
IPSJ SIG Technical Report

TCPmig: Migration of processes with TCP

sockets in Single IP Address Cluster

Balazs Gerofi ,†1 Hajime Fujita †1

and Yutaka Ishikawa †1

Single IP Address cluster offers a transparent view of a cluster of machines as
if they were a single computer on the network. In such an environment, process
migration can play a significant role in order to provide services seamlessly and
to increase sustainability. We present TCPmig, a mechanism for migrating pro-
cesses with TCP connections. Preliminary test results show that the transition
is smooth even under high bandwidth network traffic, furthermore, the prob-
lem of preventing incoming packet loss during the migration is also addressed.
TCPmig is implemented entirely in a kernel module for Linux 2.6, without any
modifications to existing kernel code.

1. Introduction

As the Internet is becoming more and more the common scene of our everyday
life, online service providers encounter the need of deploying infrastructures that
not only ensure high availability and reliability but at the same time scale well
with the increasing number of clients. Moreover, there is an emerging urge to-
wards building and operating computing sites with sustainability in mind. Most
importantly, reducing energy consumption as much as possible1).

A cluster of inexpensive commodity computers connected with high-speed inter-
connects can achieve comparable performance to special-purpose supercomputers
while it offers much better cost efficiency. Thus, deploying cluster-based server
systems is becoming common-place. This sort of systems are potentially easy to
build and also to extend. However, efficiently addressing scalability, reliability,
fault tolerance and sustainability is challenging from the software development
point of view.

†1 The University of Tokyo

Fig. 1 Comparison between NAT and broadcast based Single IP Address Clusters

Single System Image (SSI) systems intend to address these problems on the
operating system level and therefore letting application developers truly concen-
trate on business logic instead of dealing with system programming issues2).

Process migration is a mechanism which decouples an application from the
physical machine that is executing it and allows the process to continue run-
ning on a separate computer, ideally, without any involved parties noticing the
transition. Process migration can be used for load balancing to address scalabil-
ity, it can increase fault tolerance and therefore makes the system more reliable
and it also allows deallocation of computers which decreases the overall power
consumption. Migrating applications that maintain TCP connections with their
clients can cause difficulties due to the strong integration of a connection with
its IP endpoints. Single IP Address Clusters help to overcome this problem by
offering a transparent view of a whole cluster as if it was a single computer on
the network. This makes it possible to migrate processes inside the cluster even
with TCP connections, theoretically without the peer noticing it.

Providing a single IP address can be realized in several ways. The most common
case is a cluster of machines with different local IP addresses and a router in
front of them, which in turn translates the IP addresses appropriately. Linux
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Virtual Server3)4), TCP Router5), and SAPS6) are based on this idea. In this
case however, each time a connection is moved the router has to be updated
which is extra administration, and besides, it can lead to incoming packet loss7).

Contrary, in a broadcast based cluster each node is equipped with a public
and a local interface. The same IP address is assigned to public interfaces and
the local ones are used for in-cluster communication while the router simply
broadcasts each incoming packet to the whole cluster. Windows NLB8), ONE-
IP9), Clone Cluster10), and Hive Server11) are examples of broadcast based Single
IP Address clusters. Fig. 1 depicts the difference between the two approaches.
The broadcast property of this model makes it possible to migrate a connection
without any extra effort on the router.

We have developed TCPmig, a mechanism for migrating processes with TCP
connections. TCPmig moves the entire TCP state machine including buffer
queues and preserves seamless data transfer by adjusting timestamps on the des-
tination node appropriately. Experimental results show that TCPmig provides a
smooth transition even under high bandwidth network traffic condition. Unlike
other existing solutions, TCPmig addresses the problem of preventing incoming
packet loss by exploiting the broadcast property of the network configuration.

The rest of the paper is organized as follows, Section 2 briefly introduces the
Berkeley Checkpoint-Restart Library (BLCR)12) which we have modified in order
to support migration of processes with TCP connections. Section 3 explains the
Linux network stack focusing on structures which are relevant for the migration
while Section 4 details the actual migration mechanism. Performance evaluation
is given in Section 5 and related work is discussed in Section 6. Finally, Section
7 concludes the paper.

2. Berkeley Checkpoint-Restart library

The Berkeley Checkpoint-Restart library (BLCR)12) is an open source system-
level checkpointer designed with High Performance Computing (HPC) applica-
tions in mind. In order to make an application checkpointable there is no need to
modify its source code. Basic support for BLCR can be enabled by executing the
application via a special tool provided by the BLCR package, linking the applica-
tion statically with the BLCR checkpoint library or forcing the BLCR dynamic

Fig. 2 BLCR checkpoint mechanism

library to be loaded during the application’s startup. Furthermore, BLCR offers
a convenient property on the way how it interacts with its context file. All pro-
cess resources are written sequentially (i.e. no file repositioning is issued) which
ensures that even a socket, fifo or a pipe can be used for this purpose.

