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1. Intreduction

Severai implementation schemes are reviewed for
Bayesian learning:
a. Sequential Marginal Likelihood Online Change
Detector
b. Natural Sequential Prior for Online Bayesian
Learning
c. Monte Carlo HMM
d. EM Algorithm for Density Esitimation with
Dirichlet Process Prior
Descriptions will be brief. Details will be available in

the references cited.

2. Sequential Marginal Likelihood Online
Change Detector
Consider sequential data
Vi = Vs V1) = Vi V1) £=12,., (1)
from a system with changing parameter(s).

Challenges arise when parameter changes abruptly
where one sometimes wants to detect changes.
Under the present setting, a plausible likelihood

function can be of the form
P(y,16,8) (2)

where 6, is the parameter vector and £, is a possible

hyperparameter.

One method of iearning parameters as weli as
hyperparameter for use if the parameter vector
changes are unknown, is to consider stochastic
search dynamics (sequential prior) for parameters

and hyperparameter:

P(6,, 5,165 B-13 Y1) (3)

where in [1] y,.;, the information available at 7-1, is
taken into account instead of random walk, where no
information is taken into account. An attempt is
made to perform change detection by examining the

time dependency of the sequential marginal
likelihood

10 Py, | ym)
where

PG )= [[PO116, )Pt | 31,1 )d0de,
1

PO =] [P, 1910

s=1

C))

with ¢, := (B, 7). One of the main reasons for using
P(y:y1:1-1) as change detector is that this quantity can
be regarded as the “degree of surprise” of new data
y, with respect to the past sequential data y;..;.
Equation (4) is evaluated by Sequential Monte Carlo
so that linearity as well as Gaussian assumptions are

)



not made.
Note that evaluating the marginal likelihood by

Py = _[ I Py 16.2) 5)
P(BL,,,)P(65,0)db). da,., dOydax,
is often difficult with Monte Carlo because the
likelihood function landscape can be complicated
and the dimension of the multiple integral (5) can be
high. This study uses the decomposition

1
P =] [P 1150
s=1
and evaluate marginal likelihood sequentially.
The likelihood function in this study is defined by

P16 B = ey, - 107

Z(B)
with parameter vector 6, and S, is a hyperparameter
level of the
observation with normalizing constant Z(4,). This

that represents the uncertainty
likelihood function includes a supervised learning
problem in which the data set is given as a pair (y,,
x;), with x, as input while y, as output, so that f{§,) =
f(x:;6,). The likelihood function also includes time
series data x,.,.For the sake of notational simplicity,
the dependency on x, as well as on x,.,.,; will be
suppressed in the following arguments as long as
confusion does not arise.

In order to perform Monte Carlo evaluation of
marginal likelihood (5), assume that the draws at the
previous step

(6§2-1,08)-1) ~ P(Bose1s st | Pramt)si =1 N
are available. Use equation (4) to generate
GD,@M),i=1,.,.N
and evaluate

P(y, | Y1) = ZP(y 16,2y,

i=1

Change Detection in Nonlinear Dynamical System

Consider a noise-corrupted version of the
well-known Roessler dynamical system, as described
by
—=-y-z+v,
dt y x

where v,, v, and v; are noise processes.

dy dz
—:x+ay+v},,—=bx—cz+xz+vZ
dt dt

Change in this particular demonstration is incurred
by

a=a, =022, 0<r<500
a=a, =035,500 <z <700

where (b,¢)=(0.4,4.5) is fixed in the Roessler system.
The noise amplitude is set at =0.01. Fig. 1 gives
the x trajectory between =400 and r=600. The
change, which occurs at =600, appears to be subtle.
Using the delay-coordinate embedding [1], one can
attempt to embed the 3-dimensional dynamics onto a
1-dimensional delay coordinate system [1]. Fig.2
plots P(x/x..;) in log scale. A reasonable dip is
discernible shortly after +=500.

Application to online face detection with video
sequences is found in [2].

