
情報処理学会研究報告
IPSJ SIG Technical Report

リアルタイムシステムの固定優先度スケジューリング
に対する優先度周期探索法

橋 本 英 樹†1 柳 浦 睦 憲†2

リアルタイムシステムでは, 複数のタスクが繰り返し実行されており, 任意の時刻に
発生する入力は対応する一連のタスク (パス)により処理され出力される. 入出力間の
応答時間には各パスごとに要求される上限がある. 本研究ではそのようなリアルタイ
ムシステムに対して, 応答時間の要求違反度及びシステム負荷の最小化を目的とした,

タスクの固定優先度スケジューリングを設計する. 提案するアルゴリズムでは, 各タ
スクに対する優先度を局所探索法により探索し, 各タスクの周期は優先度から算出す
る. この各タスクの優先度から周期を求める部分問題に対し, 線形計画法に基づく解
法を提案する. 最後に, 企業から提供された問題例に対する実験結果を報告する.

An LP-Based Algorithm for Scheduling
Preemptive and/or Non-preemptive Real-time Tasks

Hideki Hashimoto
†1

and Mutsunori Yagiura
†2

We consider a real-time system that requires the time stimuli to the system
are processed through sequences of tasks to be within speci�ed upper bounds,
where the set of tasks can be the mixture of preemptive and non-preemptive
tasks, and we propose an algorithm to design a static priority scheduling for the
system. In the algorithm, local search is used to determine priorities of tasks,
and whenever the priorities are �xed, the periods of tasks are determined. This
subproblem can be described as a mathematical programming formulation and
is solved via linear programming techniques. Finally, we report computational
results for sample instances from a company.

†1 中央大学
Chuo University

†2 名古屋大学
Nagoya University

1. Introduction

A real-time system can be described as a computing system designed for controlling

some technical facilities that have constraints on the time required from an event to

the system response2),4). Such systems are incorporated in various devices or machines

such as mobile phones, information appliances and automobiles, and their importance

becomes increasingly large.

In the literature of scheduling for a real-time system, a system is usually categorized

into preemptive and non-preemptive systems and, for scheduling methods, static prior-

ity and dynamic priority scheduling are often adopted6). In a preemptive system, the

processing of a task can be interrupted by other tasks, while interruption is not allowed

in a non-preemptive system. In a static priority scheduling, each task is assigned a

static priority and a period. A task is invoked once in every period and becomes ready

to execute. Then a task with the highest priority among ready tasks is chosen to be

executed. In the rate monotonic scheduling, priorities are assigned in the ascending

order of periods8). On the other hand, in a dynamic priority scheduling, priorities of

tasks are assigned dynamically during the process: For example, a task with the earliest

deadline among ready tasks has the highest priority in the earliest deadline scheduling.

In real situations, a task denotes a function of the system and a stimulus to the sys-

tem is processed by a sequence of tasks, which we call a path. A response time of a path

is de�ned as the maximum time required to process the stimulus through the path. It

is often required that the response time of each path should be bounded by some value

determined by the requirement of applications. To our knowledge, however, none of the

existing research papers explicitly treated such constraints on paths.

In this paper, we propose an algorithm to design a static priority scheduling for a real-

time system having the path requirements, where the set of tasks can be the mixture of

preemptive and non-preemptive ones. We consider a path-period condition, which is a

su�cient condition for a path requirement, since it is di�cult to treat path constraints

directly. Then, a necessary and su�cient condition for a static priority scheduling to be

schedulable is derived. We formulate the problem of determining periods for a given set

of priorities of tasks and propose an algorithm to solve the problem by using linear pro-

1 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

情報処理学会研究報告
IPSJ SIG Technical Report

gramming techniques5). The obtained priorities and periods are schedulable but may

violate path requirements to some extent if they are di�cult to be satis�ed. Finally,

we propose an iterated local search algorithm for searching task priorities and report

computational results for sample instances provided from a company.

