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Assume that G is a graph and that R is a set of requests which is represented by a reachable ordered pair of
nodes in G. The problem discussed in this paper requires us to assign edges to each node such that all requests in
R are satisfied and the total number of edges all nodes have is minimized for a given G and R. To satisfy a request
(u,v), a set of assigned edges to u and v must contain a path from v to v in G. This problem is called the Minimum
Certificate Dispersal problem (MCD) and is NP-hard even if the input graph is restricted to a strongly connected
one. In this paper, we consider approximability of MCD. We clarify an optimal approximability / inapproximability
bound in terms of order: we prove the approximation ratio of MCD for strongly connected graphs is Q(logn) and
MCD has a polynomial time approximation algorithm whose factor is O(logn) (n is the number of nodes in G). In
addition, we prove that when a given graph is restricted to an undirected graph, the MCD algorithm proposed in
[11] guarantees 3/2 approximation ratio.

1 Introduction public-key based security systems, which are known
as a major technique for supporting secure communi-
cation in a distributed system [3, 4, 5, 6, 7, 10, 11].
The main problem of the systems is to make each
user’s public key available to others in such a way
that its authenticity is verifiable. One of well-known
approaches to solve this problem is based on public-
key certificates. A public-key certificate contains
public key of a user v encrypted by using private
key of a user u. If a user u knows the public key of
another user v, user u can issue a certificate from u
to v. Any user who knows public key of u can use it
to decrypt the certificate from u to v for obtaining
public key of v. When a user w has communica-
tion request to send messages to a user v securely,
w needs to know public key of v to encrypt the mes-
sages with it.

The problem discussed in this paper is, for a given
directed graph G = (V, E) and a set of requests, how
to assign edges to each node such that all requests
are satisfied and the total number of edges all nodes
have is minimized. A request is represented by a
reachable ordered pair of nodes in G. To satisfy a
request (u,v), a set of assigned edges to u and v
contains a path from u to v in G. This problem is
formulated in [11] and called the Minimum Certifi-
cate Dispersal problem (MCD). The given set R of
requests is classified according to the elements of R:
R is subset-full if there exists a subset V’ of V such
that R consists of all reachable pairs of nodes in V’,
and R is full if the subset V' is equal to V.

The problem is motivated by the requirement in



Table 1: Approximability / Inapproximability

Restriction on request Arbitrary Subset-full | Full
Hardness (1] (NP-Complete) open
our paper Q(logn)
Approximation ratio [11] 2
PP our paper O(logn) 1.5 (for undirected graphs)

All certificates issued by the users in a network
can be represented by a certificate graph: each node
corresponds to a user and each directed edge corre-
sponds to a certificate. For satisfying a communica-
tion request from a node w to v, node w needs to
get node v’s public-key. When the node w computes
v’s public-key, w uses a set of certificates stored in w
and v in advance. Therefore, in a certificate graph,
if a set of certificates stored in w and v contains a
path from w to v, then the communication request
from w to v is satisfied. In terms of cost to maintain
certificates, the total number of certificates stored in
all nodes must be minimized for satisfying all com-
munication requests.

The minimum certificate dispersal with a restric-
tion of available paths has discussed in [7]. That is,
when a graph, a set of requests and a set of paths for
each request are given, the problem is to assign the
edges to each node such that all the requests are sat-
isfied using the given paths and the total number of
edges is minimized. They proved that the problem is
NP-hard and proposed polynomial-time algorithms
for the problem when a given graph is included in
special graph classes. In their work, to assign edges
to each node, only the restricted paths which are
given for each request is allowed to be used. But in
general case, there may exist several paths for each
request in a graph.

MCD, with no restriction of available paths, is
first formulated in [11]. In [11], it is proved that
MCD is NP-hard even if the input graph is re-
stricted to a strongly connected one. They proposed
a polynomial-time 2-approximation algorithm Min-
Pivot for strongly connected graphs when a set of
request is full (see Table 1).

