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Abstract Learning with a dataset that contains both labeled data and unlabeled data is often called a

semi-supervised learning problem. In the last decade, the semi-supervised learning problem has become

an important research problem in many fields. This article presents a novel semi-supervised learning

scheme using a Bayesian Maximum A Posteriori Expectation Maximization (MAP-EM) algorithm with

a Dirichlet process prior (stick-breaking representation). The proposed scheme enables us to estimate a

mixture model under an unknown number of components and provides a simpler implementation than

other implementations such as Markov Chain Monte Carlo (MCMC) implementations. Several examples

of a Gaussian mixture are examined to validate the proposed scheme.
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1. Introduction

1.1 Motivation

Learning from a dataset containing labeled data and
unlabeled data is known as the semi-supervised learn-
ing problem [1] [2] [3]. These problems can be found in
many fields, including signal processing, image process-
ing, pattern recognition, and machine learning.

In this article, we propose a novel semi-supervised
learning scheme with a stick-breaking process prior [4],
which is a representation of the Dirichlet process prior.
The proposed scheme is based on a Bayesian Maxi-
mum A Posteriori (MAP) approach using an Expec-
tation Maximization (EM) algorithm [5] for a stick-
breaking process prior, which enables us to estimate

a mixture model under an unknown number of compo-

nents. It also provides a simpler implementation for a
mixture model with a stick-breaking process prior than
other implementations such as Markov Chain Monte
Carlo (MCMC). Several examples with Gaussian mix-
ture models are examined to evaluate the proposed
scheme.

1.2 Related work

There are many implementations of the Diriclet pro-
cess prior [6] [7]. Several MCMC implementations for
this prior can be found in [8] [9] [10] [11]. There are also
several alternative implementations for this prior using
the Variational Bayesian approach [12] or the Sequen-
tial Monte Carlo approach [13]. Although these imple-
mentations can be extended to semi-supervised learn-
ing (e.g., [14]), the MAP-EM implementation based on



our previous study [15] [16] [17] enabled us to realize a

simpler and faster procedure.

2. Dirichlet process EM-algorithm
for semi-supervised learning

2.1 Semi-supervised learning
Let Y := (y1,---

cally distributed d-dimensional random variables that

,yr) be independent and identi-

can be grouped into N¢ groups. The dataset Y con-
sists of both data y; with group label ¢;(€ {1,--- , N¢})
(labeled data), and data y; without group label ¢; (un-
labeled data).

dataset is often called the semi-supervised learning

Under such conditions, learning the

problem.
2.2 Bayesian mixture model

The model for such a dataset can be described as

p(Y, Cobs|©) := Hf(yi,cz-;e), 1)
where
o . | PE®Ie0) (Fcis given)
f@,e0) = { p(y|©) (otherwise) @

Cops stands for observed label variables, © stands for
all parameters of this model, and p(y|©) is the marginal
distribution of y given by

p(yl®) =Y p(c|®)p(ylc, ©). ®)

Obviously, this model can be considered as a mixture
model with group component distributions p(y|c, ©).
Typically, the probability of belonging to the group
p(c|®) is defined as

p(c|®) := Muilti(c; p), 4)

where Multi(-; p) is a multinomial distribution with
parameter vector p := (p1,- -+ , pN) under p; 2 0 and
Zf; G p: = 1. In many Bayesian approaches, the (prior)
distribution of parameter vector p is set as a natural

conjugate Dirichlet prior, i.e.,

p(p) := Dir(p;"), 5

where Dir(-;«y) is the Dirichlet distribution with the
parameter v, which is set as v := (1,---,1) in many
cases. This setting is also used in the experiments de-
scribed later.

When the group component distributions are ex-
pected to have simple shapes, the standard probabil-

ity distribution families (such as normal distribution)

are used for group component distribution p(y|c, ©) in
many cases. In contrast, the group component distri-
butions should be more flexible when the group com-
ponent distributions are expected to have complicated
shapes, as in many real data cases. To realize such more
flexible settings, one way that has been considered is to
also define the group component distributions as mix-

ture models:
p(yle,©) = Y mekh(y; bc ). (6)
k=1

Here, h(y;0ck) is the k-th component distribution of
the group component distributions p(y|c, ©); let us call
it the lower component distribution. The variable . x
is its parameter, and 7. x(€ R) represents its mixing
ratio.

In this paper, we propose a flexible Bayesian ap-
proach for this model with a stick-breaking process
prior based on our group’s previous study [15], which
enables us to avoid deciding the number of components
ne. More details are given below.