2. Model of a real-time system

In this section, we describe a model of a real-time system. Let T = {1, 2, . . . , n} be a

set of tasks. The task set T is partitioned into a set T pre of preemptive tasks and a set

T non of non-preemptive tasks. Let P = {1, 2, . . . ,m} be a set of paths, where a path

p ∈ P is a sequence of tasks. We denote by p(h) the hth task in path p and by lp the

number of tasks in p (duplication of counting is allowed). Each task i ∈ T and each

path p ∈ P are associated with an execution time ci and a permissible delay θp.

Let Sproc : ℜ → {0} ∪ T be a function representing the task processed at each time

in the system, where Sproc(t) is 0 if none of the tasks is processed at time t, otherwise

the index of the processed task. Let Sstart : ℜ → {0} ∪ T be i ∈ T if an execution of

task i starts at time t, and 0 otherwise. Note that if the execution of an interrupted

task resumes at time t, Sstart(t) = 0. We denote by S = (Sproc, Sstart) a schedule of

the system. If a stimulus occurs at time t, it is processed by the tasks in a path p in

the order of p along the schedule S from t. Let ϕp
h(t) (resp., ψp

h(t)) be the start (resp.,

completion) time of the hth task in p when the execution processes a stimulus occurs

at time t, i.e.,

ψp
h(t) = min

{
t′ ≥ ϕp

h(t)

∣∣∣ ∫ t′

ϕ
p
h
(t)

δp(h)(τ)dτ ≥ cp(h)

}

ϕp
h(t) =

min{t′ ≥ t | Sstart(t
′) = p(h)}, if h = 1

min{t′ ≥ ψp
h−1(t) | Sstart(t

′) = p(h)}, otherwise,

where

δi(t) =

1, if Sproc(t) = i

0, otherwise.

For convenience, we de�ne ψp
0(t) = t. We also de�ne Lp

h(t) = ψp
h(t) − ψp

h−1(t) and call

it latency, the time it takes for task p(h) after the completion of p(h). Let rp(t) be the

sum of the latencies

rp(t) =

lp∑
h=1

(ψp
h(t) − ψp

h−1(t)) = ψp
lp

(t) − t,

i.e., the time required to process a stimulus through path p. Then a path requirement

is de�ned to be

max
t
rp(t) ≤ θp.

In this paper, however, path requirements can be violated if they are di�cult to be

satis�ed (i.e., they are considered as soft constraints).

A static priority scheduling is speci�ed by periods, priorities and o�sets of tasks. Let

Ti be the period of a task i, where task i is invoked once in every Ti. Let σ denote a

static priority, where σ(i) denotes the priority of task i and task i has a higher priority

than that of j if σ(i) < σ(j). An instant at which a task is �rst invoked is called the

o�set of the task. In the static priority scheduling, an extended task is switched when

its execution is completed or the processed task is preemptive and a higher priority task

becomes ready. A static priority scheduling is called schedulable if each task is invoked

at the beginning of every period and the execution is completed in the period for any

o�sets.

Figure 1 shows an example of a static priority scheduling, where T = {1, 2, 3},
c1 = c2 = 1, c3 = 2, T1 = 4, T2 = 5, T3 = 6, σ = (1, 2, 3) and the o�sets are all

zero. In the �gure, an upward arrow represents an invocations of a task and a rect-

angle represents an execution of a task. For example, a stimulus at at time 8 (resp.,

12) is processed through diagonally striped (resp., shaded) tasks of path (1, 2, 3) and is

completed at time 15 (resp., 20), and limϵ→+0 r(1,2,3)(8 + ϵ) = 12.

3. Scheduling

In this section, we describe two conditions which our algorithm is based on: a path-

period condition, which is a su�cient condition for the path requirements, and a nec-

essary and su�cient condition for a static priority scheduling to be schedulable.

Although a path requirement is di�cult to be certi�ed without simulating the sched-

2 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

情報処理学会研究報告
IPSJ SIG Technical Report

task
1

2

3

0 8 2012 15

Fig. 1 An example of schedule

ule, the following path-period condition gives us a su�cient condition which is easy to

check.

Theorem 3.1. For a periodic scheduling S, the condition
lp∑

h=1

2Tp(h) ≤ θp,

which we call a path-period condition, is a su�cient condition for a path requirement

maxt rp(t) ≤ θp to be satis�ed.

Proof. We prove that rp(t) ≤
∑lp

h=1
2Tp(h) holds for any t.

