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Abstract A d-dimensional body-and-hinge framework is, roughly speaking, a structure consisting

of rigid bodies connected by hinges in d-dimensional space. The generic infinitesimal rigidity of a
body-and-hinge framework has been characterized in terms of the underlying multigraph indepen-

dently by Tay and Whiteley as follows: A multigraph G can be realized as an infinitesimally rigid
body-and-hinge framework by mapping each vertex to a body and each edge to a hinge if and only

if ((*4") — 1) G contains (*}') edge-disjoint spanning trees, where ((*$*) = 1) G is the graph ob-

tained from G by replacing each edge by ((“}') — 1) parallel edges. In 1984 they jointly posed a
question about whether their combinatorial characterization can be further applied to a nongeneric

case. Specifically, they conjectured that G can be realized as an infinitesimally rigid body-and-hinge
framework if and only if G can be realized as that with the additional “hinge-coplanar” property,

i.e., all the hinges incident to each body are contained in a common hyperplane. This conjecture is

called the Molecular Conjecture due to the equivalence between the infinitesimal rigidity of “hinge-
coplanar” body-and-hinge frameworks and that of bar-and-joint frameworks derived from molecules

in 3-dimension. In 2-dimensional case this conjecture has been proved by Jackson and Jordén in

2006. In this paper we prove this long standing conjecture affirmatively for general dimension. Also,

as a corollary, we obtain a combinatorial characterization of the 3-dimensional bar-and-joint rigidity

matroid of the square of a graph.

1 Introduction a (*}")-dimensional vector, so-called a screw center.
The formal definition will be given in the next section.
A d-dimensional body-and-hinge framework is,
roughly speaking, the collection of d-dimensional
rigid bodies connected by hinges, where a hinge is a
(d — 2)-dimensional affine subspace, i.e. pin-joints in
2-space and line-hinges in 3-space and etc. The bod-
ies are allowed to move continuously in R? so that

Let G = (V, E) be a multigraph which may con-
tain multiple edges. We consider a body-and-hinge
framework as a pair (G, q) where q is a mapping from
e € E to a (d — 2)-dimensional affine subspace q(e)
in RY, i.e., v € V corresponds to a body and uv € E

the relative motion of any two bodies connected by
a hinge is a rotation around it and the framework is
called rigid if every such a motion provides a frame-
work isometric to the original one. The infinitesimal
rigidity of this physical model can be formulated in
terms of a linear homogeneous system by using the
fact that any continuous rotation of a point around
a (d — 2)-dimensional affine subspace or any trans-
formation to a fixed direction can be described by

corresponds to a hinge q(uv) which joins two bodies
associated with v and v. The framework (G, q) is
called a body-and-hinge realization of G.

We assume that the dimension d is a fixed integer
with d > 2 and we shall use the notation D to denote
(4+1). For a multigraph G = (V, E) and a positive
integer k, the graph obtained by replacing each edge
by k parallel edges is denoted by kG. In this paper,
for our special interest in (D — 1)G, we shall use the



simple notation G to denote (D—1)G and let E be the
edge set of G. Tay [12] and Whiteley [17] indepen-
dently proved that the generic infinitesimal rigidity
of a body-and-hinge framework is determined by the
underlying (multi)graph as follows.

Proposition 1.1. ({12, 17]) A multigraph G can
be realized as an infinitesimally rigid body-and-hinge
framework in R® if and only if G has D edge-disjoint
spanning trees.

A body-and-hinge framework (G, q) is called copla-
nar if, for each v € V, all of the (d — 2)-dimensional
affine subspaces q(e) for the edges e incident to v
are contained in a common (d — 1)-dimensional affine
subspace (i.e. a hyperplane). Following a clear phys-
ical interpretation, we shall refer to a coplanar body-
and-hinge framework as a panel-and-hinge framework
throughout the paper, i.e., each body is regarded as
a panel ((d — 1)-dimensional affine subspace) in R%.
In 1984, Tay and Whiteley [13] jointly posed the fol-
lowing conjecture.

Conjecture 1.2. ([13]) Let G = (V, E) be a multi-
graph. Then, G can be realized as an infinitesimally
rigid body-and-hinge framework in R? if and only if G
can be realized as an infinitesimally rigid panel-and-
hinge framework in RY.

