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Efficient Enumeration of All Pseudoline Arrangements

Katsuhisa Yamanaka,†1 Shin-ichi Nakano,†2

Yasuko Matsui,†3 Ryuhei Uehara†4

and Kento Nakada †5

Pseudoline arrangements are important and appealing objects in the area of
geometory and combinatrics. In this paper we give an algorithm to enumer-
ate all arrangements of n pseudolines. After O(n2) time preprocessing, our
algorithm enumerates all arrangements in O(1) time for each and uses O(n2)
space.

1. Introduction

Arrangements of lines and pseudolines are one of important and appealing
objects in the area of geometry and combinatorics.

Felsner2) worked on the number of arrangements of pseudolines and showed
that the number of arangements of n pseudolines is bounded by 20.6974n2

. Ar-
rangements of pseudolines are strongly related to oriented matroids, and there
is a bijection between arrangements and oriented matroids of rank 3. Several
results on enumeration of oriented matroids are known3),4).

In this paper we give an efficient algorithm to enumerate all arrangements of
n pseudolines.

We have designed an algorithm to enumerate every “ladder lottery10),11),” which
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Fig. 1 (a) An arrangement of 5 pseudolines, (b) its wiring diagram and (b) the
corresponding optimal ladder lottery.

is a network of swaps as depicted in Fig. 1(c), for a given permutation. For the
fixed permutation π = (n, n − 1, . . . , 1) we can observe that each ladder lottery
for π can be regarded as an arrangement of n pseudolines. See Fig. 1(a) and (c).
In this paper, by simplifying the algorithm in the literatures10),11) to only work
for the fixed permutation π = (n, n − 1, . . . , 1), we design a simple but efficient
algorithm to enumerate all arrangements of n pseudolines. After O(n2) time
preprocessing, our algorithm computes each arrangement in O(1) time for each.

The idea of our enumeration algorithm is as follows. Let Sn be the set of all
combinatorial stuctures of arrangements of n pseudolines. We first define a tree
structure Tn, called the family tree, among Sn, (see Fig. 2) in which each vertex
of Tn corresponds to a combinatorial structure of an arrangement in Sn and each
edge of Tn corresponds to a relation between two combinatorial structures of
arrangements which can be transformed to the other by one local swap operation,
as shown in Fig. 3. Then we design an efficient algorithm to generate all child
vertices of a given vertex in Tn. Applying the algorithm recursively from the root
of Tn, we can generate all vertices in Tn, and also corresponding all combinatorial
structures of arrangements in Sn. Based on such a tree structure but with some
other ideas a lot of efficient enumeration algorithms are designed1),7).

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the tree structure among Sn. Section 4 gives an efficient algo-
rithm to enumerate all combinatorial structures of arrangements in Sn. Finally
Section 5 is a conclusion.
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Fig. 2 The family tree T5.
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Fig. 3 A local swap operation.

2. Preliminary

A pseudoline is an x-monotone curve in the Euclidean plane. An arrangement
of pseudolines is a set of pseudolines in which every pair intersects exactly once.
See Fig. 1(a). An arrangement is simple if no three pseudolines share a common
point. Throughout this paper, the term arrangement always denotes a simple
arrangement of pseudolines.

A wiring diagram, introduced in the literature5), of an arrangement of n pseu-
dolines is a network with n lines and

(
n
2

)
intersections. See Fig. 1(b). The left

ends correspond to the reverse permutation (n, n − 1, . . . , 1) in top to bottom
order. The right ends correspond to the identical permutation (1, 2, . . . , n) in top
to bottom order. Each line i starts at the i-th left end from the bottom, then
goes right, however at every intersection the line goes up or down to cross other
line, then finally line i reaches the i-th right end from the top. Each such path
corresponds to a pseudoline. Note that each path has exactly n−1 intersections.

The combinatorial structure of each pseudoline arrangement can be modeled as
a wiring diagram, and each wiring diagram models the combinatorial structure
of a set of pseudolines arrangements. Note that applying some perturbation to a
pseudoline arrangement still results in the same corresponding wiring diagram.
We say two pseudoline arrangements are isomorphic if there is a bijection between
their faces of corresponding wiring diagrams preserving their neighbor relation. In
this paper we enumerate all combinatorial structures of pseudoline arrangements
by enumerating all distinct wiring diagrams.

A local swap operation is a local modification of a wiring diagram, as shown in
Fig. 3. Note that the dashed circle contains exactly three intersections. Also note
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Fig. 4 The removal of the line n.

that applying this modification to a wiring diagram of a pseudline arrangement
results in other wiring diagram of other pseudoline arrangement, since only the
“location” of the three intersections has changed. A local swap operation (a)
to (b) in Fig. 3 is called an upper swap operation to intersection cu. Similarly,
a local swap operation (b) to (a) in Fig. 3 is called a lower swap operation to
intersection cl.