2.2.1 Group component distribution p(y|c, ©)

For a flexible Bayesian approach, we use a stick-
breaking process prior (a stick-breaking representation
of the Dirichlet process prior), as mentioned in our
previous study [15]. By using a stick-breaking process
prior, the group component distribution p(y|c,®) can

be written by using an infinite mixture model:

p(ylci e) = Z 7I'c,k,h(y; ec,k)i (7)

k=1
where the mixing ratio 7. is described by using an-

other variable v. (€ R) as

ver Il (A -vet)  (k22)

)]
Ve,k (k = 1)

Te,k =

the (prior) distributions of v, are defined as
P(ve,k) := Be(vek; 1, ), 9)

Here, Be(-) is a beta distribution, and a(€ R) is a hy-
perparameter representing the scale parameter of the
Dirichlet process. Instinctively, the hyperparameter o
corresponds to the “shrink” level of the mixing ratios
of the redundant lower component distributions [15].
To implement such a model in the following section,
considering that the expectation of the mixing ratio
e, rapidly decreases corresponding to the lower com-

ponent index k, it can be assumed that lower compo-



nents are truncated at sufficiently large index.

Note that, by using a latent variable z correspond-
ing to the index of the lower component distribution
h(y;0c,x), the group component distribution (7) can

also be represented as
p(yle,©) = p(zlc, O)p(ylz, c, ©), (10)
where

p(yl2,¢,0) = h(y; bc k),
p(2|c, ©) = Multi(z; me),

and me 1= (Tre,1, Te,2, "+ y Me,00)-

2.2.2 Lower component distribution h(y; 6cx)

In the experiments described in this paper, we de-
fined the component distribution h(y;6.,x) as a Gaus-

sian distribution, i.e.,
P(y; 0c k) := N (5 0c,k).- (11)

Here N(-) represents the Gaussian distribution. The

parameter 6. can be represented by
ec,k = (mc,ka z:«':,k:)) (12)

where mc, k(€ IRY) is a mean vector of the lower com-
ponent, and X.,x(€ R%*?) is the covariance matrix.

In this paper, for a convenient Bayesian implementa-
tion described later, the prior distribution of the pa-

rameter 0. is defined as a natural conjugate prior

given by
P(6e,k) := p(mec k| Ze,k)P(Se,k), (13)
p(mc,k 'Ec,k) = N(mc,k; Hy )‘_IECJ‘?)’ (14)
p(zc,k) =IW (Ec,k; No, RO) ) (15)

where u(€ R%), A(€ R), no(€ R), and Ro(€ R¥*?) are
hyperparameters of the natural conjugate prior, and
IW(-) denotes the inverted Wishart distribution.

2.3 Maximum A Posteriori approach and its

implementation

Under such settings of the Bayesian model, the pos-
terior distribution can be described as

P(Y, Cobs|©)p(O)
S p(Y,Cos|®)p(€)d0"
where © = (p, {ve,k}, {0c,x}), and the prior p(©) is

p(O|Y, Cops) = (16)

Ne oo
p(8) = p(p) [ | I p(ver)p(ber), (17)

c=1k=1

For a simple and fast Bayesian implementation for

semi-supervised learning modelling, we consider the
Maximum A Posteriori (MAP) approach, i.e., only the

most probable parameter,
OMAp = arg max (Y, Cobs|©)p(©). (18)

is used for the data modelling.

To estimate the most probable parameter Opap,
we consider an Expectation Maximization (EM) imple-
mentation based on the algorithm in [15]. As mentioned
in Section 2.2.1, it is assumed that lower components
are truncated at sufficiently large index K. To describe
details of this MAP-EM implementation, let us define
a MAP-EM Q@ function as

Q6;0) =3 4:(8;6), (19)
0,(8;0) = > r(c;y,0)p(2ly, c,©') x
log p(y|2, ¢, ©)p(2|c, ©)p(ylc, ©)p(c|®)p(©), (20)
where
p(yl2, ¢, ©)p(z|c, ©)

Pl &) = S ule,c, (e, 6)' e

I(c={)

r(cy,0) = { p(yle,©)p(cl®)
22 P(ylc,©)p(c|O)

(Ifcis given)(22)
(otherwise)

Here I(-) is an indicator function, ¢’ is the observed
group index and ©’ denotes the current parameter of
the model. By using this MAP-EM Q function (19),
our MAP-EM implementation can be summarized as

follows.

r Procedure of the MAP-EM algorithm —
(1) Initialize ©"°v.
(2) Repeat the following 2 steps until the Q func-
tion converges.
E-step: Evaluate the Q function: Q(6;0') by
using Eqn. (19) after ©’ is set to ©' « ©"ev,
M-step: Maximize the Q function: Q(©;0')
to update the parameter ©"° « arg maxe Q(©;0’).

Specifically, the procedure in the E-step and M-step

are described as follows.