Let us consider the latency Lp
h(t) of the hth task in p. The latency Lp

h(t) is no

more than 2Tp(h), i.e., twice the period, because for any t′, the hth task must be in-

voked and its execution must be completed in the time span [t′, t′ + 2Tp(h)]. Hence

rp(t) =
∑lp

h=1
Lp

h(t) ≤
∑lp

h=1
2Tp(h) holds.

Schedulability conditions for a static priority scheduling has been investigated for a

preemptive system and a non-preemptive system, respectively6). However, for a system

with both preemptive and non-preemptive tasks, such a condition has not been clearly

stated in the literature to the best of our knowledge. The following theorem enables us

to determine the schedulability by checking the condition in pseudo polynomial time as

is the case of the known schedulability conditions.

Theorem 3.2. A set T of tasks with execution times ci (i ∈ T) is schedulable by a

static priority scheduling with a priority σ and periods Ti (i ∈ T) if and only if there

exist ti for all i ∈ T satisfying the following inequalities:

ci ≤ ti ≤ Ti, ∀i ∈ T (1)

max
i<j,j∈T non

cj +

i−1∑
j=1

cj

⌈
ti − ci
Tj

⌉
≤ ti − ci, ∀i ∈ T non (2)

max
i<j,j∈T non

cj + ci +

i−1∑
j=1

cj

⌈
ti
Tj

⌉
≤ ti, ∀i ∈ T pre, (3)

where it is assumed, without loss of generality, that the indices of the tasks in T are

ordered by the priority (i.e., σ(i) = i, ∀i).

Proof. Let us consider a response time for a task, which is the time from the moment

the task is invoked until its execution is completed. In the literature, a critical instant

for a task is an instant when the maximum response time for the task is realized among

any combination of o�sets. If the response time for the task is within its period, the

task can be scheduled for any o�sets, and vice versa.

Here we consider a critical instant for a task i, and we assume that i at the critical

instant is invoked immediately after time x0 so that an execution of a lower priority

task can be started at x0 and that the execution of i is completed at time x1. From

the maximality of a critical instant, neither a higher priority task nor a lower priority

non-preemptive task can be processed before x0, because if such a task exists, we can

take a smaller value as x0. In the time span [x0, x1], tasks that can be processed are

i, the higher priority tasks and one lower priority non-preemptive task. We consider

an upper bound on the execution time spent for each of such tasks in the time span.

The task i and one lower priority non-preemptive task can be executed only once and

the upper bounds are ci and maxi<j,j∈T non cj , respectively. For a higher priority task

k, the time at which k is �rst invoked is not earlier than x0 and the upper bound is

ck ⌈(x1 − x0)/Tk⌉ if i is preemptive and ck ⌈(x1 − x0 − ci)/Tk⌉ if i is non-preemptive.

Hence, if the inequalities (1)�(3) in the statement are satis�ed, the response times for

all tasks are less than or equal to their periods, respectively, and the static priority

scheduling is schedulable. On the other hand, each upper bound on the response time

of the task are realized when the o�sets of all higher priority tasks are zero and the

o�set of the lower priority non-preemptive task is a very little less value than 0, and

3 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

情報処理学会研究報告
IPSJ SIG Technical Report

the inequalities (1)�(3) must hold if the static priority scheduling is schedulable.

4. Design of the real-time system

In this section, we propose an algorithm to design a static priority scheduling for the

real-time system. We discuss the evaluation of priority σ in Section 4.1, and then, we

describe the local search used to determine priorities of tasks in Section 4.2.

4.1 Evaluation of priority σ

In this subsection, we propose an algorithm to determine periods of tasks for a static

priority σ. For convenience, in this subsection, we assume σ = (1, . . . , n).

The problem of asking the periods of tasks so that the schedulability condition for the

static priority scheduling is satis�ed and the violated amount (measured by the ratio

to the upper bound) of path-period conditions is minimized is formally described as

follows:

min

n∑
i=1

ci
Ti

+ λ

s.t. max
i<j,j∈T non

cj +

i−1∑
j=1

cj

⌈
ti − ci
Tj

⌉
≤ ti − ci, ∀i ∈ T non

max
i<j,j∈T non

cj + ci +

i−1∑
j=1

cj

⌈
ti
Tj

⌉
≤ ti, ∀i ∈ T pre

lp∑
h=1

2Tp(h) ≤ (1 + λ)θp, ∀p ∈ P

λ ≥ 0

ci ≤ ti ≤ Ti, ∀i ∈ T .

