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Abstract Scene classification (e.g., landscape, sunset, night-landscape, etc.) is still a challenging problem in computer
vision. Scene classification based only on low-level vision cues has had limited success on unconstrained image sets. In other
hand, camera metadata related to capture conditions provides cues independent of the captured scene content that can be used
to improve classification performance. Analysis of camera metadata statistics for images of each class revealed that some
metadata fields are most discriminative for some classes. So, in this paper, we proposed to use the combined feature of scene
color histogram and camera metadata, and then using supervised Locality preserving projection(LPP) for feature space
transformation and dimension reduction, and finally, adapt Probabilistic neural network for scene classification. Experimental
results show that the classification accuracy rate can be improved compared with using PCA (Principal Component Analysis)

subspace learning method, and are also better than that with only the low-level vision feature(color histogram).
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1. Introduction

Automatically determining the semantic classification
(e.g., sunset, flower, landscape) of an arbitrary image is a
difficult problem [1,2]. Much research has been done
recently, and a variety of classifiers and feature sets have
been proposed. The most common design for such systems
has been to use low-level features (e.g., color, texture)
and statistical pattern recognition techniques [3,4], and
Corel)

Meanwhile, the recent proliferation of

achieve some success in constrained (e.g.,
environments.
digital images has created a greater need for scene
classification and at the same time, provided an additional
source of information to help solve the problem: camera
metadata embedded in the image files. Metadata recorded
by the camera includes information related to the image
capture conditions and values such as presence or absence
of flash, subject distance and exposure value. So in this
paper, we proposed to use the combined feature of the
low-level feature (color histogram) and camera metadata
for scene classification. However, The color space is
usually of high dimension. the high dimensionality of
feature vectors results in high computational cost. Several
transformations, including principal component analysis
(PCA) have been proposed to reduce the dimensionality
[5]. However, PCA is an efficient method for represent

information of data, but is usually non-effective for

classification, especially for complicated data like the
images in scene classification problem.

Recently, Locality Preserving Projections (LPP) was
of the
Laplace Beltrami operator on the Face manifold[6] and
the

proposed for approximate the eigenfunctions

new test can be explicitly mapped to learned
low-dimensional sub-manifold. Different from subspace
learning representation PCA which is optimal in the sense
of global Euclidean structure, LPP is optimal in the sense
LPP uses the

nearest-neighbor graph to seek the nearest neighbors,

of local manifold structure. However,
which will fail on database containing complex variations,
because the nearest neighbor samples may belong to
different databases containing

classes in complex

variations. So in this paper, we proposed to use
supervised LPP for learning the scene subspace which can
not only find true manifold of images but also recover the
intrinsic geometric structure of image feature space for
scene classification. After obtain subspace manifold, we
use Probabilistic Neural Network to handle the subspace
feature for scene classification. The Probabilistic Neural
Network (PNN) is a kind of neural networks that tries to
resolve classification problems (i.e. the separation of the
input space into different regions) that relies on the Bayes
decision theory rule applied to a multidimensional input

space. This architecture uses one unit for each training
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pattern and a one-pass learning process, that is
independent from other patterns. As a consequence, it is
very fast to train and easily extendable with new training
patterns. Application can be found, for example, in the
area of real-time classification [3]. Experimental results
show that the accuracy rate of classification with our
proposed method can be greatly improved compared with

other methods.
2. The image feature
2.1 Color histogram

Color histograms are widely used to capture the color
information in an image. They are easy to compute and
tend to be robust against small changes of camera
viewpoints. Given an image I in some color space (e.g.,
red, green, blue). The color channels are quantized into a
coarser space with & bins for red, m bins for green and /
bins for blue. Therefore the color histogram is a vector

h:[hl,hz, ------ ,hn]T , where n=k*m*l, and each

element hl. represents the number of pixels of the

discretized color in the image. We assume that all images
have been scaled to the same size. Otherwise, we

normalize histogram elements as:

- O
SV
thl hj
h= [hll,hzv, ------ ,hnl]T is the normalized color

histogram and is as the feature vector to be stored as the
index of the image database.
2.2 Digital camera metadata

The specification for camera metadata (used for JPEG
images) includes hundreds of tags. Among these, 26 relate
to picture taking conditions (e.g., Subject Distance, scene
Brightness(bv-value), FlashUsed,and ExposureTime). It is
clear that some of these cues can help distinguish various
classes of scenes. For example, low scene Brightness
tends to be appear more frequently with night
images(example for night-landsacep, candle light) than
other types of images. Some tags will be more useful than
others for a given problem.