Conjecture 1.2 is known as the Molecular Conjec-
ture which has appeared in several different forms [16,
19] and has been a long standing open problem in
the rigidity theory. For the special case when d = 2,
Whiteley [18] proved affirmatively for the special class
of multigraphs in 1989 and recently the conjecture has
been completely proved by Jackson and Jordsn [6].
The idea of their proof is to replace each body of a
panel-and-hinge framework by a rigid bar-and-joint
framework (called a rigid component) and reduce the
problem to that for bar-and-joint frameworks. The
definition of a bar-and-joint framework can be found
in e.g. [19]. By using well-investigated properties
of 2-dimensional bar-and-joint frameworks, they suc-
cessfully proved the conjecture. Also, Jackson and
Jordé4n (8] showed the sufficient condition for higher
dimension; G has a panel-and-hinge realization in R¢
if (d — 1)G has d edge-disjoint spanning trees.

In this paper we settled the Molecular Conjec-
ture affirmatively in general dimension. Although the
story-line of our proof is slightly close to that of [6] for
2-dimension, we remark that our proof directly pro-
vides a construction of an infinitesimally rigid panel-
and-hinge framework, which is a main (and huge) dif-
ference from [6].

In R3® the rigidity of panel-and-hinge frame-
works have a special relation with the flexibility of
molecules. A molecular structure can be modeled as
a body-and-hinge framework by representing atoms

(vertices) as rigid bodies and bonds (edges) as hinges
in such a way that all the hinges (lines) incident to
each body are intersecting each other at the center
of the body (with small adjustments, see e.g. [20,
page 122]). Such a body-and-hinge framework is
called hinge-concurrent. Since taking projective dual
in R3 transforms points to planes, lines to lines and
planes to points preserving their incidences, a hinge-
concurrent body-and-hinge framework is mapped to a
panel-and-hinge framework. Crapo and Whiteley [2]
showed that taking the projective dual preserves the
rigidity, which implies that G has an infinitesimally
rigid hinge-concurrent body-and-hinge realization if
and only if it has an infinitesimally rigid panel-and-
hinge realization.

Another framework which models the flexibility of
a molecule is a bar-and-joint framework of the square
of a graph (see e.g. [5,14,20]). The square of a graph
G = (V, E) is defined as G2 = (V, E?), where E? =
EU{uv € VxV|u # v and uw,wv € E for some w €
V \ {u,v}}. For a graph G of minimum degree at
least two it is known that a bar-and-joint framework
of G? is equivalent to a hinge-concurrent body-and-
hinge framework of G in terms of the infinitesimal
rigidity in R3 [5]. Combining this previous result with
our proof of the Molecular Conjecture, we obtain a
combinatorial characterization of the 3-dimensional
rigidity of the square of a graph.

The paper consists of six sections. In Section 2
we shall provide a formal definition of the infinitesi-
mal rigidity of body-and-hinge frameworks. In Sec-
tion 3 we will provide several preliminary results con-
cerning edge-disjoint spanning trees. In Sections 4
and 5 we will investigate combinatorial properties
of multigraphs G such that G contains D edge-
disjoint spanning trees. Such graphs are called body-
and-hinge rigid graphs and edge-inclusionwise mini-
mal graphs are called minimally body-and-hinge rigid
graphs throughout the paper. In particular, in Sec-
tion 5, we will show that any minimally body-and-
hinge rigid graph can be reduced to a smaller mini-
mally body-and-hinge rigid graph by the contraction
of a proper rigid subgraph or a splitting off opera-
tion (defined in Section 5) at a vertex of degree two.
Finally, in Section 6, we will provide a proof of the
Molecular Conjecture by showing that any minimally
body-and-hinge rigid graph G has a rigid panel-and-
hinge realization. The proof is done by induction on
the graph size. More precisely, following the con-
struction of a graph given in Section 5, we convert
G to a smaller minimally body-and-hinge rigid graph
G'. From the induction hypothesis there exists a rigid
panel-and-hinge realization of G'. We will show that
we can extend this realization to that of G with a
slight modification so that the resulting framework
becomes rigid.
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2 Body-and-hinge Frameworks

In this section we shall provide a formal definition

of body-and-hinge frameworks. Please refer to [2,8,
15] for more detailed descriptions.
Infinitesimal motions of a rigid body. A body
in R? is a set of points which affinely spans R?. An
infinitesimal motion of a body is an isometric linear
transformation of the body, i.e., the distance between
any two points in the body are preserved after the
transformation. It is known that the set of infinitesi-
mal motions of a body forms a D-dimensional vector
space, i.e., an infinitesimal motion is a linear combi-
nation of d translations and ( di2) rotations around
(d — 2)-affine subspaces. Throughout the paper, we
use the notation (S) to denote the linear subspace of
R¢ spanned by S C R9.