In this paper, we consider approximability of
MCD. Table 1 shows our contribution in this pa-
per. First, we clarify an optimal approximability /
inapproximability bound for MCD in terms of order:
we prove the lower bound of approximation ratio for
MCD is Q(log n) by a reduction of the SET-COVER

n is the number of nodes.

to MCD, where n is the number of nodes. This re-
sult provides a stronger inapproximability of MCD
than the known result. Moreover, we show MCD has
a polynomial time approximation algorithm whose
factor is O(logn). The O(logn) approximation ra-
tio is achieved by formulating MCD as a submodular
set cover problem. In addition, we prove that when
a given graph is restricted to an undirected graph,
the algorithm MinPivot proposed in [11] guarantees
3/2 approximation ratio. This approximation ratio
is hold even if a given set of request is subset-full.

This paper is organized as follows. In Section 2,
we define the Minimum Certificate Dispersal Prob-
lem (MCD). Section 3 and Section 4 present inap-
proximability and approximability of MCD respec-
tively. In Section 5, we prove 3/2-approximation
rate is achieved the algorithm MinPivot when a given
graph is an undirected graph. Section 6 concludes
the paper.

2 Minimum Certificate Dis-
persal Problem

In this section, we introduce several notations and
define the minimum certificate dispersal problem
(MCD).

Let G = (V, E) be a directed graph, where V' and
E are the sets of nodes and edges in G respectively.
An edge in E connects two distinct nodes in V. The
edge from a node u to v is denoted by (u,v). The
number of nodes and edges in G is denoted by n
and m (i.e., n = |V|,m = |E|). A sequence of edges
p(vo, vk) = (vo,v1), (V1,v2), - .., (Vk—1, k) is called a
path from vg to v of length k. For a path p(vo, vk),
v and vy, are called the source and destination of the
path respectively. The length of a path p(vo,vg) is
denoted by |p(vo, vx)|. For simplicity, we treat a path
as the set of edges on the path when no confusion
occurs. A shortest path sp(u,v) from u to v is the
one whose length is the minimum of all paths from



u to v. When there is more than one path with the
minimum length from u to v, sp(u,v) is defined as
one of them chosen arbitrarily. The distance from
u to v is the length of a shortest path from u to v,
denoted by d(u,v).

A dispersal D of a directed graph G = (V, E) is a
family of sets of edges indexed by V, that is, D =
{D, C Elv € V}. We call D, a local dispersal of
v. A local dispersal D, indicates the set of edges
assigned to v. The cost of a dispersal D, denoted by
c.D, is the sum of cardinalities of all local dispersals
inD (ie., c.D = Zyev|Dy|). Arequest is areachable
ordered pair of nodes in G. For a request (u,v), u
and v are called the source and destination of the
request respectively. A set R of requests is subset-full
if there exists a subset of V such that R consists of
all reachable pairs of nodes in V' (i.e., R = {(u,v)|u
is reachable to v in G, u,v € V' C V}), and R is full
if the subset V' is equal to V. We say a dispersal D
of G satisfies a set R of requests if a path from u to
v is included in D,, U D,, for any request (u,v) € R.

The Minimum Certificate Dispersal Problem
(MCD) for a directed graph is defined as follows:

Definition 2.1
[Minimum Certificate Dispersal Problem
(MCD)]

INPUT: A directed graph G = (V,E) and a set R
of requests

OUTPUT: A dispersal D of G satisfying R with

minimum cost.

The minimum cost of a dispersal of G which sat-
isfies R is called the minimum dispersal cost of G for
R, and denoted by ¢pmin(G, R). For short, the cost
cmin (G, R) is also denoted by ¢min (G) when R is full.
Let DOPt be an optimal dispersal of G which satisfies
R (i.e., DO is one such that c.D9Pt = cin (G, R)).

In this paper, we deal with MCD for undirected
graphs in Section 5. For an undirected graph G, the
edge between nodes u and v is denoted by (u,v) or
(v,u). When an edge (u,v) is included in a local
dispersal D,,, the node v has two paths from u to v
and from v to u.

3 Inapproximability

It was shown in [11] that MCD for strongly con-
nected graphs is NP-hard by a reduction from the
VERTEX-COVER problem. In this section, we
provide another proof of NP-hardness of MCD for
strongly connected graphs, which implies a stronger
inapproximability. Here, we show a reduction from
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Figure 1: Reduction from SET-COVER

the SET-COVER problem. For a collection C of sub-
sets of a finite universal set U, C’ C C is called a set
cover of U if every element in U belongs to at least
one member of C’. Given C and a positive integer k,
SET COVER is the problem of deciding whether a
set cover C' C C of U with |C'| < k exists.