In this paper, we use two of these tags for assisting
classification that we believe to be useful for scene
classification of our database. One is the bv-value which
represents global brightness of the camera images. With
the statistical analysis of the bv-value, it is very clear that

most of candle-light and night-landscape scenes have

minus value, whereas the other types scenes including
landscape, flower, sunset, text and back-light. So in this
paper, the bv-value can be used to separate our scene
database into two groups: candle-light, night-landscape
scenes group and the other types scenes group. At the
same time, we also can consider the bv-value as the one
feature of all scene features, and then use our subspace
learning and PNN method for classification. The other
camera tag is the subject distance which represent the
distance from the camera to the subject. With few
exceptions, only sunset, night-landscape and landscape
scenes in particular, can have a large subject distance and
a part of backlight scenes also have large subject distance.
Therefore, we expect distance measures to discriminate
strongly between the above mentioned types scenes and
other scenes including text and flower. This subject
distance is consider as one feature of all scene features.
3. Supervised Locality Preserving projections
3.1 The Problem

The problem of subspace learning for image indexing

and representation is the following. Given a set of scene

feature space X;,X,, " " , X, in R of images, the goal
is to find a lower dimensional feature representation fl. of
X; such that I f,. ~fj || reflects the neighborhood
relationship between f, and f/' . In other word, if

“fl. —fj || is small, then X; and X, are belong to
same class. Here, we assume that the images reside on a

sub-manifold embedded in the ambient space R".

3.2 The Algorithm

In this section, we give a brief description of Locality
Preserving Projections (LPP)[3]. LPP seeks a linear
transformation P to project high-dimensional data into a

low-dimensional sub-manifold thatpreserves the local

Structure of the data. X;,X,,«:+* ,X,, denote the set of

. . n
scene feature of image sample vectors in R

and X :[XI,XZ, ----- ,Xm] denotes the color histogram

matrix whose column vectors are histograms. The linear

transformation P can be obtained by solving the following
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minimization problem:

mlnz (P"x, - Pij ) B, 2)
P ij

y

where BI.J. evaluates the local structure of the image space.

In this paper, we use normalized correlation coefficient of
two sample as the penalty weight if the two sample

belong to the same class:

T
X, X
—————if sampleiand jisinsame class
B = DN
i Zl Xit Xt
0, otherwise
By simple algebra formulation, the objective function

can be reduced to:
1 T T \2
—Z-Z(P x,—P'x )’ B,
ij

_ T T T T
~ZP x,D,P Xi_ZP x,B,P'x,
i ij
=P'X(D-B)X'P=P'XLX'P (4)
D is a diagonal matrix; its entries are column (or row,

since B is symmetric) sums of B, D,.,. = ZjBi/" L=D-B

is  the Then, The linear

transformation P can be obtained by minimizing the

Laplacian matrix [5].

objective function under constraint:
P = argmin P"X(D-W)X"P 5)
PTXDX"P=1

Finally, the minimization problem can be converted to

solving a generalized eigenvalue problem as follows:

XLX"P = AXDX"P 6)

Input
units

Pattern
units

Output
units

Fig. 1 Probabilistic neural network architecture

4. Probabilistic neural network

The PNN model is based on Parzen’s results on
probability density function (PDF) estimators [7, 8]. PNN
is a three-layer feedforward network consisting of input
layer, a pattern layer, and a summation or output layer as
shown in Figure 1. We wish to form a Parzen estimate
based on K patterns each of which is n-dimensional,
randomly sampled from ¢ classes. The PNN for this case
consists of n input units comprising the input layer, where
each unit is connected to each of K pattern units; each
pattern unit is, in turn, connected to one and only one of
the ¢ category units. The connection from the input to
pattern units represents modifiable weights, which will be
trained. Each category unit computes the sum of the
pattern units connected to it. A radial basis function and a
Gaussian activation function are used for the pattern
nodes.

The PNN is trained in the following way. First, each
pattern(sample feature) f of the training set is normalized
to have unit length. The first normalized training pattern
is placed on the input units. The modifiable weights

linking the input units and the first pattern unit are set
such that W, =f1‘ Then, a single connection from the

first pattern unit is made to the category unit
corresponding to the known class of that pattern. The
process is repeated with each of the remaining training

patterns, setting the weights to the successive pattern
units such that W, ka for k=1,2,...,K. After such

training, we have a network which is fully connected
between input and pattern units, and sparsely connected
from pattern to category units. The trained network is
then used for classification in the following way. A
normalized test pattern f is placed at the input units. Each
pattern unit computes the inner product to yield the net

activation y.

Y = wkT *f @)

and emits a nonlinear function of Y, ; each output unit
sums the contributions from all pattern units connected to

. - . . —wllrs?
it. The activation function used is exp("" willeh)

Assuming that both x and W, are normalized to unit
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length, this is equivalent to using exp("" e

Fig. 2 sample scenes.

—+—Candle —®— NghtLandSca= Text —+#-Sunset —*— Flover —— Landscape *Eacldwsﬂ*

oo e

—————au

B

dim=2  dim=4 dim=6 dim=8 dim=10 dim=12 dim=14 dim=16 dim=18 dim=20

(a)

dim=2  dim=4  dim=6 dim=8 dim=10 dim=12 dim=14 dim=16 dim=18 dim=20

(b)

100 —— v: -
e/

N W /

20 ./ /

dim=2  dim=4 dim=6 dim=8 dim=10 dim=12 dim=14 dim=16 dim=18 dim=20

(c)

Fig. 3 The accuracy rate Vs. dimention by SLPP feature
extraction and PNN classifier; (a)The accuracy rate
with only color features(LPP(Color)); (b)The accuracy
rate with Combined features(LPP(Archl)); (b)The
accuracy rate with Combined features(LPP(Arch2)).