It is not easy to tackle this formulation directly, because there exist the ceiling terms.

Hence, we remove these terms from the formulation by replacing a term ⌈x⌉ with x+1.

Then the following restricted formulation is derived:

min

n∑
i=1

ci
Ti

+ λ

s.t. max
i<j,j∈T non

cj +

i−1∑
j=1

cj

(
ti − ci
Tj

+ 1

)
≤ ti − ci, ∀i ∈ T non

max
i<j,j∈T non

cj + ci +

i−1∑
j=1

cj

(
ti
Tj

+ 1

)
≤ ti, ∀i ∈ T pre

lp∑
h=1

2Tp(h) ≤ (1 + λ)θp, ∀p ∈ P

λ ≥ 0

ci ≤ ti ≤ Ti, ∀i ∈ T .

Note that, by this restriction, some solutions are rejected even if they satisfy the origi-

nal schedulability condition. The inequalities of the revised formulation can be viewed

as linear constraints of variables Ti, 1/Ti, 1/ti, 1/(ti − ci), and λ. The only remaining

constraints are the inverse relations of Ti and 1/Ti, i.e., Ti(1/Ti) = 1. In this revised

formulation, they can be replaced by inequalities Ti · (1/Ti) ≥ 1 and the problem turns

out to be a convex nonlinear optimization problem3).

The inverse inequality x · y ≥ 1 can be treated by in�nite linear inequalities, e.g.,

x + µ2y ≥ 2µ,∀µ ≥ 0. We solve the problem via linear programming imposing the

in�nite linear inequalities implicitly. In order to achieve this, we initially solve the

problem ignoring the inverse inequalities, and while the obtained solution violates some

inverse inequalities we repeat solving linear programming problems by adding those

constraints that eliminate the current solution. Note that the problem can also be

solved by semide�nite programming3) by expressing the inverse inequalities as Shur

complements7).

4.2 Local search for σ

The search space of the proposed local search (LS) is the set of all permutations σ1).

The LS starts from an initial solution σ and repeats replacing σ with a better solution

in its neighborhood N(σ) until no better solution is found in N(σ). We use the swap

neighborhood, which is one of the representative neighborhoods for permutations. A

4 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

情報処理学会研究報告
IPSJ SIG Technical Report

swap operation of priorities j and k exchanges the priorities of the two tasks:

σ′(i) =

σ(k), if i = j

σ(j), if i = k

σ(i), otherwise,

where σ′ is the priority after applying the swap operation.

Because only one iteration of LS may not be su�cient to �nd a good solution, we use

the iterated local search9), which iterates LS many times from initial solutions gener-

ated by perturbing good solutions obtained so far. As a perturbation, we use a random

3-cyclic exchange operation:

σ′(i) =

σ(l), if i = j

σ(j), if i = k

σ(k), if i = l

σ(i), otherwise,

where j, k and l are randomly selected and σ′ is the priority after applying the per-

turbation. Note that a 3-cyclic exchange operation cannot be attained by one swap

operation and it prevents LS from returning right back to the initial solution.

5. Experiments

We conduct computational experiments on sample instances provided from a com-

pany. The algorithm was coded in the C language and run on a PC (Intel Core2 Duo

CPU E6750, 2.66GHz, 2 GB memory). Linear programming problems are solved by

using GLPK 4.33. ⋆1 Furthermore, in order to evaluate the obtained schedules, we

simulate them for the time span [0, L], where we set L = αmaxp∈P
∑lp

h=1
2Tp(h) with

α = 4 in the experiments. With this setting, each path is executed at least α times.

