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Linear-Time Algorithm for Searching Protein 3-D Structures
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Abstract: The RMSD is one of the most fundamental similarity measures for comparing
two sets of coordinates. In this paper, we propose a new breakthrough linear-expected-time
algorithm for the basic problem of finding all the substructures of structures in a structure
database of chain molecules (such as proteins), whose RMSDs to the query are within a
given constant threshold. It is not only a theoretically significant improvement over previous
algorithms, but also a practically faster algorithm, according to computational experiments.
We also propose a series of preprocessing algorithms that enable even faster queries. The
experiments show that our algorithm is 3.6 to 28 times faster than the previous algorithms
for ordinary queries against the PDB database. The experiments also show that there is
consistency between the above theoretical results and the experimental results.

1 Introduction not only for structure comparison of proteins or

3-D structure database searching of molecules,
especially proteins, plays a more and more im-
portant role in molecular biology [2, 9, 11],
and faster searching techniques are seriously
needed for the molecular structure databases.
A protein is a chain of amino acids. Thus,
its structure can be represented by a sequence
of 3-D coordinates, each of which corresponds
to the position of a specified atom (the C,
atom is usually used) of each amino acid. Such
molecules are called chain molecules. There are
also many other important chain molecules in
living cells, such as DNAs, RNAs and glycans.

The RMSD (root mean square devia-
tion) [1, 8, 12, 13, 16, 19] is a fundamental mea-
sure to determine the geometric similarity be-
tween two same-length sequences of 3-D coordi-
nates. It has been widely used for a long time,
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other molecules, but also for various problems
in various fields, such as computer vision and
robotics. It is defined as the square root of the
minimum value of the average squared distance
between each pair of corresponding atoms, over
all the possible rotations and translations. (See
section 2.2 for more details.) In this paper, we
consider one of the most fundamental RMSD-
related problems as follows.

Problem
Given a structure database D of chain
molecules and a query structure Q, find all
the substructures of the structures in D whose
RMSDs to Q are at most a given fixed thresh-
old ¢, without considering any insertions or
deletions.

In general, ¢ should be set to a fixed con-
stant proportional to the distance between two
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adjacent atoms of the chain molecules. In the
case of proteins, the distance between two adja-
cent C, atoms is around 3.8A, while two pro-
tein structures are said to be similar to each
other if their RMSD is smaller than around 2A.
Our results

The best-known time complexity of the prob-
lem was O(Nlogm) [16, 19], where N is the
database size (i.e., the sum of the lengths of
all the structures in the database) and m is the
query size, whether it is the worst-case analysis
or the expected-time analysis (see section 2.3).
We propose the first linear-expected-time (i.e.,
O(N)) algorithm. Note that we assume that
the structures of the chain molecules in the
database can be considered as random walks in
3-D space in the analysis of its expected time.
This assumption is often used to analyze prop-
erties of chain molecules [4, 7, 10, 15] (see sec-
tion 2.4). We also examine the validness of the
analysis through computational experiments.

We propose several preprocessing algo-
rithms that enable faster queries. We first
propose an O(N log N)-time and O(N)-space
preprocessing algorithm that enables O(m +
N/i/m)-expected-time query, for queries of
a fixed length. We next extend it to
an O(N log? N)-time and O(N log N)-space
preprocessing algorithm that enables the
same O(m + N/ /m)-expected-time query, for
queries of arbitrary lengths. We also pro-
pose an O(N log N)-time and O(N)-space pre-
processing algorithm that enables O( % +
mlog(N/m))-expected-time query, for queries
of arbitrary lengths.

We also examine the performance of
our linear-expected-time algorithm by com-
putational experiments on the whole PDB
database. In the experiments, no inconsis-
tency is observed between the above theoreti-
cal results and the experimental results: The
computation time of our O(N) algorithm is
not influenced by changes of query lengths,
in contrast to previously known algorithms.
It means that our random-walk assumption is
very reasonable for analyses of protein struc-
tures. Moreover, our linear-time algorithm is
much faster than previous algorithms, i.e., 3.6
to 28 times faster to search for substructures
whose RMSDs is at most 1A. Furthermore, it
is always more than 20 times faster than previ-
ous algorithms for queries no shorter than 100
aa.

