
IPSJ SIG Technical Report

VMM-based Detection of Rootkits that Modify File Metadata

Kenji Kono,†1,†2 Pushkar R. Rajkarnikar,†1

Hiroshi Yamada†1,†2 and Makoto Shimamura †1

Kernel-level rootkits are posing an immense threat to any computer systems.
They operate inside operating system kernels and manipulate crucial kernel
data structures to bypass and evade anti-malware security tools. Combined
with kernel-level rootkits, other malware such as bots, viruses and spyware
becomes stealthy and difficult to detect. The focus of this paper is on typical
kernel-level rootkits that falsify the contents of file systems to hide the presence
of malware. In this paper, we propose a software based system that leverages
virtual machine technology. Unlike traditional approaches, our system does not
rely on signatures. Instead, it relies on the rootkit behavior that file system
contents are falsified; it detects a mismatch between the file system view from
user-level processes and that from the virtual machine monitor running under
the operating system. The experimental results demonstrate that our system
successfully detects real world kernel-level rootkits and the overhead of the
system is reasonable.

1. Introduction

Rootkit technology has evolved considerably over the years. From the earlier
user-land rootkits to the recent kernel-level rootkits, the attackers have used
highly sophisticated and novel techniques in order to subvert a computer system.
Along with the development of new detection systems, the attackers have also
developed their own versions of improved malware technologies to defeat any
available detection systems and this race of cat and mouse does not seem to be
over pretty soon.

In fighting against these kinds of rootkits, any anti-malware system that runs in
the same level as the malware may not be able to detect the presence of malware.
These anti-malware systems may be subverted by the malware before they can

†1 Keio University
†2 CREST, JST

detect the presence of malware. Virtualization technology can solve this serious
shortcomings of these existing anti-malware systems. Virtualization technology
provides virtual machines (VMs) with strong isolation among them and prevents
any access to or interference with other VMs or the VMM.

In this paper, we present RootkitLibra which leverages virtualization tech-
nology and resides in VMM. RootkitLibra being a behavior-based anti-malware
system, focuses on a fundamental filesystem related behavior of a typical kernel-
level rootkit. We observe that most kernel-level rootkits employ file or directory
hiding technique as well as changing various filesystem metadata such as size,
owner, access time etc. of some crucial system files but mask those changes from
the applications and system administrators.

RootkitLibra basically uses a cross-view technique to detect the above men-
tioned behavior of any rootkit. In a cross view technique the same piece of
system information is checked from two different views, one from a trusted van-
tage point and the other from the untrusted location. If the two views result
in different outcome, then we can point out the presence of malware within the
system. RootkitLibra assumes a networked file system to get the trusted view
of the filesystem in VMM. RootkitLibra gets the untrusted view of filesystem
information from return values of the system call.

We implemented RootkitLibra in Xen Hypervisor and successfully detected 8
real world Linux kernel-level rootkits. RootkitLibra imposes a small runtime
overhead of about 1.3% when tested with the postmark14) filesytem benchmark
and less than 5% when tested against some basic filesystem micro benchmark
tests.

2. Overview of Kernel-level Rootkits

Kernel-level rootkits are the second generation of rootkits and are relatively
new and advanced compared to their first generation counterparts. These rootk-
its employ various stealthy techniques in order to hide files and directories and
subvert the kernel of the system. They inject code directly to the kernel memory
area. Once they install themselves, along with hiding themselves, they hide other
malware, subvert crucial kernel entities and also provide backdoors for entry into
the kernel in future. The installed rootkit can hide various processes, files and

1234 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

network connections from the system administrators as well as from any user
land applications. Users and administrators cannot trust any results received
from the kernel or any system security tools or file system integrity tools that
run as an application on top of the subverted kernel. As a result, most of the
host-based tools that aim to detect kernel level rootkits are rendered ineffective.