2.1 Checkpointing
The BLCR checkpoint library installs a dedicated signal handler in order to

make an application checkpointable. Fig. 2 demonstrates the main execution
steps during the checkpoint procedure, which are the following:
( 1 ) The target process is notified via a signal that checkpointing is requested
( 2 ) Each thread of the process executes the BLCR signal-handler, which issues

an ioctl() call on the libraries character special file in order to enter kernel-
space.

( 3 ) The threads are synchronized and one is chosen as leader
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( 4 ) Leader dumps thread relations, memory mappings and file descriptors
( 5 ) Each thread writes its registers, signal handlers and it’s pid
( 6 ) All threads are synchronized again and the program either continues run-

ning or gets killed according to the options specified
There are several restrictions on the checkpointable open files however. For

example, sockets are entirely not supported and regular files are assumed to be
available under the exact same path and are reopened during restart.

2.2 Restarting
Restarting an application is basically the mirror procedure of checkpointing.

The restart utility opens the context file (which can be practically establishing
a connection via a socket) and forks a new process. Fig. 3 illustrates the main
execution steps of the new process, which are the following:
( 1 ) An ioctl() call is issued on the BLCR character special file in order to enter

kernel-space
( 2 ) The process clones itself as many times as many threads the checkpointed

application contained.
( 3 ) One thread is chosen as leader
( 4 ) Leader restores process-wide resources, open files, memory maps and thread

relations
( 5 ) Each thread restores its pid, signal handlers and registers
( 6 ) All threads return to user-space where they finish up the BLCR signal

handler and eventually resume their regular execution

3. Linux network stack

In order to describe TCP migration in details it is necessary to provide an
overview of the Linux socket infrastructure. The main kernel structures and the
relations among them are introduced first. Fig. 4 gives an overview of the most
important structures with respect to migration highlighting some of their most
relevant fields.

3.1 Linux TCP socket infrastructure
There are several data structures used in the kernel for representing and main-

taining TCP connections. Each open file of a process is referred as a file struct
from the process’ file descriptor table. The directory cache entry field of a file

Fig. 3 BLCR restart mechanism

struct associates the file with the underlying inode structure.
In case the file is a socket the main socket structure is accessible through the

inode. The socket struct represents a general BSD style socket, holds high level
state information, function pointers to protocol specific methods and a reference
to the sock structure, which is the actual network layer representation of the
connection.

A rather central notion of the Linux network stack is the sk buff socket buffer
structure. Socket buffers are used for representing both incoming and outgoing
packets on the network. The sock structure maintains buffer queues (write, re-
ceive and backlog) which are linked lists of socket buffers. It also holds timestamp
values of last received and sent packets which are expressed in terms of kernel
jiffies.

In an object-oriented fashion the connection representation is further spe-
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Fig. 4 Relevant structures for migration in the Linux TCP architecture

cialized according to the actual protocol used. Internet connections are rep-
resented in an inet sock structure, which contains both local and remote IP
addresses and also port numbers. Connected sockets are maintained through
the inet connection sock structure which holds different timers, congestion con-
trol parameters and the hash bucket for the kernel hash table which is used for
determining which socket is responsible for an incoming packet.

Finally, the tcp sock structure keeps track of the TCP state machine. It stores
sequence numbers, TCP state, fields for RTT measurement, it controls slow start
mechanism and so on.

4. TCP migration

Similarly to process migration, TCP migration has also two phases, check-
pointing and restarting a connection. Checkpointing a TCP connection involves

copying necessary state information and dumping not yet processed packets from
the relevant buffer queues.

The Linux kernel maintains several socket buffer queues for different purposes.
The three most important ones are the write queue for outgoing packets, the
receive queue for incoming packets and the out-of-order queue for packets that
arrived with sequence numbers which do not fit into the expected sequence win-
dow. However, there are two other ones which are worth mentioning, namely
the backlog queue (which is part of the general sock structure) and the prequeue
(which is TCP specific and therefore maintained in tcp sock). We will show first
that copying the write queue, the receive queue and the out-of-order queue is
sufficient.

Every incoming packet is pushed upwards on the network stack by the
NET RX SOFTIRQ bottom-half. The backlog queue plays an important role
when a socket is locked (for instance by a user application) but there are packets
arriving from the network. In this case NET RX SOFTIRQ will place the pack-
ets on the backlog queue in order to prevent bringing the receive queue into an
inconsistent state.

On the other hand, there is a fast-path receiving mechanism in the Linux net-
work stack which is based on the prequeue. When a user application is waiting
on a socket for incoming packets (i.e. it is suspended on a read() system call)
it installs itself as a potential thread for performing fast-path processing. If the
sequence numbers of the incoming packets are matching the criteria of receiving,
the actual processing of the packets are put off into the thread’s process context,
therefore decreasing the amount of time the kernel spends in NET RX SOFTIRQ
bottom-half, which in turn increases the kernel’s overall responsiveness. This
mechanism serves the purpose of increasing the networking performance of the
kernel.