The reduction from SET-COVER to MCD is as
follows: Given a universal set U = {1,2,...,n} and
its subsets S1, S, ..., S and a positive integer k as
an instance Z of SET-COVER, we construct a graph
Gz including gadgets that mimic (a) elements, (b)
subsets, and a special gadget: (a) Each element
of the universe set U = {1,2,...,n}, we prepare an
element gadget u; (it is just a vertex); let Vy be
the set of element vertices, i.e., Vy = {u; | i € U}.
(b) Each subset S; € C, we prepare a directed path
(v4,1,v4,25- - -, Uj,p) Of length p — 1, where p is a pos-
itive integer used as a parameter. The end vertex
vjp is connected to the element gadgets that cor-
respond to elements belonging to S;. For example,
if S1 = {2,4,5}, we have directed edges (v1,p,u2),
(v1,p,usa) and (vy,p,us). (c) The special gadget just
consists of a base vertex r. This r has directed edges
to all vj1’sof i =1,2,...,m. Also r has an incom-
ing edge from each u;. See Figure 1 as an example
of the reduction, where S; = {1,2,3}, 52 = {2,4,5}
and S3 = {3,5,6}. We can see that Gt is strongly
connected. The set R of requests contains the re-
quests from the base vertex r to all element vertices
ui, ie., R={(r,u;) | u; € Vu}.

We can show the following lemma, although we
omit the proof because it is straightforward.

Lemma 3.1
For the above construction of Gz, the following
holds:

(i) If the answer of instance T of SET-COVER is



yes, then cpmin(G, R) < pk + n.
(ii) Otherwise, cmin (G, R) > p(k+ 1) + n.

About the inapproximability of SET-COVER, it is
known that SET-COVER has no polynomial-time
approximation algorithm with factor better than
0.22671nn, unless P = NP [1]. From this inapprox-
imability, we rewrite Lemma 3.1 in terms of gap-
preserving reduction [2] as follows:

Lemma 3.2

The above construction of Gt is a gap-preserving
reduction from SET-COVER to MCD for strongly
connected graphs such that

(i) if OPTsc(Z) = min, then ¢min(G, R) < p-min+

n,

(ii) if OPTsc(Z) > min - clnn, then cmin(G, R) >

: cnlnn—n
(p-min+n) (clnn— )

where OPTsc(Z) denotes the optimal value of SET-
COVER for T and ¢ = 0.2267.

By taking p large enough, we have the following the-
orem:

Theorem 3.1

There exists no (0.2267Inn — €) factor approxima-
tion polynomial time algorithm of MCD for strongly
connected graphs unless P = NP, where € is an
arbitrarily small positive constant.

It is not trivial (actually, it might be difficult) to ex-
tend the result to more restricted classes of strongly
connected graphs, e.g., bidirectional graphs. How-
ever, we can still obtain some inapproximability re-
sult for bidirectional graphs, by slightly modifying
the graph Gz, though we omit the details.

Lemma 3.3

There is a gap-preserving reduction from VERTEX-
COVER for graphs with degree at most 4 to MCD
for bidirectional graphs such that

(i) if OPTy¢(Z) = min, then ¢min(G, R) < min+n,

(ii) if OPTyc(Z) > c - min, then cmin(G,R) >
(min + n) (c - (—ci)") ,

min+n

where OPTyc(Z) denotes the optimal value of
VERTEX-COVER for I, and c = 79/78.

In this lemma, ¢ = 79/78 represents an inapprox-
imability of VERTEX-COVER for graphs with de-
gree at most 4 under the assumption P # NP [8].
From this lemma, we obtain the following theorem:

Theorem 3.2

There exists no (391/390 — €) factor approximation
polynomial time algorithm of MCD for bidirectional
graphs unless P = NP, where ¢ is an arbitrarily
small positive constant.

4 Approximability

In the previous section, we show that it is difficult to
design a polynomial time approximation algorithm
of MCD whose factor is better than (0.2267Inn—¢),
even if we restrict that the input graph is strongly
connected. In this section, in contrast, we show that
MCD has a polynomial time approximation algo-
rithm whose factor is O(logn), which is applicable
for general graphs. This implies that we clarify an
optimal approximability / inapproximability bound
in terms of order under the assumption P # NP.

