameleon hash function is much more efficient than existing

schemes because there are no modulo operations. Our on-line/off-line signature
scheme become consequently more efficient. The on-line phase becomes especially
much more efficient.

6. Conclusion

In this paper, we firstly introduce a lightweight chameleon hash function using
only hash function and XOR operations, which has a property of k-times trap-
door collisions to restrict the calculation frequency of the collisions to k times.
Compared with other chameleon hash functions, the advantages of our scheme
are the lower computation cost of hashing, and the small output size of chameleon
hash function. We also apply the “hash-sign-switch” paradigm to propose a much
more efficient generic on-line/off-line signature scheme based on our chameleon
hash function.

References

1) H.Krawczyk and T.Rabin, “Chameleon signatures,” Proc. 7th Network and Dis-
tributed System Security – NDSS’00, pp.143–154, 2000.

2) A.Shamir and Y.Tauman, “Improved online/offline signature schemes,” Advances
in Cryptology – CRYPTO’01, LNCS 2139, pp.355–367, Springer-Verlag, 2001.

3) F.Zhang, R.S.Naini, W.Susilo, “ID-Based Chameleon Hashes from Bilinear Pair-
ings,” Cryptology ePrint Archive: Report 2003/208, 2004 (revised).

4) C.Ma, J.Ao, J.Li, “Chameleon-Based Deniable Authenticated Key Agreement
Protocol Secure Against Forgery,” Proc. 2nd Online Communities and Social Com-
puting – OCSC’07, LNCS 4564, pp.124–133, Springer-Verlag, 2007.

5) Q.Ren, Y.Mu, W.Susilo, “Mitigating phishing with ID-based online/offline au-
thentication,” Proc. 6th Australasian conference on Information security – AISC’08,
pp.59–64, ACM, 2008.

6) X.Chen, F.Zhang, W.Susilo and Y.Mu, “Efficient generic on-line/off-line signa-
tures without key exposure,” Proc. Applied Cryptography and Network Security –
ACNS’07, LNCS 4521, pp.18–30, Springer-Verlag, 2007.

7) G. Ateniese, B. Medeiros, “Identity-Based Chameleon Hash and Applications,”
Proc. 8th Financial Cryptography – FC’04, LNCS 3110, pp.164–180, Springer-
Verlag, 2004.

8) X.Chen, F.Zhang and K.Kim, “Chameleon hashing without key exposure,” Proc.
7th Information Security Conference – ISC’04, LNCS 3225, pp.87–98, Springer-

Verlag, 2004.
9) G.Ateniese, “On the Key Exposure Problem in Chameleon Hashes,” Proc. 4th

Security in Communication Networks – SCN’04, LNCS 3352, pp.165–179, Springer-
Verlag, 2005.

10) NIST, “Secure hash standard,” National Institute for Standards and Technology,
Gaithersburg, MD, USA, 1995.

11) L.Lamport, “Password authentication with insecure communication,” Communi-
cations of the ACM, vol.24, no.11, pp.770–772, November 1981.

12) K.Omote, “Consideration of Lightweight Chameleon Hash Function,” SCIS’09,
2009.

13) W.Dai, “Speed Comparison of Popular Crypto Algorithms,” http://www.cryptopp
.com/benchmarks.html, 2007.

14) J.Y.Hwang, H.J.Kim, D.H.Lee and J.Lim, “Digital signature schemes with restric-
tion on signing capability,” Proc. Information Security and Privacy – ACISP’03,
LNCS 2727, pp.324–335, Springer-Verlag, 2003.

6 c⃝ 2009 Information Processing Society of Japan

Vol.2009-SE-164 No.7
Vol.2009-EMB-13 No.7

Vol.2009-CSEC-45 No.7
2009/5/28