Kernel-level rootkits use various attack vectors. They primarily aim to subvert
some crucial kernel objects like system call table, interrupt descriptor table (IDT)
or virtual filesystem (VFS) and insert their own version of those objects. With
these growing techniques to sabotage the kernel, anything in the kernel can be the
next target of the rootkits. New kernel-level rootkits might target subsystems
such as the scheduler, network stack, hardware drivers etc. Common attack
vectors used by kernel-rootkits are as follows25):

Intercepting System Calls A rootkit can target a system call table and re-
place entries of the system call table with its own version of certain system calls.
Rootkit can also modify the system call handler and insert its own code imme-
diately before and after the call to system calls and change the values returned
by the system calls before it is given to applications. Roootkits such as Adore,
Knark, Override2) employ this attack vector.

Hooking and patching Kernel Jump Tables OSes use jump tables as the
entry point to various kernel functions. A common jump table that is the target of
rootkits is IDT. As in case of system call table, rootkit can modify the addresses
of various interrupt handler routines in IDT to execute its own version of the
code. Rootkits can also modify the first few instructions of interrupt handlers
that push the handler code’s address to stack and jump to error code routine
from where the handler is invoked.

Modifying Kernel Memory A rootkit can exploit kernel objects such as
Linux’s /dev/kmem which provides access to the kernel memory. With this
interface, rootkits can redirect system calls to its own version without modifying
the original system call table7). Rootkits such as SuckIt, Mood-NT, Superkit2)

use this technique.
Intercepting calls to VFS Kernel VFS layer is an abstraction layer on top of

a concrete filesystem. This layer lets a uniform access to the underlying filesys-
tem. Adore-Ng2) rootkit exploits this layer and redirects the handler routines of

VFS to its own version.
An attacker can inject malware code inside the kernel as loadable kernel mod-

ules (LKM), device drivers or by directly manipulating the kernel memory via
standard virtual devices such as Linux’s /dev/kmem or /dev/mem or /proc file
system.

3. Design Goals

Guard Filesystem Integrity: The primary objective of RootkitLibra is to
detect kernel-level rootkits that hide files or modify filesystem metadata. We
observe that most kernel-level rootkits try to sabotage the filesystem by hiding
various files, directories or changing various filesystem metadata such as size,
owner, access time, links etc. Thus, RootkitLibra primarily focuses on the in-
tegrity of filesystem to detect the presence of rootkits. So, its first goal is to
guard the integrity of filesystem of the monitored OS.

Robust Detection System: Traditionally, anti-malware systems have
resided together with the host system. Though these kinds of anti-malware sys-
tems may be useful for user-level rootkits and some other types of earlier malware,
they are not at all acceptable in case of kernel-level rootkits. Since kernel-level
rootkits compromise various critical kernel entities, any applications that run on
top of the infected kernel cannot be trusted. As a consequence, a kernel-level
rootkit detection systems that reside in host has every chance of being tampered
by the underlying rootkit in the kernel. So, the next design goal of RootkitLibra
is that its integrity should not be questioned or doubted and that it must reside
in a location which is firmly isolated from the possible malware attack.

Independent of Specific OS version: RootkitLibra should be generic and
independent of any specific versions of OS. This makes it applicable to a wide ar-
ray of OSes and increases its usability. There have been many researches that try
to detect kernel-level rootkits from “outside-the-box”. But, they assume substan-
tial knowledge about the OS kernel implementation. For example, VMwatcher11)

assumes we can keep track of process tables, Copilot13) assumes the intimate
knowledge of the kernel layout like the module structure of monitored OS and so
on. These kinds of dependency on the specific knowledge about “not-so-stable”
OS internal structures reduce the portability and applicability of the detection

1235 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

Fig. 1 Architecture of RootkitLibra

system. So, the third goal of RootkitLibra is that it should not rely on any kind
of specific OS internal structures which makes it more generic and portable.