Let us review how to describe an infinitesimal ro-
tation of a body around a (d — 2)-affine subspace A
in RY. Let p1,...,pa—1 be d — 1 points in R% which
affinely span A. Let M4 be the (d — 1) x (d + 1)-
matrix whose i-th row vector is the projective point
(pi,1) in projective (d + 1)-space. Let s;;(A) =
(~1)+9~1det My’ with 1 <4 < j < d+ 1, where
M is the (d — 1) x (d — 1)-submatrix of M, ob-
tained by deleting the i-th and j-th columns of Mg4.
Consider the D-dimensional vector S(A) = (s; ;(A4))
whose components s; j(A) are arranged in the lexi-
cographical ordering of the pair (3,j). A vector in
(S(A)) is called a screw center of A.

For a point g € R, let M, 4 be the d x (d + 1)-
matrix obtained from M4 by adding (q,1) as a
new row. Let va,, = (v;) be the vector of length
d + 1 whose i-th component is defined by v; =
(—=1)det Mil,q for 1 < i < d+ 1, where Mj'l,q
is the submatrix obtained by deleting the i-th col-
umn of My, Note that, denoting j-th compo-
nent of q by ¢; and letting g4+1 = 1, we have
v = El§j3d+1 ¢;8:,j(A). This implies that v4 4
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can be expressed by vaq = M(q 1)7 with some
(d+1) x (d+1)-matrix M determined by S(A). Such
a calculation is conventionally denoted by va 4 =
S(A) V q. An elementary geometric argument tells
us that the d-dimensional vector (vy,vs,...,v4) con-
sisting of the first d components of v,4 4 is propor-
tional to the instantaneous velocity at g induced by
a rotation around A.

Although the details are omitted, it is known that
an infinitesimal translation of a rigid body in the di-
rection of a vector € R® is also described in terms of
a screw center S(x) (that is, a D-dimensional vector)
by taking d — 1 projective points at infinity. Namely,
the first d components of S(x) V g represents the in-
finitesimal translation at q to the direction .

An arbitrary infinitesimal motion of a body B can
expressed in terms of screw centers as follows. An

infinitesimal motion for a body is a linear combina-
tion of rotations and translations. Let Sy, Ss,...,Sp
be the screw centers corresponding to these rota-
tions and translations. Then, a screw center S for
an arbitrary infinitesimal motion can be written as
§ =3P, S;. The infinitesimal velocity at g € B is
thus calculated by taking the first d components of
the (d + 1)-dimensional vector SV q.
Body-and-hinge frameworks. Suppose two bod-
ies B and B’ are joined to a hinge, which is a (d— 2)-
affine subspace A of R%. Let S and S’ be screw centers
of infinitesimal motions applied to B and B’, respec-
tively. Then, the hinge constraint, which imposes a
relative motion of B and B’ to be a rotation about
A, can be described by S — S’ € (S(4)).

A d-dimensional body-and-hinge framework (G, p)
is a multigraph G = (V, E) with a map p which asso-
ciates a (d — 2)-affine subspace p(e) of R? with each
e € E. An infinitesimal motion of (G,p) is a map
S : V — RP such that S(u) — S(v) € (S(p(e))) for
every e = uv € E. Namely, S is an assignment of a
screw center S(u) to the body of u € V. An infinites-
imal motion S is called trivial if S(u) = S(v) for all
u,v € V and we say that (G, p) is infinitesimal rigid
if all infinitesimal motions of (G, p) are trivial.
Rigidity matrix. Let us introduce the matrix
whose null space is the set of infinitesimal motions
of (G,p). We have defined that S is an infinitesi-
mal motion of (G,p) if and only if S(u) — S(v) €
(S(p(e))) for all e = wv € E. Thus, taking any
basis {r1(p(e)), r2(p(€)),...,rp-1(p(e))} of the or-
thogonal complement of (S(p(e))), we can say that
S is an infinitesimal motion of (G, p) if and only if
(S(u) — S(w)) -ri(p(e)) =0for 1 <i < D—1and
e = uv € E. Hence, the constraints to be an in-
finitesimal motion are described by (D — 1)|E| linear
equations over S(v) € RP for v € V. Consequently,
we obtain (D — 1)|E| x D|V|-matrix R(G,p) associ-
ated with this homogeneous system of linear equa-
tions such that sequences of consecutive (D — 1) rows
are indexed by the elements of E and sequences of
consecutive D columns are indexed by the elements
of V. To describe it more precisely, let us denote
by R(p(e)) the (D — 1) x D-matrix whose i-th row
vector is 7;(p(e)). Then, the submatrix Rg ple, w] of
R(G, p) induced by the consecutive (D — 1) rows in-
dexed by e = uv € E and the consecutive D columns
indexed by w € V is written as Rg ple, w] = R(p(e))
if w = u, Rgple,w] = —R(p(e)) if w = v and oth-
erwise Rg ple,w] = 0. We call R(G, p) the rigidity
matriz of (G, p) (see Fig. 1).