The idea of O(logn)-approximation algorithm is
based on formulating MCD as a submodular set cover
problem [9]: Let us consider a finite set NV, a nonneg-
ative cost function c; associated with each element
j € N, and non-decreasing submodular function
f:2N — Z*. A function f is called non-decreasing
if f(S) < f(T) for S C T C N, and is called sub-
modular if f(S) + f(T) > f(SNT) + f(SUT) for
S, T C N. For a subset S C N, the cost of S, say
o(S), 18 3 ies G-

By this f, cand N, the submodular set cover prob-
lem is formulated as follows: [Minimum Submod-
ular Set Cover (SSC)]

min ch : f(S) = f(N)

jES

It is known that the greedy algorithm of SSC has
approximation ratio H(maxjen f(j)) where H(7) is
the i-the harmonic number if f is integer-valued and
f(0) =0 [9]. Note that H(i) < Ini+ 1.

We here claim that our problem is considered
a submodular set cover problem. Let N =
Uuev{%e,u | € € E}. Intuitively, z., € S € N rep-
resents that the local dispersal of u contains e € F in
S, ie.,e€ D, in S. For S C N, we define dg(u,v)
as the distance from u to v under the setting that
each edge e € D,,UD,, of S has length 0 otherwise 1.
That is, if all edges are included in D, UD,, of S, then
ds(u,v) = 0. If no edge is included in D, UD,, of S,
then dg(u,v) is the length of a shortest path from u
to v of G. Let f(S) = 3, »yer(do(u,v) — ds(u,v)).
This f is integer-valued and f(@) = 0. In the prob-
lem setting of MCD, we can assume that for any

75‘7



(u,v) € R, G has a (directed) path from u to v.

(Otherwise, we have no solution). Then the condi-

tion f(N) = f(S) means that all the requests are

satisfied. Also cost ¢ reflects the cost of MCD.
Then we have the following lemma:

Lemma 4.1
Function f defined as above is a non-decreasing sub-
modular function.

Proof.

Since it is obvious that f is non-decreasing, we only
show the submodularity of f. By the inductive prop-
erty, it is sufficient to show that f(SU{ze})+f(SU

{me’,v}) > f(S)+ f(Su {‘Te,uyze’,v})'

f(SU {xe,u}) - f(S)
> (ds(i,5) — dsuge. .3 (1:5))

(i,9)ER
= D" (ds(u, ) — dsuga.,.} (u:5))
(u;,j)ER
+ Y (dsi,u) — dsuga. 3 (6w) (1)
(i, u)eER

f(S U {xe’,v}) - f(S U {ze,uaxe’,v})
= D @sunen 3 (00) = dsuga, .3 (6 9))
(i,J)ER
= dSU{ze,u,zg/'v} (’U, “’) - dSU{zg/’u} (’U, u)
+  dsufz, wze ) (V) = dsufa, 3 (4, V)
> —2. 2)

By the property of shortest paths, we can see that
dSU{xe,u}(v’u) - dS(U’U) < dsU{l‘e,u,ﬁel,u}(/U7u) -
dSU{z,/ﬂ,}(vau) and dSU{zg,u}(uaU) — ds(u,v) <
ASU{e,uzer o} (Us v) = dsu{z, ,}(u,v). By summing
(1) and (2) up, we obtain f(S U {zcwn}) + f(SU
{zew}) 2 F(S) + F(SU{Zeu, Ter,0})- o

Notice that f can be computed in polynomial time.

By these, MCD is formulated as a submodular
set cover problem. Since maxy, ,en f({Zew}) <
|R| max,, , dg(u,v) < n3, the approximation ratio of
the greedy algorithm is O(log n). We obtain the fol-
lowing.

Theorem 4.1
There is a polynomial time algorithm with approxi-
mation factor O(logn) for MCD.