In This paper, we used the combinated features of color

histogram and camera metadata as the input elements of

PNN. In the first architecture, the scene database is firstly
separated into two groups according to the camera
BV-value, and then use supervised LPP subspace learning
method for feature extraction with color histogram and
camera distance features, and finally apply the LPP
subspace features to PNN for scene classification; The
architecture  combine the two

second camera

feature(BV-value and subject distance) and color
histogram into scene global feature, and then use
supervised LPP for subspace feature extraction and PNN

for classification of all scene classes.

5. Experimental results

Scene classification experiments are carried out to
compare the proposed method with other low-dimensional
feature indices. Most of the training scenes and the test
scenes have the size 2816 by 2112.The database includes
seven classes: landscape, night-landscape, sunset, candle
light, flower, back-light, text(Fig.2 give one scene for
each class in sequence). each class has about 50
scenes(altogether 337 scenes). In our experiments, we use
Leave-one-out method, each scene is as a test scene one
time and the others are as training scene for subspace
and PNN

discretize each RGB color channel to 8 levels. Therefore,

basis functions extraction training. We
the color histogram feature vector has 512 components. In
the first architecture(denoted by SLPP(Archl)), the
combined features(513 components) of subject distance
and color histogram are used for subspace learning, and
M(2,4,6,...,20) SLPP basis functions are retained for
feature extraction. So the obtained M subspace features
after projection are as PNN inputs for training. The output
of the first group PNN has 2 units(represent candle light
and night-landscape, respectively) and output of the first
group PNN has 5 units(represent text, sunset, flower and
so on).In the second architecture(denoted by
SLPP(Arch2)), the combined features(514 components) of
two camera tags and color histogram are used for
subspace learning, and also M(2,4,6,...,20) SLPP basis
functions are retained for feature extraction. So the
obtained M subspace features after projection are as PNN
inputs for training. The output of PNN has 7 units and
each output unit represent each scene class, respectively.
We also give experimental results using SLPP feature
extraction and PNN learning only with 512 color
features(color histogram) for comparison(denoted by
SLPP(Color)). Figure 3 show the accuracy rate of
(Candle:50;

different types of  test scenes
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Night-LandScape:49; Text:50; Sunset:49; Flower:50;
Landscape:50; Backlight:39; altogether: 337 test scenes)
of different algorithms(fig.3(a) LPP(color); fig.3(b)
SLPP(Archl); fig.3(c) SLPP(Arch2)) vs.
dimensions(Retained LPP features). It is clear from Fig. 3
that the accuracy of backlight scenes is about lower than
60%, and the accuracy rate of night-landscape and sunset
scenes are also not high and just near to 80% in the
SLPP(Color) algorithm (without metedata information);
SLPP(Arch2) can

night-landscape and sunset scenes classes to about 90%,

improve the accuracy  of
but the accuracy of backlight scenes is similar to the one
of SLPP(Color); SLPP(Archl) can not only improve the
accuracy rate of night-landscape and sunset scenes to
more than 90%, but also greatly enhance the accuracy rate
of backlight to about 80%. Figure 4 give the average
all(7)

dimensions(dimension=2,4,6,...,20).

accuracy rate  of scene  classes  vs.
In order to validate SLPP features more efficient than

other  subspace learning  algorithm(example for
PCA--Principal Component Analysis) in classification
field, we also applied PCA for feature extraction(PNN
learning for classification) for color
histogram(PCA(Color), two groups of scene selection
with 513 combined features
metedata (PCA(Archl)) and
(PCA(Arch2)).
scene classes are show in  Fig. 5(10 PCA features and 8

SLPP features). It can be seen from Fig. 5 that the

of color histogram and
514 combined features

The compared accuracy rates of different

accuracy rate of each scene class with SLPP feature

extraction is higher than that using PCA feature extraction.

Figure 6 gives the average accuracy rate of all 337 test
scenes using PCA and SLPP feature extraction and PNN
classification. It is evident that SLPP can extract more
efficient feature than PCA for classification, and the
accuracy rate can be greatly improved only combining a
few camera metadatas (here only two metedatas) with

low-level visual feature of scenes.
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Fig. 4 The average accuracy rate of all test scenes
using LPP(Color) LPP(Archl) and LPP(Arch2).
6. Conclusions
In this paper, we proposed to combine camera metadata
and color histogram as scene classification feature, and at
the same time, applied supervised LPP to extract a new
index from the original feature space, and then used PNN
for classification. Experiment results showed that the
accuracy rate of classification can be greatly improved
compared with other low-dimensional feature indices
(example for PCA).

[=PCAGolor BLPRGolor OPCAGYch!) OLPR(AcH) BFGAArGHD) B LPPGArend) |

Fig. 5 The compared accuracy rate of different scene
types using PCA and LPP for feature extraction,

respectively.
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6 The compared average accuracy rate of all test
scenes using PCA and LPP for feature extraction,
respectively.
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