The null space of R(G,p) is the space of all in-
finitesimal motions. We remark that the dimension
of the null space, or equivalently that of the space
of all infinitesimal motions, is uniquely determined
by (G,p) although the entries of R(G,p) may vary
depending on the choice of basis of the orthogonal



e=uv

Figure 1: The rigidity matrix.

complement of (S(p(e))).

It is not difficult to check that (G, p) is infinitesi-
mally rigid if and only if the rank of R(G, p) is exactly
D(]V| —1). The dimension of the space of nontrivial
infinitesimal motions is called the degree of freedoms
of (G, p), which is equal to D(|V|—1) —rank R(G, p).
A body-and-hinge framework (G, p) is called generic
if the degree of freedoms is minimum or equivalently
the rank of R(G, p) is maximum taken over all real-
izations of G.

3 Edge-disjoint Spanning Trees

We use the following notations throughout the pa-
per. Let G = (V, E) be a multigraph. For X C V,
let G[X] be the graph induced by X. For F C E,
let V(F) be the vertices spanned by F, i.e., V(F) =
{v € V | wv € F}, and let G[F] be the graph edge-
induced by F, ie., G[F] = (V(F),F). For X C V,
let 6g(X) = {ww € F | u € X,v ¢ X} and let
de(X) = |6¢(X)|. We shall omit set brackets when
describing singleton sets, e.g., dg(v) implies dg({v}).
For a partition P of V, let dg(P) denote the num-
ber of edges of G connecting distinct subsets of P,
respectively.

We use the following conventional notation. For
a partition P of V, the c-deficiency of P in G
is defined by def,q(P) = c(|P| — 1) — da(P),
and the c-deficiency of G is defined by def.(G) =
max{def.c(P) : P is a partition of V}. Note that
def.(G) > 0 since def, g({V}) = 0. The Tutte-Nash-
Williams tree packing theorem [10,21] implies that
G has d edge-disjoint spanning trees if and only if
def.(G) = 0.

There is the other well-known characterization of
an edge set containing ¢ edge-disjoint spanning trees,
which is written in terms of a matroid (see e.g. [11]
for the definition and fundamental results of a ma-
troid). For a multigraph G = (V, E), let us con-
sider the matroid on E, denoted by M.(G), induced
by the following nondecreasing submodular function
fe: 28 — Z; for any F C E, fo(F) = c(|[V(F)| - 1).
Namely, F C E is independent in M.(G) if and only
if |F’] < fe(F’) holds for every nonempty F’ C F
(c.f. [11, Chapter 12]). It is known that G contains ¢
edge-disjoint spanning trees if and only if the rank of
M.(G) is equal to c(|V| —1).

Proposition 1.1 now implies that G can be realized
as an infinitesimal rigid body-and-hinge framework if

and only if the rank of Mp(G) is equal to D(|V|—1).
We shall simply denote Mp by M. A more detailed
relation between the deficiency of a graph and the
rank of the rigidity matrix can be found in [8]. Let
us summarize these preliminary results.

Proposition 3.1. ([8, 12, 17]) The followings are
equivalent for a multigraph G = (V, E):

(a) A generic body-and-hinge framework (G,p)
has k degree of freedoms.

(b) A generic body-and-hinge framework (G,p)
satisfies rank R(G,p) = D(|V| — 1) — k.

(c) defp(G) =k.

(d) The rank of M(G) is equal to D(|V| —1) — k.

4 Body-and-hinge Rigid Graphs

In this section we shall further investigate combina-
torial properties of body-and-hinge frameworks. Let
G = (V, E) be a multigraph. We simply say that G
is a k-graph if def D(é) = k holds for some nonnega-~
tive integer k. In particular, considering the relation
between 0-graphs and infinitesimal rigidity given in
Proposition 1.1, we say that G is a body-and-hinge
rigid graph if it is a O-graph. Recall that E denotes
the edge set of G.

It is not difficult to see the following fact.

Lemma 4.1. Let G be a body-and-hinge rigid graph.
Then, G is 2-edge-connected.

Remark. Let b and c be positive integers and let
g = b/c. A multigraph G = (V, E) is called g-strong
if ¢G contains b edge-disjoint spanning trees. In this
paper, for our particular interest in ¢ = ﬁ%, we
named a %-strong graph as a body-and-hinge rigid
graph. Due to the space limitation, please refer to
[1,3-5,7] for more detailed descriptions of general g-
strong graphs.