In Table 1, the computational results for 11 instances are shown. The time limit of

our algorithm is 300 seconds for each instance. Column �instance� denotes the instance

name, column �util� denotes the utility
∑n

i=1
ci/Ti of the CPU by the obtained schedule

and column �λ� denotes the violated amount for the path-period conditions. Column

⋆1 http://www.gnu.org/software/glpk/

�r/θ� denotes the worst ratio maxp∈P max0≤t≤L rp(t)/θp obtained by simulating the

schedule (i.e., the priorities and the periods). Note that, if a value of λ is zero, the

path-period conditions (and hence the path requirements) are satis�ed, and if a value

of r/θ is less than one, the path requirements are satis�ed at least in the span the sched-

ules are simulated. From Table 1, we can observe that the obtained schedules satisfy

Table 1 Computational results on sample instances from a company

instance |T | |T non| |P| util λ r/θ

n7 7 7 4 0.72 0.31 0.62

n18 18 18 10 0.79 2.41 1.48

n23 23 23 13 0.78 2.35 1.52

n200 200 200 2942 0.75 4.22 2.48

n500 500 500 26905 0.73 4.32 2.40

n800 800 800 46126 0.73 4.37 2.50

n1000 1000 1000 45314 0.73 4.31 2.46

f200 200 95 2942 0.71 0.00 0.46

f500 500 237 26905 0.71 0.00 0.46

f800 800 385 46126 0.73 0.00 0.47

f1000 1000 494 45314 0.73 0.00 0.48

the path requirements for instances f200, f500, f800 and f1000, and for instance n7, the

path requirements are satis�ed at least in the simulated span. For the other instances,

though the path requirements are violated, the utilities of the obtained schedules are at

most 0.79. This is attributed to the limitation of the static priority scheduling ability.

6. Conclusion

We considered a real-time system that requires a bound on the time a stimulus to

the system is processed by a sequence of tasks, and propose an algorithm that can treat

such path requirements, where the mixture of preemptive and non-preemptive tasks

was considered. In our algorithm to design a static priority scheduling for the system,

local search is used to search priorities of tasks, and after �xing the priority, the periods

of tasks are determined. This subproblem is described as a mathematical program-

ming formulation based on path-period conditions and a schedulability condition for

5 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

情報処理学会研究報告
IPSJ SIG Technical Report

the static priority scheduling, and is solved by using linear programming techniques.

Finally, we reported the computational results on sample instances from a company.

Acknowledgment

The authors would like to thank Taichiroh Sugiyama for helping us to simulate the

solutions.

References

1) Aarts, E. H.L. and Lenstra, J.K.(eds.): Local Search in Combinatorial Optimiza-

tion, John Wiley and Sons (1997).

2) Baruah, S. and Goossens, J.: Scheduling Real-Time Tasks: Algorithms and Com-

plexity, Handbook of Scheduling: Algorithms, Models, and Performance Analysis

(Leung, J. Y.-T., ed.), Chapman Hall/CRC Press, chapter28 (2004).

3) Ben-Tal, A. and Nemirovski, A.: Lectures on Modern Convex Optimization: Anal-

ysis, Algorithms, and Engineering Applications, Society for Industrial and Applied

Mathematics (2001).

4) Bªa»ewicz, J., Ecker, K.H., Pesch, E., Schmidt, G. and W¦glarz, J.: Scheduling in

Hard Real-Time Systems, Handbook on Scheduling: From Theory to Applications,

Springer, pp.243�269 (2007).

5) Chvátal, V.: Linear Programming, W. H. Freeman (1983).

6) George, L., Rivierre, N. and Spuri, M.: Preemptive and Non-Preemptive Real-

Time Uni-Processor Scheduling, Technical report, Institut national de recherche en

informatique et en automatique (1996).

7) Horn, R.A. and Johnson, C.R.: Matrix Analysis, Cambridge University Press

(1985).

8) Liu, C.L. and Layland, J.W.: Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment, Journal of the ACM, Vol.20, No.1, pp.46�61 (1973).

9) Lourenço, H.R., Martin, O.C. and Stützle, T.: Iterated Local Search, Handbook

of Metaheuristics (Glover, F. and Kochenberger, G.A., eds.), Kluwer Academic

Publishers, pp.321�353 (2003).

6 c⃝ 2009 Information Processing Society of Japan

Vol.2009-AL-124 No.9
2009/5/11