2 Preliminaries

2.1 Notations and Definitions

A chain molecule is represented like S =
{51,82,...,8n}, where §; denotes the 3-D co-
ordinates of the i-th atom. The length n of
S is denoted by [S|. A structure S[i..j] =
{55,5i41,...,8;} (1 £ ¢ < j < n) is called
a substructure of S. R - S denotes the struc-
ture S rotated by the rotation matrix R, i.e.,
R-S = {R31,R3,...,R3,}. |U] denotes the
norm of the vector 7. 0 denotes the zero vector.
(z) denotes the expected value of z. var(z) de-
notes the variance of z. Prob(X) denotes the
probability of X.

In the rest of this paper, we consider that
the target database D consists of one long
structure P = {p1,p2,...,Pn}, and we let
Q = {q1,¢2--.,dm} denote the query struc-
ture, where m is supposed to be smaller than
N. Our problem is to find all the positions
1 such that the RMSD (see section 2.2 for its
definition) between P[i..i + m — 1] and Q is
at most a given fixed threshold ¢. An or-
dinary structure database may contain more
than one structure, but the problem against
such databases can be reduced to the prob-
lem against databases with only one structure,
by concatenating all the database structures
into one structure and ignoring substructures
that cross over the boundaries of concatenated
structures.

2.2 RMSD: The Root Mean Square

Deviation
The RMSD (root mean square deviation) [1,

8, 12, 13, 16, 19] between two 3-D coordi-
nate sequences S = {51, 82,.. sn} and T =
{tl, ia,.. tn} is defined as the minimum value

of Erz(S,T) = \/ Y018 = (R- i+ 0)[2
over all the possible rotatlon matrlces R and
translation vectors . Let RMSD(S,T) de-
note the minimum value, and let R(S, T) and
#(S,T) denote the rotation matrix and the
translation vector that minimizes Eg (S, T).
We can compute RMSD(S,T), R(S,T) and
#(S,T) in linear time using the singular value
decomposition [12, 13].

2.3 Previous Best-Known Searching

Algorithms

According to the previous section, we can
compute the RMSD between any substructure
P[i..i + m — 1] and the query Q in O(m) time.
Thus we can solve our problem in O(Nm) time
by checking the RMSDs between the query and




all the O(N) substructures of length m in the
database.

Schwartz and Sharir [16] proposed a more
sophisticated approach for the problem that
solves it in O(N log N) time, based on the con-
volution technique using the FFT (fast Fourier
transform) [5]. Shibuya [19] also proposed a
different algorithm with the same time com-
plexity, also based on the convolution tech-
nique. These algorithms are not faster than the
naive algorithm when N > m. But this time
bound can be easily improved to O(N logm) as
follows. Break P into O(IN/m) substructures
of length m+O(m) each of which overlaps with
its adjacent fragment with overlap length m—1.
Then our problem can be solved in O(N log m)
time by applying the above O(N log N)-time
algorithm against each fragment. The ex-
pected time complexity of these algorithms are
all the same, and no algorithm with better ex-
pected time complexity is known. But note
that the above FFT-based O(N log m)-time al-
gorithm is not practically faster than the naive
O(Nm)-time algorithm in case m is not large
enough, and it is rarely used in practice.

For the problem, a linear-size indexing data
structure called the geometric suffix tree [17,
18] is known to enable practically faster query
than the above algorithms. But its worst-case
query time complexity is still O(Nm), while
we need O(N?) time to construct the data
structure. In fact, there have been no known
indexing algorithms whose theoretical query
time complexity is smaller than the above
O(N log m) bound.