4. RootkitLibra

RootkitLibra monitors the basic behavior of rootkits i.e. hide files/directories
or modify filesystem data/metadata but hide those modifications from user-land
applications and administrators. Whenever any rootkit attempts to commit
that behavior, either during its installation or after being installed, RootkitLibra
catches that behavior by finding the inconsistencies between the VMM-level view
(trusted view) and user-application-level view (untrusted view) of the same piece
of filesystem data. Even though the design principles of RootkitLibra is applica-
ble to other OSes, the following description of the design is based on Linux on
intel x86 machine.

4.1 Getting Trusted View
Trusted view is the view as seen from VMM layer. VMM layer has access

to various low-level states such as disk blocks, memory pages etc. of VMs run-
ning on top of it. These low-level but reliable states can be reconstructed in
VMM to infer high level states of VMs such as files, processes etc. Since Rootk-
itLibra is monitoring the integrity of filesystem, we need to get these high-level
filesystem infomation of the monitored OS in VMM. We can employ a number
of alternative techniques to get this information. One way would be directly

reconstructing files/directories from low-level disk blocks of monitored VM ac-
cessible to VMM. Another alternative would be using a networked file system
such as Network File System (NFS) protocol or Common Internet File System
(CIFS) protocol as a filesystem of the monitored OS. These protocols work by
exchanging network packets that use high-level filesystem information during the
communication between client and server. Out of these two approaches, the first
approach requires low-level observation of disk blocks and is pretty cumbersome.
So, to avoid this cumbersome work, RootkitLibra employs the latter approach
and uses a networked file system for the OS it is monitoring. The use of a net-
worked file system necessitates the existence of another server machine which
hosts the filesystem of the VM we are monitoring. To eliminate the need for
another separate physical machine, we can setup this file server machine on the
same physical machine as another VM.

Even though the use of networked file system obviates the need to reconstruct
low-level VM states to high-level VM states, RootkitLibra still has to do some ex-
tra work. During the runtime of the monitored OS, there will be many filesystem
operations such as read, write, append, create or delete filesystem objects. Since
the filesystem resides in a network, in the course of performing these operations,
the OS must fetch the filesystem data from the networked file server. During
this process, these filesystem data make their way through the virtual network
driver in VMM as network packets. RootkitLibra which resides in VMM, closely
observes and dissects each of these network packets going in and out of the moni-
tored VM to get the high-level filesystem information of monitored OS in VMM.
This view of the monitored filesystem is a clean and trusted view which is yet
to be processed by any kernel-level services of the monitored OS which might be
infected with rootkits.

The observation and dissection of the network packets in VMM yields various
filesystem data/metadata such as inode, size, owner, group, time related informa-
tion and number of directory entries etc. of all the files and directories accessed
during the run time of the monitored OS. To use these filesystem information,
RootkitLibra maintains two tables. First, the file-table which stores inode and
size of each accessed file and second, the directory-table which stores the inode,
size and directory entries of each accessed directory. RootkitLibra uses these

1236 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

tables to check the consistency of the filesystem data between the trusted and
untrusted views.

4.2 Getting Untrusted View
To get untrusted view, we need to get values returned from kernel services such

as system calls of the untrusted kernel. Since the kernel may be compromised, we
cannot modify the monitored kernel to get these pieces of information. Moreover,
modification does not make sense as we cannot rely on any values returned from
the untrusted kernel. In view of these problems, we leverage the virtualization
technology. Whenever a user-application requests a service from the kernel, it
does so through some system calls.

RootkitLibra filters system calls by observing the value of eax register whenever
there is a transition to VMM due to system call in guest OS. Whenever there
occurs a file-related system call, RootkitLibra extracts the system call inputs
and outputs of those system calls. It then uses these values to get the filesystem
metadata such as the inode, size, number of directory entries etc. These filesystem
metadata are untrusted because they are the OS-level view which are returned
from the services (system calls) of the kernel of the monitored OS which might
be infected with rootkits. RootkitLibra then inserts these data in two tables it
maintains for consistency check. The first table is the file-table which is a table of
inode and filesize of each accessed file and the second table is the directory-table
which is a table of inode, size and number of directory entries for each accessed
directory. During the process of extracting these high-level filesystem semantics
of monitored guest OS from VMM, RootkitLibra uses the value of CR3 register
to infer the OS process-level semantic in VMM24).