Minimally body-and-hinge rigid graphs. A
minimal k-graph is a k-graph in which removing any
edge results in a graph that is not a k-graph. In par-
ticular, a minimal O-graph is called a minimally body-
and-hinge rigid graph. It is not difficult to show that
G is not 3-edge-connected. We shall further reveal
new combinatorial properties of a minimal k-graph.

Notice that a graph G = (V, E) is a minimal k-
graph if and only if BN€ # § for any edge e € E
and any base B of M(G) (introduced in Section 3)
by Proposition 3.1. From this observation, it is not
difficult to see the following fact concerning the sub-
graphs of a minimal k-graph.

Lemma 4.2. Let G = (V, E) be a minimal k-graph
for some nonnegative integer k and let G’ = (V', E')
be a subgraph of G. Suppose G' is a k'-graph for



some nonnegative integer k'. Then G’ is a minimal
k'-graph.

Rigid subgraphs. Let G be a multigraph. We say
that a subgraph G’ of G is a rigid subgraph if G' is
a O-graph, i.e., G’ contains D edge-disjoint spanning
trees on the vertex set of G’. In this subsection we
claim the following two lemmas for rigid subgraphs.

Lemma 4.3. Let G = (V, E) be a minimal k-graph
for a nonnegative integer k and let G' = (V', E’) be
a rigid subgraph of G. Then, the graph obtained from
G by contracting E’ is a minimal k-graph.

Notice that, for every circuit X of M(G), V(X)
induces a 2-edge-connected subgraph by Lemma 4.1.
This fact leads to the following property of a multi-
graph that is not 2-edge-connected.

Lemma 4.4. Let G = (V, E) be a minimal k-graph
whose edge-connectivity is less than two. Let P =
{V1,Va} be a partition of V such that dg(P) < 1.
Then, k = k1 + k2 + 1 holds if dg(P) = 1 and other-
wise (i.e. dg@ =0)k=k + kz/ig holds, where

ky = defp(G[V1]) and kg = defp(G[Va)).

5 Operations for Minimal k-graphs

In this section we shall discuss simple inductive op-
erations on a minimal k-graph. One operation is the
contraction of a proper rigid subgraph; G’ = (V', E’)
is called a proper rigid subgraph if it is a rigid sub-
graph of G satisfying 1 < |V’| < |V|. We have al-
ready seen in Lemma 4.3 that the contraction of a
rigid subgraph provides a smaller minimal k-graph.
Another operation is a so-called splitting off opera-
tion. The result will be used to apply an induction
in the proof of the Molecular Conjecture. Also as a
corollary, we will obtain Theorem 5.4, which must be
an interesting result in its own right.

Splitting off operation at a vertex of degree
two. We shall examine a splitting off operation that
converts a minimal k-graph into the other minimal
k-graph of smaller size, which is analogous to that
for 2k-edge-connected graphs [9]. For a vertex v of a
graph G, let Ng(v) be a set of vertices adjacent to v in
G. A splitting off at v is an operation which removes v
and then inserts new edges between vertices of Ng(v).
We shall consider such an operation only at a vertex
v of degree two. Let Ng(v) = {a,b}. We denote by
G2 the graph obtained from G by removing v (and
the edges incident to v) and then inserting the new
edge ab. The operation that produces G2 from G is
called the splitting off at v (along ab). The following
lemma claims that the splitting off does not increase
the deficiency but may not preserve the minimality
of the resulting graph.

Figure 2: (a)An example of a minimal O-graph G
such that G2 is not a minimal 0-graph for d = 2 and
D = 3. Notice that G, is a 0-graph and hence G is
not minimal. (b) An example of a minimal 0-graph
G such that G® is not minimal and also G, is not a
0-graph for d =2 and D = 3. Notice that there exist
3 edge-disjoint spanning trees in G2 that contain no
edge of €.

Lemma 5.1. Let G = (V, E) be a minimal k-graph in
which there ezists a vertez v of degree 2 with Ng(v) =
{a,b}. Then, G® is either a k-graph or a minimal
(k — 1)-graph.

Applying Lemma 5.1 to the case of k = 0, we see
that, for a minimally body-and-hinge rigid graph G,
G® is always body-and-hinge rigid. However, as we
mentioned, a splitting off may not preserve the min-
imality of G2. Figure 2 shows such examples, where
G, denotes the graph obtained from G by the removal
of v.

Minimal k-graphs having no proper rigid sub-
graph. As shown in Figure 2 a splitting off does
not preserve the minimality of a graph in general.
However, if we concentrate on a graph which has no
proper rigid subgraph, it can be shown that a split-
ting off operation has a much clear property. We
hence concentrate on graphs having no proper rigid
subgraph throughout this subsection.