2.4 The Random-Walk Model for

Chain Molecule Conformations

The random-walk model for chain molecule con-
formations is a simple but useful model for an-
alyzing their behavior [4, 7, 10, 15]. The model
is also called the freely-jointed chain model or
the ideal chain model. In the model, we as-
sume that the structure of a chain molecule is
constructed as a result of a random walk in
3-D space. It is useful in various analyses in
molecular physics, as it reflects properties of
structures of real chain molecules very well.

Consider a chain molecule
S = {5, 82,...,5,} of length n+1, in which the
distance between two adjacent atoms is fixed to
some constant £. Note that the length between
two adjacent C, atoms in a protein structure is
constantly 3.8A, as mentioned in section 1. In
the random-walk model, a bond between two

adjacent atoms, i.e., bi = §i41 — i, is consid-
ered as a random vector that satisfies |b;| = £,
and Ei is independent from B'j for any 7 and j
(i # j). If n is large enough, the distribution of
the end-to-end vector 3, — 5 is known to con-
verge to the Gaussian distribution in 3-D space,
in which (5, — 5) = 0 and (|5, — 50|?) = n- 2.
In the distribution, the probability (or proba-
bility density) W, ¢(z,y, z)dzdydz that 5, — 5
is located at some position (z,y, z) is:
( 3
2mnl?
The random-walk model is known to reflect
the behavior of real molecules very well [4],
though it ignores many physical/chemical con-
straints. Even if we assume more complicated
models, the behavior of chain molecules does
not differ so much [6, 10]. For example, Day-
natis and Palierne [6] showed through Monte
Carlo simulation that the above end-to-end
vector still follows a Gaussian-like distribution,
under the so-called self-avoiding random-walk
model. Hence, we consider it reasonable to as-
sume the structures in the databases follow the
random-walk model, as we do in this paper.
Moreover, we will show in section 6 that our ex-
perimental results on the PDB database show
high consistency with the random-walk model.

3 An O(Ny/m) Algorithm
3.1 An Efficiently-Computable
Lower Bound for the RMSD

In this section, we propose a nontriv-
ial, but easily-computable lower bound for
the RMSD between any two structures
with the same length. Let U'eft de-
note {i1,dz,..., U2} and UM denote
{ﬁlk/2J+1’ﬁLk/2J+2’ e ﬁZ-Lk/ZJ} for a structure

= {uy,ds,...,Uk}. Let G(U) denote the
centroid (center of mass) of the structure U,
ie, GU) = 1Y%, 4. Let F(U) denote
|G(U'ft) — G(UT9ht)| /2, which means the half
of the distance between the centroids of U'eft
and U™ht For any two structures S and T
with the same length n, we define D(S,T)
as |F(S) — F(T)| if n is an even integer. If
n is an odd integer, we define D(S,T) as
,/1‘%|F(S) — F(T)|. From now on, we prove
that D(S,T) is a lower bound of the RMSD
between S and T.

Let 5 = 5, — G(S), and . = &; — G(T).
In case n is an even integer, we prove that
D(S,T) is always smaller than or equal to
RMSD(S,T), as follows:

)%6“3(””2+y2+22)/2”[2da:dydz. (1)



RMSD(S,T)
> %zn: |5, — R(S,T) - |
1 n/2 R
> |3 {5 —R(S,T)- £}
=1
TSI ERY TR U A
i=n/2+1
= |G(s"") - G(S) - R(S,T)
{G(T'") — G(T)}|/2
+|G(S™9") — G(S) — R(S, T)
{G(T™™) — G(T)}/2
= |G(S'/t) — G(S"9M) — R(S, T)
{G(THIy — G(TTi9M)}|/2
> |{|G(Sleft) _ G(Sright)l
— |G(T't) - G(T™9M)|}|/2
= D(S,T). 2

In case n is an odd integer, we prove the
same as follows:

RMSD(S,T) > L rMsD(s—, 1)

\/n(ST)—wT)m

3 Sn—1 }a and T~

v

where S~ denotes {s1, s2,...
denotes {t1,t2,...,tn—1}.