4.3 Raising an Alert
RootkitLibra collects the same piece of filesystem information from two sources:

1) the trusted souce which is from outside the monitored OS and 2) the untrusted
source which is from inside the monitored OS. While collecting these information,
RootkitLibra first comes across the trusted view because when filesystem related
system calls are invoked, those system calls need to fetch the data from the
network file server and all the fetched data make their way through VMM as
network packets. So, RootkitLibra first extracts filesystem data at this point. For
each file, it extracts inode number and file size and for each directory it extracts

inode number, size and number of directory entries and store them in file-table
and directory-table respectively. Next, when the filesystem data arrive in guest
OS, it performs the requested operation and the system call exits and the control
faults to VMM. At this point, RootkitLibra uses the system call outputs and
with the help of the knowledge of system call interface, it collects the untrusted
view of the filesystem data. Next RootkitLibra compares the collected untrusted
filesytem data with the trusted filesystem data collected and stored earlier in
file-table and directory-table. Finally, RootkitLibra raises an alert if there is
inconsistency between those two view.

Hidden files/directories or modifications made to filesystem data/metadata
would be visible in VMM level view but remain hidden in VM level view be-
cause VMM level view is an external view which is not returned from the kernel
services of the monitored guest OS whereas VM level view is the internal view
which is returned from the services of infected kernel of the monitored OS.

5. Evaluation

In this section, we describe the evaluation of RootkitLibra by running it against
some real world rootkits to test its effectiveness. We also performed the overhead
experiments and analyzed its findings regarding the runtime overhead it incurred.

5.1 Evaluation against real world rootkits
We have evaluated our system with 8 real world linux kernel-level rootkits that

are publicly available2). All these kernel-level rootkits can effectively subvert
any vulnerable system successfully. Since RootkitLibra primarily relies on the
filesystem integrity in order to detect the rootkits, these rootkits do hide files
and/or directories in the system or alter certain metadata of files in the monitored
system but hides the change from the administrators. Since all of the rootkits
were not compatible for a paritcular kernel version, we implemented them in
different versions of paravirtualized Xen and Linux. We experimented adore-0.42
and rial in Xen 2.0.7 with linux 2.4.30 as monitored system. Similarly enyelkm,
override and adore-ng-0.56 was tested on Xen 3.0.2-2 as hypervisor and linux
2.6.16 as monitored system. We implemented mood-nt, superkit and suckit2priv
in Xen 3.0.1 and linux 2.6.12. A very few minor modifications were required to
get some of these rootkits installed in our test system.

1237 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

Rootkit Attack Vector Target Detected

adore-0.42 LKM Sys call table Yes
rial LKM Sys call table Yes
enyelkm LKM Kernel text Yes
override LKM Sys call table Yes
adore-ng-0.56 LKM Virt file system Yes
mood-nt Raw mem. access Sys call table Yes
superkit Raw mem. access Kernel text Yes
suckit2priv Raw mem. access Kernel text Yes

Table 1 Linux kernel-level rootkits tested on RootkitLibra.

Our test set of rootkits represent different targets and use variety of attack
vectors to subvert the kernel. So, we believe that any other rootkits that are
not in the test set but use same attack vectors or target should be detected by
RootkitLibra. Table 1 shows the tested rootkits, their attack vectors and targets
and the detection status by RootkitLibra.

The tested rootkits showed various behaviors being watched by RootkitLibra
and thus were caught when committing those behaviors. The hidden files appear
in the VMM-level view but do not appear in the OS-level view. Basically, all
these rootkits hide their own source or object files and/or directories mostly
during their installation mainly with the objective to persist after system reboot.
Some rootkits allow the attacker to select whether they want to persist after
system reboot or not and hide files and or directories accordingly.