Every socket in the kernel, associated with a connection, resides on two hash ta-
bles. The so called ehash is responsible for keeping track established connections,
while bhash contains all sockets that are bound to a local port.

TCPmig ensures that both the backlog and the prequeue are empty during
the migration. Firstly, removing the socket from both ehash and bhash before
locking it guarantees that the backlog queue is empty, because every packet gets
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discarded which doesn’t have a matching socket hashed. Secondly, since the
migration is initiated by a signal, even if a thread was waiting in a read() system
call (and therefore registered itself for processing the prequeue), the system call
is abandoned due to the signal and prequeue processing gets disabled before
returning to user-space for executing the signal handler.

TCPmig provides a solution for preventing incoming packet loss during
checkpoint-restart of a TCP connection, which takes advantage of the broad-
cast based Single IP Address configuration. The packet capturing feature which
is activated on the destination node right before the socket is unhashed on the
source node is implemented as a netfilter hook in the kernel. Netfilter13) provides
a facility to attach arbitrary functions to certain phases of the network stack pro-
cessing. The capturing feature takes place on the NF INET LOCAL IN hook,
where packets which are to be delivered to the local machine appear. Packets
that match with the corresponding remote IP, remote port and local port of
the connection being migrated are simply stored on a buffer queue. Note, that
duplicated packets (based on sequence numbers) are stored only once.

Re-injection of packets that were captured during migration is discussed below,
along with the steps of restarting.

4.1 Checkpointing
Since we have tightly integrated the TCP checkpointing into BLCR, the actual

checkpointing is performed while the leader thread dumps the file descriptor
table of the process during process checkpointing. Please note, that the packet
capture-reinject feature is only activated in case the checkpointing is performed
over a socket and not a regular context file. In which case, the main execution
steps are the following:
( 1 ) The connection’s remote IP address, remote port and local port are col-

lected and a capturing request is sent to the destination node
( 2 ) A status response is read from the (context) socket whether the capturing

has been enabled successfully or not
( 3 ) Socket is unhashed and transmission timers are disabled
( 4 ) Relevant fields of the socket structures are copied, queues are iterated,

socket buffers serialized and dumped
( 5 ) Data sent to destination node and socket is closed

It is worth noting that second step ensures that the checkpointing and the
restarting procedures are synchronized at this point, i.e. the number of packets
captured on the destination node is going to be likely small.

4.2 Restarting
Similarly to the checkpoint phase, connection restarting is also part of the

BLCR process restarting and it is performed while the leader thread restores the
file descriptor table. It happens as follows:
( 1 ) Capture request is read from the context socket, the netfilter is enabled

and a status response sent back
( 2 ) Socket structures and queue data are read
( 3 ) A new socket is created and attached to the right file descriptor
( 4 ) Relevant fields are restored as well as buffer queues
( 5 ) IP destination cache entry is recreated
( 6 ) Socket rehashed and timers reactivated, netfilter is still active at this point,

thus no incoming packets get delivered to the socket
( 7 ) A tasklet for re-injecting captured packets and disabling netfilter is sched-

uled
The tasklet scheduled in the last step iterates the capture queue and re-injects

each packet to the network stack by calling the netfilter’s okfn() (in case of IPv4
this is the ip rcv finish() function).

Please note that there is a race condition between the tasklet and the
NET RX SOFTIRQ bottom-half on the capture queue. For preventing incon-
sistency, the queue is protected with a spinlock and the tasklet holds it while
bottom-halfs are disabled.

The tasklet eventually clears the netfilter and therefore enables the standard
packet receiving mechanism on the migrated socket.

4.3 Timestamps
TCPmig addresses the problem of adjusting timestamps on the destination

node in order to preserve data transfer seamlessly even after the migration. The
Linux TCP implementation uses kernel jiffies for timestamps which is a counter
increased approximetaly in every 10 milliseconds. Different nodes can have dif-
ferent jiffies obviously.

Timestamps are recorded during packet transmission and reception and they
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Fig. 5 TCP migration delay according to process image size

also form the basis of several TCP related algorithms. Round-trip time mea-
surement or congestion window size adjustment are some of the examples. In
order to keep these algorithms working appropriately after the migration occurs,
timestamps of the socket structures and buffers have to be updated on the des-
tination node. TCPmig overcomes this problem by recording the jiffies of the
source node during the checkpoint, computing the difference on the destination
node and adjusting the timestamps of each migrated structure accordingly.