‘To solve our problem presented in section 1,
we have to check the RMSD between the query
structure Q and each of the substructures
Pli.i + m — 1] in the database. If the above
lower bound can be computed very efficiently,
we may use the value to filter out hopelessly
dissimilar substructures before computing the
actual RMSD value. In fact, we can compute
the above lower bound D(P[i..i+m—1], Q) for
all the positions ¢ in linear time, as follows.

For any m, we can compute G(P[i..; +
|m/2] — 1]) for all the positions ¢ such that
1 <4< N—-|m/2] +1 in O(N) time,
as G(P[i..i + /m/2) — 1] = GP[i — 1.4 +
Lm /2] =2])— 17757 (Pi-1 =it |m/2)-1)- It means
that F(P[i.i + m — 1],Q) and consequently
D(P[i..i + m — 1], Q) can be computed for all
the positions 7 such that 1 <1 < N —m + 1,
also in O(N) time.

3.2 The Algorithm
Our basic algorithm is simple. It uses the
above lower bound to filter out some (hopefully

most) of the substructures in the database be-
fore the time-consuming RMSD computation,
as follows.
Algorithm 1

1 Compute D; = D(P[i..i + m — 1], Q) for
all i such that 1 <1< N -m+1.

2 for (allisuch that 1 <i < N-m+1) {

3 i(Di<o){

4 if ( RMSD(P[i.i+m—1],Q)<c

5 { Output ¢ as a position of a
substructure similar to the query. }

6}

7}

The above algorithm is valid, i.e., it enu-
merates all the positions of the substructures
whose RMSDs to the query are at most ¢, be-
cause D; = D(P[i..i + m — 1],Q) is always
smaller than or equal to RMSD(P[i..i + m —
1], Q). Let the number of times of the RMSD
computation in line 4 be N'(< N). Then,
the time complexity of the above algorithm is
O(N + N'm), as the line 1 of the algorithm
requires only O(NN) time according to the dis-
cussion in section 3.1.

In the next section, we will prove that
(N'"y is in O(N/+/m) and consequently the ex-
pected time complexity of the above algorithm
is O(N+/m), under the random-walk assump-
tion.

3.3 Computational Time Analysis

Consider a structure S = {351, 32,...,32,} of
length 2n that follows the random-walk model.
In this section, we let the distance between
two adjacent atoms (£ in section 2.4) be 1
without loss of generality, i.e., we consider
the distance between two adjacent atoms as
the unit of distance. Then §; can be repre-
sented as 31 + Z;-;ll Ej, where b; is an inde-
pendent random vector that satisfies |5;| = 1.

Let H(S) = G(S'®*) — G(S™9"*). Notice that
F(S) = |H(S)/2|. Then the following equation
holds:
18 i—l_‘
H(S) == (31 +) b))
s i=1
-— Z 51+ Z b;)
i=n+1
2n—1 _‘
=%Z b @
i=n+1
Let b, denote i. b; if i < n and i p if

i > n. Then H(S) can be described as Z 1b’



Let z denote the z coordinate of b; and 2} de-
note the z coordinate of b}. It is easy to see
that (z;) = 0 and var(z;) =1/3, as b; is a ran-
dom vector that satisfies lgl = 1. Le;t M, be

Y2 (|2 = (220 7 var(z where §
is some posmve constant Accordmg to Lya-
punov’s central limit theorem [14], the distri-
bution of 322" 2! converges to the Gaussian dis-
tribution, if M, converges to 0 as n grows up
to infinity for some § such that 6 > 0. It can
be proved as follows:

2n 2+
M, < Z(l%l) /4] 2_01=iD)?
i=1 i=1

2n
= (U

2n—1

= {5 {Zz + 2 @n-p”
i=n+1

- {§n+9—1,;}-6/2 50 (o))