Of the tested rootkits, Adore rootkit replaces 15 system calls, mostly filesystem
related ones in the system call table and redirects them to its own version of those
system calls. It uses a user-space program called ava to hide files. Similarly
Adore-ng patches itself to the virtual filesystem layer of the kernel and intercept
accesses to /proc filesystem. adore-ng rootkits hid the source directory right
after they were installed. Once adore-ng is installed and is in kernel, it intercepts
all the reads of the filesystem and checks uid and gid. If the uid and gid is set
to its elite value, the files and directories are hidden. Adore-ng has a configure
script which does a chown to its elite uid and gid value to the source directory and
successfully hide it. As shown in the Table 1, both these rootkits use loadable
kernel modules (LKM) support in commodity Linux kernels to directly inject the
code that performs these malicious activities.

Enyelkm hid its kernel object file in the /etc directory right after it got in-
stalled. Enyelkm tries to persist even after system reboot. It inserts a line of code
in /etc/rc.d/rc.sysinit to load the hidden rootkit kernel object file in /etc

directory after system reboot. Enyelkm basically injects code in the system call
handler and taps each system call to hook and modify the system call outputs of
some of the crucial filesystem related system calls such as getdents, read and
kill. Enyelkm also uses LKM to inject code directly to kernel text.

Mood-nt, superkit and suckit2priv rootkits are influenced by earlier suckit
rootkit. They all use Linux’s /dev/kmem device to inject rootkit code directly
into the kernel. Mood-nt hijacks 44 system calls which includes almost all of the
filesystem related system calls. It created a hidden directory to keep the init

file that it planned to use while rebooting the system. It also hid the original
/sbin/init file in the same location after appending its name with its chosen
string that was used during file and directory hiding. suckit2priv hijacks 45
system calls. These includes all the filesystem related system calls. Similarly,
superkit hooks 25 system calls that includes almost all the filesystem related sys-
tem calls. and suckit2priv hid the /sbin/init file after renaming it and inserted
their own patched init file in the same location.

Override and Rial rootkits have lots of similarity in the way they work. They
both are use LKM to get into the kernel and both of these rootkits patch num-
ber of filesystem related system calls to perform malicious activities. Override
patches 9 system calls whereas Rial patches 5 system calls. They hide files that
begin with certain user-defined prefix. The version of these rootkits we found
were meant for the educational purpose and it did not hide anything immedi-
ately after they were installed. So, RootkitLibra did not detect their presence
right after they were installed. But once we deliberately chose to hide files or
directories, RootkitLibra caught the behavior.

In general, any malware which persists across system reboot cannot go unde-
tected with RootkitLibra as it must hide certain files in the process to persist
after reboot. But, if the rootkit does not show any behavior monitored by Rootk-
itLibra right after it is installed, then RootkitLibra will not detect its presence
until the rootkit hides some file or directory or changes some file attributes but
hides those changes from the administrator. But, as we all know, the fundamen-

1238 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

Benchmark w/o RootkitLibra w/- RootkitLibra %

PostMark 802.5 813 1.31%
find 27.93 30.03 7.52%

Table 2 Performance of macro benchmark.

tal behavior of a rootkit and similar malware is to hide other malware and itself.
So, if the malware does not hide itself or any other malware then it is caught
anyway.

5.2 Performance Overhead
All of the performance overhead experiment uses Xen 3.0.2-2 as VMM and

linux 2.6.16 as the monitored system. The monitored systems’ filesystem uses
NFS protocol version 3. The complete filesystem resides in NFS server. The test
system is a Pentium D (3.00GHz) PC with 1GB RAM and a SATA hard disk
drive. The Xen control domain(Dom0) is configured with 873MB of RAM while
the monitored OS(DomU) is configured with 128MB RAM. Similarly, machine
that hosted NFS Server is Pentium 4 (3.4GHz) PC with with 1GB RAM and
SATA hard disk drive. Both NFS server and client are on the same 1.0Gbps
network switch.