MinPivot (G = (V, E), R)
V' ={v,w € V|(v,w) € R}
for each node u € V' do
for each node v € V’, store sp(v,u) to D,
D(u) = {Dy,lv € V}
output min,ey{c.D(u)}

Figure 2: Algorithm MinPivot

5 3/2-approximation
rithm

Algo-

Zheng et al. have proposed a polynomial-time al-
gorithm for MCD, called MinPivot , which achieves
approximation ratio two when a set R of requests
is full. In this section, we improve the approxima-
tion ratio of MinPivot under a certain kind of restric-
tion. More precisely, it is shown that MinPivot is
a 3/2-approximation MCD algorithm for undirected
graphs even when R is subset-full.

5.1 Algorithm MinPivot

The algorithm MinPivot is designed for directed
graphs and any set of requests. In this section, we
focus MCD on undirected graphs, thus, we introduce
simplified algorithm MinPivot for undirected graphs.
A pseudo-code of MinPivot is shown in Figure 2.

In dispersals returned by MinPivot , some node is
selected as the pivot. Each request is satisfied by a
path via the selected pivot. The algorithm works as
follows: it picks up a node u as a candidate of the
pivot. Then, for each request (v,w) € R, MinPivot
constructs the shortest paths from v to the pivot u
and from w to u. That is, the shortest path from
v to u is stored in D,, one from w to w is stored in
D,,. Since there is a path from v to w via the pivot
u in D, U D,, for each request (v,w), the dispersal
satisfies R. For every pivot candidate, the algorithm
MinPivot computes the corresponding dispersal as
stated above. Finally, the minimum-cost one among
all computed dispersals is chosen and returned.

In [11], the following theorem is proved.

Theorem 5.1

For an undirected graph G, MinPivot is a 2-
approximation algorithm for MCD on G with a full
request, and it completes in O(nm) time.



5.2 Proof of 3/2-approximation

In this subsection, we prove the following theorem.

Theorem 5.2
For an undirected graph G and a subset-full request
R, MinPivot is a 3/2-approximation algorithm.

Throughout this subsection, we assume that the
request R is subset-full. The set of nodes included
in requests in R is denoted by Vg, that is, Vg =
{u,v|(u,v) € R}. An output of the algorithm Min-
Pivot for an undirected graph G with a request R
is denoted by DMP. From the algorithm MinPivot ,
the following proposition clearly holds.

Proposition 5.1

For an undirected graph G and a set R of requests,
if D is a dispersal in which a local dispersal of every
node in Vg contains a path from the node to a node
u, then ¢.DMP < c.D.

The idea of the proof is that we can construct a
dispersal D with cost at most 2 - c.DOP*, in which
there exists a node u such that every node v in Vg
has a path from the node to a node u. From Propo-
sition 5.1, it follows that the cost of the solution by
MinPivot is bounded by 2 - c.DO??.

In what follows, we show the construction of D.
First, we introduce several notations and definitions
necessary to the explanation: let = be a node in
Vg with a minimum local dispersal in DOt (i.e.,
|D9?t| = min{|DSPt||lv € Vg}). We may consider
only the case that [DP*| > 0 holds because if | DO??|
is zero then MinPivot returns an optimal solution
since each node v in Vg must has a path from v to z
to satisfy a request (v,z). Then, DOPt is equivalent
to the solution computed by MinPivot whose pivot
candidate is z. We define a rooted tree T' from an
optimal dispersal DOPt. To define T, we first assign
a weight to each edge: to any edge in DZP!, the
weight zero is assigned. All other edges are assigned
the weight one. A rooted tree T'= (V, Er)(Er C E)
is defined as the shortest path tree with root z (in
terms of weighted graphs) that spans all nodes in
Vgr. Let pr(u,v) be a shortest path from a node u
to a node v on the tree T. The weight of a path
p(u,v) is defined by the total weight of the edges on
the path and denoted by w.p(u,v). For each node v,
let pr(v,v) = ¢ and w.pr(v,v) =0.

Lemma 5.1
On the tree T = (V,Er) for an optimal dispersal
DOPt, 3 v, w-pT(T,v) < €. DOP.