3. The Family Tree

In this section we design a tree structure Tn among wiring diagrams. See Fig. 2.
Let Sn be the set of all wiring diagrams corresponding to the set of all combi-

natorial structures of arrangements of n pseudolines, and W = Wn be a wiring
diagram in Sn. The line in the wiring diagram starting at the i-th left end from
the bottom is called line i. The line n starts the uppermost left end, then crosses
each of other lines exactly once, finally reaches the lowermost right end. Thus the
line n contains exactly n− 1 “downward” intersection, and line n is y-monotone
in the wiring diagram. Note that this property does not hold for other line i ̸= n.
See Fig. 1(b).

The line n partitions Wn into the left part WL
n and the right part WR

n . Re-
moving the line n from Wn as shown in Fig. 4, results in a wiring diagram Wn−1

of the remaining n − 1 lines. We say Wn is n-clean if WL
n has no intersection.

If the wiring diagram of Wn is n-clean then the line n − 1 is also y-monotone in
Wn−1, and we can define Wn−2 similarly, and we say Wn−1 is (n − 1)-clean if
WL

n−1 has no intersection. We repeat this process until some non-clean wiring di-
agram appears or W2 is derived. If the wiring diagram of Wk is k-clean for each
k = n, n − 1, . . . , 3, then W is called the root, denoted by R. See the rightmost
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Fig. 5 The sequence of a wiring diagram W .
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Fig. 6 An active region.

diagram in Fig. 5. Otherwise, there exists some k such that Wi is i-clean for
each i = n, n−1, . . . , k, and Wk−1 is not (k−1)-clean. Then we say the clean level
of W is k. Especially if WL

n has an intersection, then W has the clean level n+1,
and the root R has the clean level 3. Note that if the clean level is k then the lines
n, n − 1, . . . , k form so called “brick structure” in the wiring diagram, in which
each line i ≥ k − 1 first goes up n− i times, crossing the lines n, n− 1, . . . , i + 1,
in this order, then pass through an uppermost horizontal segment, then go down
i − 1 times. Note that “the region” below line i ≥ k contains no intersection of
two lines both less than k. Also the region above the line k and below the line
k − 1 contains at least one intersection of two lines both less than k. See Fig. 6.
The region is called the active region of the wiring diagram of A. Especially, we
define the active region of R is ϕ for convenience (in the proof of Lemma 3.2).

Now we assign a wiring diagram in Sn for each wiring diagram W in Sn \ {R}
as follows. Assume that W has the clean level k. Thus the active region of W

has at least one intersection. We say an intersection c in the active region is
visible from line k − 1 if the two lines, say i and j, crossing at c, both next cross
to line k − 1. Among the visible intersections from line k − 1, the lowermost
intersection is called the active intersection of W . In Fig. 6, intersection c is the

active intersection. Applying an upper swap operation to the active intersection
of W ∈ Sn \ {R} results in other wiring diagram, denoted by P (W ), in Sn. We
say P (W ) is the parent of W , and W is a child of P (W ). Note that the parent
of W is unique, while P (W ) may have many children. Also note that the clean
level of P (W ) is smaller or equal to W , and P (W ) has less intersections in the
active region of W .

We have the following lemma.
Lemma 3.1 For any W ∈ Sn \ {R}, P (W ) ∈ Sn holds.

Given a wiring diagram W in Sn \{R}, by repeatedly finding the parent of the
derived wiring diagram, we can have the unique sequence W,P (W ), P (P (W )), . . .
of wiring diagrams in Sn, which eventually ends up with the root R in Sn. See
Fig. 5. The active intersections are depicted by thick lines.

We also have the following lemma.
Lemma 3.2 The sequence W,P (W ), P (P (W )), . . . of W ∈ Sn \ {R} ends with
R ∈ Sn.
Proof. For each W ∈ Sn we define the clean potential C(W ) = (s, t), where s

is the clean level of W and t is the number of intersections in the active region
of W . For W1, W2 ∈ Sn with C(W1) = (s1, t1) and C(W2) = (s2, t2), we say
W1 is cleaner than W2 if (1) s1 < s2 or (2) s1 = s2 and t1 < t2. For any
W ∈ Sπ we can observe P (W ) is cleaner than W . Now R is the cleanest among
Sn since C(R) = (1, 0). Thus for any W ∈ Sn the sequence of clean potentials
C(W ), C(P (W )), C(P (P (W ))), . . . always ends at C(R). ¤

By merging all these sequences we can have the family tree of Sn, denoted by
Tn, in which the root of Tn corresponds to R, the vertices of Tn correspond to the
wiring diagrams in Sn and each edge corresponds to a relation between a wiring
diagram in Sn and its parent. See Fig. 2.

4. Enumerating

In this section we give an efficient algorithm to enumerate all wiring diagrams
in Sn.