The following lemma claims the existence of small
degree vertices.

Lemma 5.2. Let G = (V, E) be a 2-edge-connected
minimal k-graph which contains no proper rigid sub-
graph. Then, G has a verter of degree two. More
precisely, if there is a vertex of degree more than two,
then G contains a chain v1vy ... va4+1 of length d + 1
(i-e., viviz1 € E for 1 < i < d and dg(vi) = 2 for
2<i<d).

Let us start to show the deficiencies of G2, assum-
ing that G contains no proper rigid subgraph.

Lemma 5.3. Let G = (V, E) be a minimal k-graph
which contains no proper rigid subgraph. For any ver-
tez v of degree two with Ng(v) = {a,b}, the follow-
ings hold:

o If k=0, then G2 is a minimal k-graph.

o Ifk > 0, then G2 is a minimal (k — 1)-graph.



Combining the results obtained so far, it is not dif-
ficult to prove the following construction of minimally
body-and-hinge rigid graphs.

Theorem 5.4. Let G be a minimally body-and-hinge
rigid graph with |V| > 2. Then, there exists a se-
quence G = G1,Ga,...,Gy of minimally body-and-
hinge rigid graphs such that
e G, is a graph consisting of two vertices {u,v}
and two parallel edges connecting u and v, and
e (i1 is obtained from G; by either the splitting
off at a vertex of degree 2 or the contraction of
a proper rigid subgraph.

6 Rigid Panel-and-hinge Realizations

We shall use the following notations to indicate the
submatrix of the rigidity matrix R(G,p). Recall the
definition of R(G, p) given in Section 2: In R(G,p),
consecutive D — 1 rows are associated with an edge
e € F and consecutive D columns are associated with
a vertex v € V. More precisely, the consecutive D —1

rows associated with e = uwv € E are described by
......... °

the (D — 1) x D|V| submatrix: (--- 0 --- R(p(e))

0 --- —R(p(e)) --- 0 ---), where R(p(e))
was defined in Section 2. Let us denote by Rg ple]
this (D — 1) x D|V/|-submatrix of R(G,p) given for
each e € E. Similarly, let us denote by Rg plv] the
(D —1)|E| x D-submatrix of R(G, p) induced by the
consecutive D columns associated with v. For F C E
and X C V, RgplF, X] denotes the submatrix of
R(G, p) induced by the rows of Rgple] for e € F
and the columns of Rg,p[v] for v € X. We need the
following technical lemma.

Lemma 6.1. Let (G,p) be a body-and-hinge frame-
work in R%. Then, for any vertex v € V,
rank Rg p|E, V \ {v}] = rank R(G, p) holds.

Generic Nonparallel Realizations. Before pro-
viding a proof of the Molecular Conjecture, we need
to mention the generic property of a panel-and-hinge
realization for a simple graph introduced by Jack-
son and Jordén [8]. For a panel-and-hinge realization
(G, p), let Il p(v) denote the (d — 1)-affine subspace
(panel) which contains all of the hinges p(e) of the
edges e incident to v € V. For a simple graph G,
(G, p) is called a nonparallel panel-and-hinge realiza-
tion if Il p(u) and Ilg ,(v) are not parallel for any
distinct u,v € V. As Jackson and Jord4n mentioned
in [8, Section 7], each entry of the rigidity matrix
R(G, p) of a nonparallel panel-and-hinge realization
(G, p) can be described in terms of the coefficients
appeared in the equations representing Ilg ,(v) for
v € V, and hence each minor of the rigidity matrix is
a polynomial of these coefficients. If the set of these
coefficients is algebraically independent over Q, then

the realization is generic, i.e., it takes the maximum
rank over all nonparallel realizations of G. The rigid-
ity of nonparallel panel-and-hinge realizations thus
has a generic property.

It is known that, even though (G, p) has some par-
allel panels, we can perturb them so that the result-
ing realization becomes nonparallel without decreas-
ing the rank of the rigidity matrix (see [6, Lemma 4.2]
or [8, Lemma 7.1]).

A Proof of the Molecular Conjecture. Let us
claim the main theorem of this paper.

Theorem 6.2. Let G = (V,E) be a minimal k-
graph with |V| > 2 for some nonnegative integer
k. Then, there erists a (nonparallel, if G is sim-
ple) panel-and-hinge realization (G,p) in R? satisfy-
ing rank R(G,p) = D(|V| - 1) — k.