For macro benchmark test, we used Postmark14) benchmark and find utility
program. Postmark was basically designed to measure the performance of a file
system used for electronic mail, netnews and web based services. It creates a large
number of randomly sized files and performs a specified number of transactions
on those files. Each transaction has two sub-transactions viz. create or delete and
read or append. The configuration we chose consisted 100,000 transactions across
20,000 files and 1,000 subdirectories with equal biases for transaction types. The
size of the randomly created files were between 512B and 16KB.

Table 2 shows that RootkitLibra adds a very minimal overhead of 1.31% to the
system runtime when tested with Postmark filesystem benchmark. Similarly, it
also shows the result of find command. The reason for a slightly high overhead
during find is because when we use find command based on inode of a file, it
traverses each and every file, directory and device in the filesystem and retrieves
various filesystem data/metadata during its runtime. RootkitLibra extensively
uses those data and hence the higher overhead. This overhead possibly represents

the worst-case runtime overhead due to RootkitLibra.

6. Discussion

Despite being very robust, tamper proof and effective against kernel-level rootk-
its our system has some limitations. The limitations arise due to the following
reasons.

Transient malware that does not alter filesystem information Since
RootkitLibra is a behavior based malware detection system, it relies on a funda-
mental behavior of a typical rootkit or any other malware whereby the malware
attempts to hide various files, directories or make changes to the attributes of dif-
ferent files in a filesystem and hide those changes from the administrators. But,
there can be a malware which is transient in nature and does not aim to per-
sist and does not show any behavior monitored by RootkitLibra. Such malware
evades the detection process of our system.

VM Detection There is every chance that a clever attacker can detect the
presence of VMM layer beneath the OS17),21),22). Running an OS in a virtualized
environment leaves many tiny footprints such as the prolonged time for I/O
operations, device access, certain virtualized instructions compared to the similar
timings in non-virtualized environments10). If an attacker uses these techniques
to detect the virtualized environment and thus change its behavior, RootkitLibra
may not detect the malware activity. But there have been efforts to counteract
the VM fingerprinting too18).

Virtualization based rootkits King et al.16) first proposed the concept of
VM-based rootkit which gets installed beneath the host OS. Similarly, there
have been efforts to build hardware virtualization based rootkit such as HVM-
rootkit19), Blue Pill23) and Vitriol26). These rootkits work in VMM layer where
RootkitLibra resides. In effect, these rootkits can compromise RootkitLibra and
render it ineffective.

Advanced rootkits capable of changing System Call Interface Rootk-
itLibra relies on the knowledge of system call interface of the host it is monitoring.
System call interface is a pretty stable interface which is hardly changed from
version to version of OS. Rather than being changed, system call interface is
generally extended in a newer OS version. This reliance on stable interface like

1239 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

system call interface adds to the portability of RootkitLibra. But, if there comes
a powerful rootkit which is capable of changing the system call interface, Rootk-
itLibra may not work correctly. We have not encountered any rootkit which has
this capability.

7. Related Work

There have been a number of past work towards an efficient and robust IDS
that use virtualization8),9),12). In this section we would like to analyze some of
the previous work and discuss some of the similarities and dissimilarities with
our work.

VMI9) started the concept of placing the IDS outside the VM it is moni-
toring for isolation and robustness. Its livewire system basically analyzes the
low-level VM states such as memory pages and disk blocks of a particular VM
from outside the VM. Similarly, Storage-based Intrusion Detection Sys-
tem20) exploits the isolation obtained from the use of a file server such as NFS
Server. While VMI uses various policies that examine the low-level VM states to
detect malware, Storage-based IDS uses rules to monitor malware-like activities
in remote storage area. These policy/rule based systems have rules which often
mistake legal filesystem activity as malware-like activity and hence result in a
number of false-positives. But RootkitLibra uses behavior-based approach and
cross-view technique both of which have numerous advantages over traditional
approaches. Moreover, RootkitLibra uses some semantic gap bridging techniques
to get high-level states of VM in VMM and also do not have any false positives.
Also, Storage-based IDS requires a separate trusted channel between the stor-
age device and a trusted admin console but our system does not need any extra
channels and relies solely on the trusted isolation provided by VMM.