3. Natural Sequential Prior for Online Learning
In [3] the authors consider the class of priors of the

form

1 -L6,-6.)7%7(6,-6,4)
-1 e 2
Z(():/) )

and design X, which minimizes approximate expected

P(al ll’t

K-L divergence between P(-|6,) and P(-|6,_;) with
respect to the prior:
Expected KL= [ Dy (6,16,-)P(6,16,-3%,)d6,

D610, [P 16 ytog T2 oty

while the Shannon entropy of the prior
S(P;6,_;%,) = —J.P(G, [6,-15Z,)log P(6, | 6,_1;Z,)db,

held constant. This amounts to minimizing the expected
KL divergence with stochastic search volume held
constant. Note that.

Dy, (6,16,1) =

%(a, =0, Frt(6,~0,2)+ (16,6, IP)

where Fx—l stands for the Fisher information matrix at

t-1 so that an approximate solution to this constrained
minimization is given by

2r o Ft—l



provided that ||6,—6,_,| is small. This gives rise to the
proposed sequential prior

R e ARG

Z(F’

P(6,10,13F) = (6)

It should be observed that if the covariance matrix is
taken to be the identity matrix, then (6) reduces to the
conventional random walk sequential prior where no
observation information is taken into account.

scheme often

The proposed outperforms  the

conventional random walk sequential prior [3].

4. Monte Carlo HMM Sports Event Detector

Consider a sports event detection problem where one
wants to perform an automatic indexing of, e.g., kick off,
corner kick, free kick, throw in, goal kick, among others.
This is a nontrivial task because of the difficulties
associated with manual indexing i.e., cost, time, and
human resources/errors to name a few.

Reference [4] formulates the problem via HMM:

stochastic dynamics

P10) =TT, Pl 1%-1,0)P(x0 1 6)

observation

Py 1x0) =1 1., 20 1%.0)PCe, 1 x,.0)

where (y1,..., y1):=y=(f e) with f feature, e event,
(x1,..., X1):=x, trajectory of stochastic dynamics,

(a,b,c, m):=0, parameters, and L:=#(symbols)(see
Fig.4)).

In [4], features include position/velocity of each
player, average velocity, variance, median of the
players, among others. The number of the available
features are large so that one needs to perform
several preprocessing steps to extract important
features. The likelihood functions are multinomial
while the priors for the parameters are assumed to be
Dirichlet. A schematic picture of the algorithm is
depicted in Fig5.

Performance is evaluated, by defining event predictive
capability ratio [4]:
S(event)

= P(e! | £ ) (when event actually occurs)

P(e[™" | £ )(when event does not occur)

One observes that

> 1, high predictive capability
S(event): < 1,low predictive capability

= 1, little use

Table 1 shows this quantity for several events. Fig. 6
shows a detection example where the solid rectangle
shows that the event (corner kick) actually takes place.

The performance appears reasonable.

5. DPEM

Consider the Gaussian mixture model

K
i~ p16)= ., mN3H00)
i=12,...,N

0= (,ul,...,/IK'O'ZI,...,O'Kz,ﬂl,...,ItK)
0~ Go(6)

where G, stands for the underlying base distribution. If K
is known, then one can perform, e¢.g., EM to estimate the
parameters involved. If, however, the number of mixture
components is unknown, the problem becomes nontriviali.
One possible approach is to choose K in terms of
appropriate information criterion, e.g., AIC/BIC. Another

possible algorithm is via the Dirichlet process prior:

¥, ~ p(3;16,) = N(y;30,,07)

i=12,.
6,=(1,07)~G(6,)
G ~DP(Gy,x)

An EM algorithm is proposed in [5] with stick-breaking
construction (Fig.7). Several applications are found in

[5].
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Fig. 1 x-coordintate of the Roessler system. The change at
=500 appears to be subtle. (from [1] with permission.) ©
IEEE
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Fig. 2 A discernible dip is seen in the Sequential Marginal

Likelihood. (from [1] with permission.) © IEEE
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Fig. 4 HMM sports event detection
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Fig. 6 Detection example
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Fig. 7 Stick-breaking construction of DP
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