If we have an algorithm to enumerate all children of a given wiring diagram in
Sn, then by recursively applying the algorithm starting at the root R of Sn, we
can enumerate all wiring diagrams in Sn, and all corresponding combinatorial
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structures of arrangements of n pseudolines. Now we design such an algorithm.
We need some definitions. Let W ̸= R be a wiring diagram in Sn. Assume

W has the clean level k. So each intersection below line i ≥ k contains no
intersection of two lines both less than k, but in the active region (see Fig. 6)
there is at least one intersection of two lines, say x and y, with x, y < k−1. Each
line i ≥ k−1 goes up n− i times, “turns” at the top, then goes down i−1 times.
For each line i = n−1, n−2, . . . , k−1, if c is the first intersection to go down after
intersections to go up, then c is called the turn intersection of line i. Note that
line n contains only intersections to go down, so has no turn intersection. Also
note that the turn intersection is defined only for line i = n − 1, n − 2, . . . , k − 1
since otherwise it may have many “turns.”
Lemma 4.1 Let W be a wiring diagram with the clean level k. Every turn
intersection of line i = n − 1, n − 2, . . . , k can be lower swapped, however any
other intersection on line i = n − 1, n − 2, . . . , k cannot.
Proof. An intersection cl can be lower swapped only if the dashed circle in
Fig. 3(b) contains exactly three intersections. Because of the brick structure,
other lower swaps are interfered by a fourth intersection. ¤

Let W [c] be the wiring diagram derived from W by applying a lower swap
operation to an intersection c. Every child of W is W [c] for some c, but not all
W [c] are children of W . W [c] is a child of W only if c is the active intersection
of W [c]. Now we classify each W [c] as a child of W or not as follows. Remember
the clean level of W is k. Let U(i) be the region above line i, and L(i) be the
region below line i.

Type 1: c is a turn intersection.
Assume the local structure of W is as shown in Fig. 7(a) and c is the turn

intersection of line i. If n − 1 ≥ i ≥ k then c can be lower swapped by Lemma
4.1, and the clean level of W [c] is i + 2 since W [c] is not (i + 1)-clear. Thus c is
the only intersection in the active region of W [c], so c is the active intersection
of W [c]. Thus W [c] is a child of W . If i = k − 1, W [c] is a child of W only when
c can be lower swapped.

Type 2: c is not a turn intersection.
We need to consider only intersections which can be lower swapped. Such
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Fig. 7 Illustration for Type 1.

intersections exist only in U(k). If c is “rightward” visible from neither line k

nor k − 1, then c is not the active intersection in W [c], thus W [c] is not a child
of W . So assume otherwise.

If the lower swap operation moves c to L(k), crossing the line k, then the clean
level of W [c] is k + 1 and c is the only intersection in the new active region, so c

is the active intersection of W [c]. Thus W [c] is a child of W .
If the lower swap operation moves c to L(k − 1), crossing the line k − 1, then

the clean level of W [c] remains k, and c is appended to the active region. W [c]
is a child of W if c is the active intersection of W [c]. Otherwise, W [c] is not a
child of W .

By maintaining (i) the clean level k (the clean level of W [c] is always larger than
or equal to the clean level of W ) and (ii) the list of rightward visible intersections
from line k or k−1, (those are candidate to be lower swapped, crossing the line k

or k−1), and (iii) the list of the turn intersections, we can enumerate all children
of W in O(1) time for each on average.
Lemma 4.2 All children of W can be enumerated in O(1) time for each on
average.

The root R in Sn can be generated in O(n2) time because of its complete brick
structure.
Theorem 4.3 After generating and outputting the root R in Sn in O(n2) time,
our algorithm enumerates all combinatorial structures of arrangements of n pseu-
dolines in O(1) time for each on average. The algorithm uses O(n2) working
space.
Proof. We show that the root R in Sn can be generated in O(n2) time. We
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start with n horizontal lines. Then we append intersections for each line i, i =
n, n − 1, . . . , 2. Each line i goes up n − i times, turns at the top, then goes
down i− 1 times. When we append intersections of line i, intersections to go up
are already completed, since those intersections corresponds to the crossing with
lines of larger numbers. So we only need to append the i − 1 intersections to go
down. Thus we can compute R in O(n2) time and space. ¤

By the theorem above, our algorithm generates each wiring diagram in Sn in
O(1) time “on average.” However it may have to return from the deep recursive
calls without outputting any wiring diagram in Sn, after generating an wiring
diagram corresponding to the rightmost leaf of a large subtree in the family tree.
Therefore the next wiring cannot be generated in O(1) time in worst case.

By modifying the algorithm so taht each wiring diagram at “even” depth in Tn

is output before its children, and each wiring diagram at “odd” depth in Tn is
output after its children7), we can output the next wiring diagram in O(1) time
in worst case.

This technique is called “prepostordering.” See the literature7) for further
details: in the literature7) the method was not explicitly named, and the name
“prepostorder” is given by Knuth8).

We have the following theorem.
Theorem 4.4 After O(n2) time preprocessing, we can enumerate all combina-
torial structures of arrangements of n pseudolines in O(1) time for each.

5. Conclusion

In this paper we first defined the family tree among Sn. We also gave an
algorithm to enumerate all wiring diagrams in Sn corresponding to combinatorial
structures of arrangements of n pseudolines.

By implementing the algorithm we have computed the number of n pseudoline
arrangements for each n ≤ 10, as shown in Table 1. The numbers for n ≤ 10
match to the reports by Knuth6) and Widom et al.9).
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