5. Experimental results

We evaluate TCPmig to demonstrate its performance. The test environment is
a broadcast based single IP address cluster with two nodes, each node equipped
with a 2.2GHz Dual-Core AMD Opteron processor and two gigabytes of RAM.
The nodes are connected with a Gigabit Ethernet network for in-cluster commu-
nication and they both have a Gigabit Ethernet public interface.

We have migrated processes with different image sizes under high bandwidth
network traffic while the migration delay, i.e. the time difference between last
packet of the source node and first packet of the destination node has been
measured on the peer’s side. Changes in the TCP window size has been logged
as well. The process being migrated is generating a traffic of 120MB/s.
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Fig. 6 TCP Window size degradation according to process image size

Figure Fig. 5 shows the results of the migration delay. As it demonstrates,
the delay between the last packet on the source node and the first packet on
the destination node changes between 50 and 80 milliseconds regardless of the
process’ image size. TCPmig ensures that the checkpointing and the restarting
processes are synchronized before a socket is migrated, which keeps the packet
delay constant.

During normal execution the peek TCP window size scales between 24000 and
25000 in our test environment. As shown in Figure Fig. 6, there is no significant
window size change during migration for processes with less than 10MB image
size.

BLCR transfers the whole process address space before it iterates the file de-
scriptor table, which enlarges the process freeze time in case of a large process
image. The long freeze time in turn increases the period while the socket’s buffer
queues remain unprocessed even though the peer assumes the same communica-
tion conditions and sends data with the same bandwidth, for which the Linux
TCP reacts with decreasing the window size. Processes over 20MB suffer from
this phenomenon significantly.
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6. Related work

6.1 Connection migration
TCP migration has been implemented before. NEC corp. proposed transferring

TCP sessions between nodes for a distributed Web Server architecture under
Linux kernel version 2.47). Their environment assigns each TCP session a virtual
IP address which is reported to cause incoming packet loss due to the need of
updating the ARP table on the router each time a connection is migrated.

SockMi14) offers TCP migration with IP layer forwarding between the source
and the target node, therefore it is not feasible for addressing fault tolerance
in a cluster environment. Furthermore, their implementation requires applica-
tion specific support for exporting and importing connections. Tcpcp15) provides
similar capabilities to SockMi, where the source node establishes an IP layer for-
warding mechanism to the destination after the migration takes place. However,
Tcpcp is implemented as a kernel patch. Earlier forwarding based solutions were
also proposed in MobileIP16) and MSOCKS17).

TCP Migrate option18) is an extension to the TCP protocol in order to support
session migration. The transfer can be initiated by sending a special migrate SYN
packet with a previously arranged token in order to reestablish the connection. A
major drawback of this solution is that the peer must also support the protocol
extension.

Reliable sockets (ROCKS) and reliable packets (RACKS)19) both offer trans-
parent network connection mobility using only user-level mechanisms. They can
detect a connection failure, preserve the endpoint of a failed connection in a sus-
pended state and automatically reconnect. However, they both need the presence
of the extended socket library on each side of the connection.

6.2 Process migration
Process migration has been researched actively and several distributed operat-

ing systems offer the capability of migrating processes. V-System20), Amoeba21),
Mach22), Sprite23)24), MOSIX25) or OpenSSI26) are some of the examples, al-
though connection migration is supported in a very limited way. Amoeba provides
connection migration, but it restricts the implementation for dealing explicitly
with RPC communications, which are layered on the lower level FLIP protocol27)

instead of TCP/IP.
BLCR12) is an open source checkpoint-restart library for Linux, which can

be used for migrating processes. BLCR currently does not support connection
migration and reportedly does not intend to include this feature in its forthcoming
releases.

Zap28) implements a thin virtualization layer on top of the operating system
which provides the facility of migrating a group of processes. Zap’s VNAT29)

mechanism for virtualizing network resources supports connection migration. Its
main drawback is that it requires the Zap module to be loaded on the client side
as well.

NEC reports7) the integration of their TCP migration mechanism with process
migration, however they do not provide detailed information about the process
migration itself.

7. Conclusion and future perspectives

We have developed TCPmig, a mechanism for migrating processes with TCP
connections in a Single IP Address cluster. Preliminary test results show that
the migration is smooth (the packet delay caused by the migration is indepen-
dent from the process’ image size) even under high bandwidth network traffic.
TCPmig’s performance is proven to be good enough for applying it in real world
scenarios.

In the future we intend to further evaluate the performance of TCPmig, es-
pecially by applying it to real world applications. Building load balanced and
fault tolerant distributed Web or streaming servers, reducing overall cluster en-
ergy consumption and providing a distributed file system service built upon a
broadcast based Single IP Address cluster are some of our future perspectives.

A high-level scheduling protocol is to be designed and developed for supervising
decisions regarding which processes should migrate to which node. Decisions can
be drawn with respect to different policies, according to the goal of the given
system.
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