VMWatcher11) elevates the VM Introspection methodology to provide “out-
of-the-Box” malware detection capability. VMWatcher provides the capability
to run off-the-shelf anti-malware tools outside the host OS by bridging the se-
mantic gap. The semantic view reconstruction process used by VMWatcher uses
substantial OS specific knowledge such as the knowledge of process table. This
dependency on a specific OS version requires it to have different semantic view
reconstruction process for different OS versions. This loses its portability. But

RootkitLibra does not rely on any version specific details of an OS but rather
makes use of the knowledge of stable system interface such as system call interface
and hence is more portable.

Copilot13) monitors the presence of kernel rootkits by periodically scanning
the kernel memory area. It runs the monitoring system in a separate PCI card
thereby keeping a strong isolation between the detection system and malware.
While this system presents a robust detection model the necessity of a separate
PCI card and a firmware into it makes it very rigid and inflexible. Also, because
of the strict dependence on objects like kernel modules of some specific version of
OS into the firmware, this approach cannot be easily ported to different versions
of OS. On the other hand, our approach provides a strong isolation to the rootkit
detection system from a possible malware attack due to the use of virtualization
technology. In addition to it, our system does not depend on any particular
versions of OS or VMM.

Strider Ghostbuster5) pioneered a cross-view approach that compares the
user level view with the kernel level view of the same system as well as compares
the “internal view” with the “external view” in order to detect hidden files and
processes. If the two views present any inconsistencies the system raises a flag for
malware detection. The major disadvantage of this approach is that the whole
detection process is not swift and needs the entire disk scan along with the reboot
of the system from a trusted OS. On the other hand, RootkitLibra is very efficient
regarding the overhead incurred and also runs live with the host OS without the
need of any system reboot for any comparison or detection.

Along with these virtualization based intrusion detection systems, there
have been lots of efforts from different areas on developing various host-based
IDS1),4),15) and network-based IDS3). These host-based systems do not have
the problem of overcoming semantic gap but have a strong challenge to remain
isolated before being subverted by advanced malware like kernel-level rootkits.
Network-based detection system on the other hand have relatively higher iso-
lation from any possible malware in the system compared to their host-based
counterparts but lack the access to important system states. RootkitLibra by
virtue of virtualization maintains a strong isolation from malware at the same
time acquires enough semantic view of the host to perform its job effectively.

1240 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24



IPSJ SIG Technical Report

8. Conclusion

As the malware technology develop further and target various kernel entities,
it is of utmost importance to guard the kernel and the integrity of filesystem. In
this paper, we have presented RootkitLibra, a VMM-based simple and efficient
filesystem integrity checker and rootkit detector capable of detecting the stealthy
and elusive kernel-level rootkits. RootkitLibra, by virtue of its location in VMM is
tamper-proof and it acquires OS view of files/directories and related information
in VMM through various semantic gap bridging techniques in order to effectively
detect the presence of malware. Our experiments with 8 real world rootkits prove
its effectiveness and further overhead experiments prove its efficiency.

References

1) Chkrootkit. http://www.chkrootkit.org/.
2) Packet Storm Security. http://packetstormsecurity.org/UNIX/penetration/

rootkits/.
3) Snort. http://www.snort.org/.
4) The Samhain File Integrity/Host-based Intrusion Detection System. http://www.
la-samhna.de/samhain/.

5) D.Beck, B.Vo, and C.Verbowski. Detecting Stealth Software with Strider Ghost-
Buster. In Proceedings of the 2005 International Conference on Dependable Systems
and Networks (DSN ’05), pages 368–377. IEEE Computer Society, June 2005.

6) D.P. Bovet and M.Cesati. Understanding the Linux Kernel (3rd Edition), 2006.
7) S.Cesare. SysCall Redirection Without Modifying the SysCall Table, 1999. http:
//vx.netlux.org/lib/vsc05.html.