Proof.
For the node z, w.pr(z,z) < |DSP!| clearly holds
since |[DZPt| > 0. For any other node v in Vi, the set
R of requests necessarily includes (z,v) (remind that
R is subset-full). To satisfy (z,v), in the optimal dis-
persal, D9P*UDOP* includes a path p(z,v), and thus,
p(z,v)\DPt C DOPt. This implies |p(z,v)\DIPt| <
|D9Pt|. Since any edge in DYP* has weight zero and
all other edges have weight one, the weight of p(z, v)
is equal to |p(z,v) \ DPt|. From the definition of
pT(w7'U)7 we obtain w-PT(-’fUaU) < ’u}.p(.’l],’U) < |D1?pt1
In an optimal dispersal DOPt the local disper-
sal DOPt of each node v in V \ Vg has no edges
since there is no request for v in R. Thus, it follows

Y vevy wPT(Z,0) < Y evn | DOPt| = ¢. DOPt, O

We construct a desired dispersal D by adding
some edges to each local dispersal Df,)pt in the opti-
mal dispersal. When the local dispersal D, of every
node v € Vg is constructed by adding all the edges
in DZPt to DSPt (ie., D, = D9Pt U DOPY), every
local dispersal D, contains a path from v to z since
Df”t u DIO”t contains the path to satisfy the request
(z,v). In this case, the cost of the dispersal D is
at most twice as many as one of the optimal disper-
sal. Thus, from Proposition 5.1, we prove that the
algorithm MinPivot is a 2-approximation algorithm.
The idea of our proof of Theorem 5.2 is that we con-
struct a dispersal D by adding each edge in DP* to
at most |Vg|/2 local dispersals. For each edge e in
DOPt, let C(e) be the number of nodes from which
path to the node z on the tree T" includes the edge e:
C(e) = {v € Vgle € pr(z,v)}|- The construction of
the desired dispersal depends on whether any edge
e in DOP! satisfies C(e) < |Vgr|/2 or not.

First, we explain the construction of dispersal D’
in the case that C(e) < |Vg|/2 holds for any edge e
in D9Pt: D' = {D/|v € V} where

e for the node v in Vg, D) = pr(z,v),
e for the node v in V' \ Vg, D, = ¢.

Figure 3(a) shows one example of the dispersal
D’. In the figure, the dotted edges represent edges
included in DP* and the thick curves represent the
local dispersal of each node.

Lemma 5.2

¢.DMP < ¢ D' < % - ¢.DOrt

Proof.

By the definitions, |pr(z,v)] = w.pr(z,v) +
lpr(x,v) N DYPY| holds. In addition, we obtain
> vevy Pr(2,v) N DIPY = 32, st C(e) from the



D’a=pr(x, a)

D’c=pt(x, c)
O
D’b=pr(x, b 'é

(a) The dispersal D’

D”e=
pr{x, c) Upt(x, y)

IV(Ty) NVR|>[VR]|/2
(b) The dispersal D"

Figure 3: Examples of the proposed dispersals. The dotted edges represent edges included in Dt and the

heavy dotted edges represent edges included in f)a?pt

definition of C(e). Thus, c.D' =3, .y, w.pr(z,v)+
> eeport Cle). From Lemma 5.1 and the assump-
tion that C(e) < |Vgl|/2, it follows that c.D' <
e.DOP 4 |DOPt| . Val  Now, the size of the local
dispersal |D9P!| is the minimum of all local disper-
sals in DOPt and the local dispersal of the node
not included in Vg is empty in DOPt. Therefore,
we obtain [DOP| - |Vg| < ¢.DOPt. It implies that
c¢.D' < ¢.DOPt 4 % - ¢.DOPt < —g— - ¢.DOPt Since the
local dispersal D, of v in Vg includes a path from x
to v, c. DMP < ¢.D’ holds by Proposition 5.1. O

We consider the case that there is an edge such
that C(e) > |Vg|/2. Let T, be a subtree of T induced
by the node v and all of v’s descendants, and V (T},)
be a set of nodes in T,. The set of edges in DIP*
such that C(e) > |Vg|/2 is denoted by DOP*. Let
y be the node farthest from z of those adjacent to
some edge in DOPt,

Lemma 5.3
All edges in DZP* are on the path pr(z,y).

Proof.

If a path pr(z,w) from = to a node w € Vg contains
an edge (u,v), then node w is a descendant of u and
v. That is, w € V(T,) N Vg holds. Thus, from the
definition of C(e), we have C((u,v)) = |V (T,) N Vg|
for each edge (u,v) € DP* where u is the parent
of v. Therefore, the edge (u,v) satisfies C((u,v)) >
[Vr|/2 iff |V(T,) 0 Vr| > |VR]|/2.