Before providing a sketch of the proof, let us first
write up some corollaries which follow from Theo-
rem 6.2. Since we can convert any k-graph G to a
minimal k-graph by greedily removing the redundant
edges, the following theorem is easily follows from
Theorem 6.2, which proves the Molecular Conjecture
in a strong sense combined with Proposition 3.1.

Theorem 6.3. Let G = (V,E) be a multigraph.
Then, G can be realized as a panel-and-hinge frame-
work (G, p) in R? satisfying rank R(G, p) = D(|V|—
1) — defp(G).

Let us denote the bar-and-joint rigidity matroid in
3-dimensional space by R3(G) for a graph G. Jackson
and Jordé4n [5, Conjecture 1.2] have recently showed
that, for a graph G of the minimum degree at least
two, the Molecular Conjecture is true in 3-dimension
if and only if the rank of R3(G?) is equal to 3|V|—6—
defp(5G). Combining this result with Theorem 6.3,
we found that the above characterization of R3(G?)
is true. In particular we obtain the following.

Corollary 6.4. Let G be a graph of minimum degree
at least two. Then, G? can be realized as an infinitesi-
mally rigid bar-and-joint framework in 3-dimensional
space if and only if 5G contains six edge-disjoint span-
ning trees.

A Proof of Theorem 6.2. The proof is done by
induction on |V|. We omit the base case (|V| = 2)
and let us consider G with |V'| > 3. We shall split the
proof into three parts: Lemma 6.5 deals with the case
when G is not 2-edge-connected. Lemma 6.6 deals
with the case when G is 2-edge-connected and con-
tains a proper rigid subgraph. Lemma 6.7 deals with
the rest of the cases. The rest of the description is
devoted to the proof of each case. Throughout these
lemmas, we will assume the inductive hypothesis on
the number of vertices.



The first lemma 6.5 considers the case that G is not
2-edge-connected. This case can be handled rather
easily but present a basic strategy of the subsequent
arguments.

Lemma 6.5. Let G = (V, E) be a minimal k-graph
which is not 2-edge-connected. Then, there is a (non-
parallel, if G is simple) panel-and-hinge realization
(G, p) inR? satisfying rank R(G,p) = D(|V|—1)—k.

Proof. Let us consider the case when G is connected.
The case of a disconnected G can be handled in a
similar manner. Since G has a cut edge uv, G can
be partitioned into two subgraphs G; = (Vi, E1) and
Gy = (Vao, E;) such that u e Vi, v € Vo, ViNVo =4,
ViUVe =V and é6¢(Vi) = {uv}. Let ki and k2 be
the deficiencies of G; and CTz, respectively. Then,
k = k1 + ks + 1 holds by Lemma 4.4 and also G; is
a minimal k;-graph for each ¢ = 1,2 by Lemma 4.2.
By induction hypothesis, we have a (nonparallel, if
G is simple) panel-and-hinge realization (G;, p;) sat-
isfying rank R(G;,p;) = D(|Vi| — 1) — k; for each
i = 1,2. Since the choices of p; and py are in-
dependent of each other and also since the rank of
the rigidity matrix is invariant under the rotation of
the whole framework, we can take p; and ps such
that IIg, p, (v1) and Ilg, p,(v2) are not parallel for
any pair of v; € V; and v, € V2. In particular,
I, p, (w) NI, p, (v) is & (d — 2)-affine subspace in
R<. Define the mapping p as follows: p(e) = p1(e)
if e € Ey1, p(e) = pa(e) if e € E; and otherwise (if
e = uv) p(e) = g, p, (¥) N1lg,,p,(v). Then, (G,p)
is a (nonparallel, if G is simple) panel-and-hinge real-
ization of G. By dg(V1) = {uv}, the rigidity matrix
R(G, p) can be described as

Rg, p: [E1, V1 \ {u}] * *
0 R(p(uv)) *
0 0 R(G2,p2)
Notice that rankRg, p,[F1,Vi \ {u}] =

rank R(G1,p) = D(|]V1|—1)—k; holds by Lemma 6.1.
Notice also that rank R(p(uv)) = D — 1 holds since
the set of row vectors of R(p(uv)) is a basis of the
orthogonal complement of (S(p(uv))) (see Section 2).
Hence, by k¥ = k1 + k2 + 1 and |V| = |V4]| + |V2|,
we obtain rank R(G,p) > rankRg, p,[E1, Vi \
{u}) + rankR(p(uw)) + rankR(Gs,p2)

D(Vi| = 1) — k1 + (D = 1) + D(|Va| — 1) — k2
D(V|-1)—(kr+ k2 +1) =D(|V| - 1) — k.