8) G.W. Dunlap, S.T. King, S.Cinar, M.A. Basrai, and P.M. Chen. ReVirt: Enabling
Intrusion Analysis Through Virtual-Machine Logging and Replaying. In Proceedings
of the 2002 USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’02), pages 211–224. ACM, December 2002.

9) T.Garfinkel and M.Rosenblum. A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In Proceedings of the 2003 Network and Distributed
System Security Symposium (NDSS ’03), February 2003.

10) R.P. Goldberg. Survey of Virtual Machine Research. IEEE Computer Magazine,
7:34–45, June 1974.

11) X.Jiang, X.Wang, and D.Xu. Stealthy Malware Detection Through VMM-Based
“Out-of-the-Box” Semantic View Reconstruction. In Proceedings of the 2007 Com-
puter and Communications Security (CCS ’07), October 2007.

12) A.Joshi, S.T. King, G.W. Dunlap, and P.M. Chen. Detecting Past and Present

Intrusions throught Vulnerability-specific Predicates. In Proceedings of the 2005
Symposium on Operating Systems Principles (SOSP ’05), pages 91–104. ACM, Oc-
tober 2005.

13) N.L.Petroni Jr., T.Fraser, J.Molina, and W.A. Arbaugh. Copilot - a Coprocessor-
based Kernel Runtime Integrity Monitor. In Proceedings of the 13th USENIX Se-
curity Symposium, pages 13–23, August 2004.

14) J.Katcher. Postmark: A new file system benchmark. Technical report tr3022,
Network Appliance, October 1997.

15) G.H. Kim and E.H. Spafford. The design and implementation of tripwire: A file
system integrity checker. In ACM Conference on Computer and Communications
Security, pages 18–29, 1994.

16) S.T. King, P.M. Chen, Y.M. Wang, C.Verbowski, H.J. Wang, and J.R. Lorch.
Subvirt: Implementing Malware with Virtual Machines. In Proceedings of the 2006
IEEE Symposium on Security and Privacy (S&P ’06), pages 314–327. IEEE Com-
puter Society, May 2006.

17) T.Klein and Scooby Doo. VMWare Fingerprinting Suite, 2003. http://www.

trapkit.de/research/vmm/scoopydoo/index.html.
18) T. Liston and E. Skoudis. Thwarting Virtual Machine Detection, Au-

gust 2006. http://handlers.sans.org/tliston/ThwartingVMDetection Liston

Skoudis.pdf.
19) M.Myers and S.Youndt. An Introduction to Hardware-Assisted Virtual Machine

(HVM) Rootkits, August 2007. http://crucialsecurity.com.
20) A.G. Pennington, J.D. Strunk, J.L. Griffin, C.A.N. Soules, G.R. Goodson, and

G.R. Ganger. Storage-based Intrusion Detection: Watching Storage Activity for
Suspicious Behavior. In Proceedings of the 12th Usenix Security Symposium, pages
137–152, August 2003.

21) D.Quist and V.Smith. Detecting the Presence of Virtual Machine using Local
Data Table. http://www.offensivecomputing.net.

22) J.Rutkowska. Red Pill: Detect VMM using (almost) One CPU Instruction, Novem-
ber 2004. http://invisiblethings.org/papers/redpill.html.

23) J.Rutkowska. Subverting Vista Kernel for Fun and Profit [Online]. In Black Hat
2006, August 2006.

24) A.C. Arpaci-Dusseau S.T.Jones and R.H. Arpaci-Dusseau. Antfarm: Tracking
Processes in a Virtual Machine Environment. In Proceedings of the 2006 USENIX
Annual Technical Conference), pages 1–14, June 2006.

25) A. Shah. Analysis of Rootkits: Attack Approaches and Detection Mechanism.
http://www-static.cc.gatech.edu/∼salkesh/files/RootkitsReport.pdf.

26) D.A.D. Zovi. Hardware Virtualization Rootkits. [Online]. In Black Hat 2006,
August 2006.

1241 c© 2009 Information Processing Society of Japan

Vol.2009-ARC-183 No.30
Vol.2009-OS-111 No.30

2009/4/24