We prove the lemma by contradiction. Suppose
for contradiction that there is an edge (u,v) such
that (u,v) € D9P* and (u,v) & pr(=,y). Let v be
a child of w on T. From (u,v) & pr(z,y), it follows
that node v is not an ancestor of the node y on T.

Since node y is the fasthest node from x, from which
the edge to its parent is contained in bg”t, node v
is not a descendant of y. Thus, we obtain V(T,) N
V(Ty) = ¢. In addition, C((u,v)) = |V(T,) N Vg| >
[VRr|/2 holds. From V(T,)NV(T,) = ¢ and |V(T,,)N
Vr| > |VR|/2, we obtain |V (T,) N Vg| < |Vg|/2. It
contradicts the definition of the node y. O

In the case that there is an edge such that C(e) >
|VR|/2, a dispersal D" is constructed such that every
node in Vg has a path from itself to node y: D"
{D}|v € V} where

e for the node v in Va NV (Ty), D) = pr(y,v),

e for the node v in Vg \ V(T}), D) = pr(z,v) U
pT(wa y)7

e for the node v in V'\ Vg, Dl = ¢.

Figure 3(b) shows one example of the dispersal
D"”. The heavy dotted edges represent edges in-
cluded in D9P*. We can see that local dispersal of
each node contains a path from itself to the node y.

Lemma 5.4
¢.DMP < ¢ D" < % - ¢.DOPt

Proof.

From the definition of the dispersal D’
we obtain c¢.D" < ZueVRnV(T,,) lpr(y,v)| +
Yvevavr,) (lpr(z,v)| + Ipr(z,y)]). Lemma 5.3
implies that the edge in Dgpt is contained by only
nodes in Vg \ V(T,). Moreover, it implies that
for each edge e € DOP* that is not on pr(z,y),
e € DIP*\ D9 and C(e) < |Vg|/2 hold. Since
Ve \ V(Ty)| < |Vr|/2 < |VR NV (Ty)|, the following



inequalities can be obtained in the same way as the
proof of Lemma 5.2:

eD" < Z w.pr(y,v) + Z (w.pr(z,v)
veVRNV (Ty) vEVR\V (Ty)
+wpr(z,y)+ D)+ > Cle)
eEDgpt\fDmOPt
< Z w.pr(y,v) + Z w.pr(z,v)
veEVRNV (Ty) vEVR\V (Ty)
+Va \ V(Ty){w.pr(z,y) + | DS}
+ Y, Cl
eEDg"t\ﬁg”'5
< > (@pr(y,v) +wpr(z,y)
vEVRNV (Ty)
Vi .
+ Y werew)+ YR pory
VEVR\V (Ty)
+l‘;R| . 'Dgpt \ Dgpt|
= Z w.pr(z,v) + @ -1D9P < g-c.Doz"t
vEVR

Since the local dispersal D! of every node v in Vg
includes a path from v toy, c. DMF < ¢.D" holds by
Proposition 5.1. m}

From Lemma 5.2 and Lemma 5.4, Theorem 5.2 is
proved.

6 Conclusions

In this paper, we have considered the approximabil-
ity of MCD, which is the problem that for a given
graph G and a set R of requests, requires us to as-
sign edges to each node such that all requests in R
are satisfied and the total number of edges all nodes
have is minimized. We have shown that the approx-
imation ratio of MCD is f(logn): the result of the
lower bound Q(logn) is proved by the reduction of
the SET-COVER to MCD, and one of the upper
bound O(logn) is proved by formulating MCD as a
submodular set cover problem. In addition, we have
proved that when a given graph is restricted to an
undirected graph, the algorithm MinPivot guaran-
tees 3/2 approximation ratio even if a given set of
request is subset-full.

Our future work is to determine the hardness of
MCD when a given request is full or subset-full.
We conjecture that when a given set of requests is
restricted to a full one, MCD is P and the algo-
rithm MinPivot returns an optimal solution. Now,

we tackle this question and investigate graph classes
which MinPivot returns optimal dispersals.
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