( Procedure in E-step ~N

. . 3. Experimental results
To evaluate the Q function, compute following equa-

tions. To evaluate the proposed scheme, we performed sev-
O, =0 =klen = ¢,yn, ©') (23) eral numerical experiments based on two group compo-
T nent distributions.
Orcr = Z Ok (24) 3.1 Example 1: Two-dimensional example
-1
nT First, we consider a two-dimensional synthetic ex-
My = Z O.k Yn (25) ample. The dataset is generated by the following equa-
n=t tions:
T
s = O Yn¥n (26) .
ek 1; ok T ye = ((a+re) cos(st), (a+re)sin ()", (32)
\_ ) re ~ 1.4.d.U(—0.5,0.5), s; ~ i.i.d.U(0,2r), (33)
( Procedure in M-step ~ where
To maximize the Q function, update parameters by a:= { 2.0 (group 1) s (34)
following equations. 4.0 (group 2)

and Uf(a,b) denotes a continuous uniform distribution

onew = KOT’C'k (27) . . .
c, Op o+ K i410p0  +a—1 with range (a,b). By using these equations, 250 labeled
M W data items and 250 unlabeled data items are generated
Tyc,k .
mog’ = Oc—-l-)\ (28) from both groups (a total of 1000 data items). The
T,c,k
5 generated dataset is shown in Fig. 1.
nrew = O—wm (29) Fig. 2 shows the group component distribution esti-
3 no
Terk mated by the proposed scheme with a sufficient number
’ k_l ’
rnew Ve I (1 —vg) (2 2) (30) of iterations. As seen, this result indicates the reason-
C, ’
Ye,1 (k=1) able capability of the proposed scheme.
where .
Stk — Mo M7 i
¢ Myt :
Sk = mewpgnewT o (31)
+mc,k mc,k T,c,k

+Ry 4+ MmPe — p)(masw — wT

\ /

. te: tti
2.4 Hyperparameter settings (a) Labeled dataset. (b) Unlabeled dataset.

In this subsection, we describe the settings of hyper- Fig. 1 Dataset for modelling in Example 1. In (a), circles indi-

parameters that are used in the experiments shown in cate labeled dataset of the 1st group, and triangles the

the next section. In the stick-breaking process prior (9), labeled dataset of the 2nd group. (b) The unlabeled

. dataset fi both .
the scale parameter « is set to 2.0. The hyperparame- ataset trom both groups

R

ters in the natural conjugate priors for the lower com- %5
ponents (13)—(15) are set to A = 0.5, 4 = 0gq, no =d, |

=
S
7

SN
8
12z

and Ro = I4. Here 0q4 is a d dimensional zero vector, 2

R
SRS
35,

s
N

S5
s

and I represents a unit matrix of size d X d. For the

natural conjugate Dirichlet prior (4) for the mixing ra-

tio p, the hyperparameter v is set to v := (1,--- ,1), as *
(a) 1st group. (b) 2nd group.

mentioned before. Fig.2 Group component distributions obtained by the pro-

posed scheme in Example 1.



3.2 Example 2: Dual shrinking spirals

In this example, we considered dual shrinking spirals
data based on the shrinking spirals data in [18]. The
dataset is generated by

Yt = Ut + v, (35)

{ (r¢ cos 8¢, —T¢ sin sz, 87rst)T (group 1)
Ut =

(—7¢ cos s¢, T sin 8¢, 87s:)T  (group 2)

where
8¢ ~1.3.d.U(0,27), vy ~i.4.d.N(0s,I3), 37)

and r; = 13 — s;. By using these equations, 250 labeled
data items and 250 unlabeled data items are generated
from both groups, the same as in Example 1. The gen-
erated dataset is shown in Fig. 3.

Fig. 4 plots the estimated results obtained with the
proposed scheme. This figure indicates that the shapes
of the dual spiral are clearly obtained by the proposed

scheme under the semi-supervised learning settings.

3.3 Example 3: Effect of unlabeled data

To validate the effect of using of unlabeled data, we
considered plural size of two-dimensional dataset gen-
erated from the same equations as Section 3.1. The
size of datasets is to be set as described in table 1.

Fig. 3.3 shows the predictive loss and accuracy rate
obtained by a hundred of times of the experiment for
each datasize. In this paper, predictive loss is defined
as negative logarithm of likelihood function for the un-
labeled test dataset, which is generated by the same
equations as the dataset for learning. And accuracy
rate is the percentage of correctly classified the test
dataset to the group components.

This figure indicates that the predictive loss decreases
and the accuracy rate is better as the number of unla-

beled data increase.

Table 1 The size of the dataset used in example 3

1st group 2nd group Total
Labeled | Unlabeled | Labeled | Unlabeled
50 0 50 1] 100
50 10 50 10 120
50 20 50 20 140
50 30 50 30 160
50 40 50 40 180
50 50 50 50 200

4800
4750
4

© 4600 3

5 4500 ~3

& 4450
4400
4350
4300 . . . . ,

0 20 40 60 80 100
Number of unlabeled data

(a) Predictive loss.

0 20 40 60 80 100
Number of unlabeled data

(b) Accuracy ratio.

Fig. 5 Predictive loss and accuracy rate in example 3.

4. Conclusion

In this article, we proposed a novel semi-supervised
learning scheme using a Bayesian Maximum A Poste-
riori Expectation Maximization (MAP-EM) algorithm
with a Dirichlet process prior (stick-breaking represen-
tation). Several examples of Gaussian mixtures are ex-
amined to evaluate the proposed scheme. The results
indicated the capability of the proposed scheme. Espe-
cially, in case of the number of labeled data is small,

the proposed scheme can be seen advantageous.
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