Lemma 6.6. Let G = (V, E) be a 2-edge-connected
minimal k-graph with |V| > 3. Suppose there exists
a proper rigid subgraph in G. Then, there is a (non-
parallel, if G is simple) panel-and-hinge realization
(G,p) inR? satisfying rank R(G,p) = D(|V|—1)—k.

ol

Proof. We only describe a sketch of the proof due
to the space limitation. Let G’ = (V',E’) be a

proper rigid subgraph in G. Note that G’ is a min-
imal O-graph by Lemma 4.2 with 1 < |V'| < |V].
Let G/E' = ((V\ V') U {v*}, E/E’) be the graph
obtained from G by contracting the edges of E’,
where v* is the new vertex obtained by the con-
traction. Then, by Lemma 4.3, G/F’ is a mini-
mal k-graph with |[(V \ V') U {v*}| < |V|. There-
fore, by induction hypothesis, there exist panel-and-
hinge realizations (G’,p1) and (G/E’, p2) satisfying
rank R(G',p1) = D(|V’|—-1) and rank R(G/E’,p2) =
D([V\ V' U {v}| — 1) — k. Based on these realiza-
tions, we shall construct a realization of G. Intu-
itively, we shall replace the body associated with v*
in (G/E',p2) by (G',p1), by regarding (G’,p1) as a
rigid body in R?. The rank of the resulting framework
would become rank R(G’,p1) + rank R(G/E’,p2) =
D(|V'|-1)+D(|V\V'U{v*}|-1)—k = D(|V|-1)—k.

O

The remaining case for proving Theorem 6.2 is the
one in which G is 2-edge-connected and has no proper
rigid subgraph. In fact, this is actually the most dif-
ficult case and our proof becomes quit long. So we
shall provide only the storyline.

Lemma 6.7. Let G = (V, E) be a 2-edge-connected
minimal k-graph with |V| > 3 which contains no
proper rigid subgraph. Then, there is a nonparal-
lel panel-and-hinge realization (G, p) in R? satisfying
rank R(G,p) = D(|[V| - 1).

Proof. Let us consider 3-dimensional case for exam-
ple. Since d = 3 and there exists no proper rigid
subgraph in G, Lemma 5.2 implies that there exist
two vertices of degree two which are adjacent with
each other. Let v and a be such two vertices and let
Ng(v) = {a,b} for some b € V and Ng(v) = {v,c}
for some ¢ € V. Lemma 5.3 implies that both G2° and
G° are minimal k-graphs. Here G3° is the graph ob-
tained by performing the splitting-off operation at a
along ve. By induction hypothesis, there exist generic
nonparallel panel-and-hinge realizations (G2, q) and
(G2°,qp) where q, will be defined later.

We shall construct a realization (G, p1) of G based
on (G, q) as follows: Put a new panel for v on the
panel Ilgas (a) for a, and then remove the hinge
q(ab) between a and b and join the panel for v and
that for b by a new hinge p; (vb) instead of q(ab) (see
Figure 3(b)). Finally, join the panel for v and that for
a by a hinge as shown in Figure 3(b). Also, another
realization (G, pz2) for G can be constructed symmet-
rically by changing the role between a and b as shown
in Figure 3(c). Although (G,p1) and (G,p2) are
not nonparallel, we will convert them to nonparallel
panel-and-hinge realizations by slightly rotating the
panel of v without decreasing the rank of the rigidity
matrix as we mentioned. In d = 2 we can show that
at least one of (G, p1) and (G, p2) attains the desired
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Figure 3: The realizations given in the proof of
Lemma 6.7 around v, where the hyperplanes asso-
ciated with the vertices other than v, a, b, ¢ are omit-
ted. (a)(G%b:q)7 (b)(G7 pl)v (C)(G, p2)7 (d)(Gz(:)qp)
and (e)(G, ps)-

rank, but this is not always true for d > 3. Hence,
we shall introduce another framework (G, p3).

It is not difficult to see that G° is isomorphic
to G and hence there is the realization (G%°,q,)
representing the same panel-and-hinge framework as
(G®,q), see Figure 3(d). We shall then construct
the realization (G, ps) based on (G¥°% q,) in a sim-
ilar manner as (G, p1), see Figure 3(e). (Again we
can convert (G, ps) to a nonparallel realization with-
out changing the rank.) Since (G2, q,) and (G2, q)
are the same framework, we expect that the hinge
p3(ac) would eliminate a nontrivial infinitesimal mo-
tion appeared in (G, p1) and (G, p2). We will show at
least one of (G, p1), (G,p2) and (G, p3) attains the
desired rank by computing the ranks of the rigidity
matrices of these realizations with certain mappings
of p1, P2, Ps3. o
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