Hence, we conclude that 32" z, converges
to the Gaussian distribution. It also means
H(S) converges to the Gaussian distribution
in 3-D space if n grows up to infinity, as the
same discussion can be done for the other two
axes (z and y). The variance of H(S) can be
computed as follows:

var(H(S)) = (IH(S)|*) — (1H(S))?
= <IH(S)I2)
2n—1 M —
= <|Z + 2
i=n+1
2n—1
= 2{21 + Z (2n~z
i=n+1
_ 2 +-3—177 o, (6)

as (b - Ej) = 0 if 1 # j. Moreover, it is easy
to see that (H(S)) = 0. Thus the distribution
of H(S) is the same as the distribution of ran-
dom walks of length 2n/3. Hence the proba-
bility distribution Z,(z,y, z)dzdydz of H(S) is
(& ) -9(@*+y*+2")/Angydydz.  Consequently,
the probability (or probability density) that
|H(S)| =ris:

Zn(r)dr = 4mr? (

)— =9 MAngr (1)

Integrating Z,(r)dr, we obtain Prob(z <
|HS)| < y) = [V, Zn(r)dr. Zu(r) takes

the maximum value at 7Ty = g n and
Zn(Tmaz) = 6e71/y/mn. Thus Prob(z <
|H(S)| < y) is at most (y — =) - Zn(rmas) =
6e"1(y — z)/+/mn for any z and y (z < y).

Therefore, for any structure T such
that |T| = |S| = 2n, the probability
Prob(|D(S,T)] < ¢) = Prob(F(T) — ¢ <
F(S) < F(T) +¢) = Prob(2- F(T) —2c <
|H(S)] £ 2+ F(T) + 2c)) is at most 4 -
¢+ Zn(rmez) = 24c - e7/y/mn, which is in
O(1/+/n) as c is a fixed constant. Notice that
there is no assumption on the structure 7' in
this analysis.

Consequently, as 1/ m=1 ~ 1, the probabil-
ity Prob(D; < ¢) in the hne 3 of the algorithm
in section 3.2 is in O(1/4/m) no matter what
the query structure Q is. It means that (N')
is in O(N/y/m). Therefore, we conclude that
the expected time complexity of the algorithm
is O(N + (N') - m) = O(N+/m), under the as-
sumption that the structures in the database
follow the random-walk model. Note that the
worst-case time complexity of the algorithm is
still O(Nm) as N’ can be in O(N) at worst,
but it should be rare under the random-walk
assumption.

4 The Linear-Time Algorithm
In this section, we improve the expected time
complexity of the algorithm 1 by using a dif-
ferent lower bound for the RMSD. From the
definition of the RMSD, we can deduce that

RMSD(S,T)

> Vit-{(RMSD(S'/, Tl/"))
+(RMSD(S”9’“,T”ght))z}l/z
> \/Z'{(D(Sleft,Tleﬂ))2

+(D(Srigh,t’Tright))2}l/2, (8)

where t = |S!eft|/|S| = |ST9M|/|S| ~ 1/2.
Let D'ft(S,T) = +/t - D(S'ft, T!f) and
Dright(S,T) — \/.E . D(sright’Tright). The ex-
pression (8) can also be used as a lower bound
of the RMSD for another valid filtering algo-
rithm, as follows:
Algorithm 2
1 Forallzsuchthat 1 <i< N-m+1,
compute D} = {(D'*/*(P[i..i + m —
1], Q))? + (D" (P[i..i + m — 1], Q))*}!/2.
2 for (allisuchthat 1 <: < N-m+1){
3 (D<o {
4 if (RMSD(P[i..i+m—1],Q) <¢)
5 { Output 7 as a position of a
substructure similar to the query. }



6}
[

The only difference from the Algorithm 1 is the
lower bound D] computed in the line 1. Note
that there is no difference in the time complex-
ity of the line 1, i.e., O(N).

If D < c in line 3, both D'*/t{(P[i..i +
m — 1],Q) and D"9"(Pli..i + m — 1],Q)
must also be at most ¢. According to the
discussion in section 3.3, the two probabili-
ties Prob(D'*/*(P[i..i + m — 1],Q) < ¢) and
Prob(D"9"(P[i.i + m — 1],Q) < ¢) are both
in O(1//m), under the assumption that the
structure P follows the random-walk model.
Moreover, the two probabilities are indepen-
dent from each other. Thus, Prob(D; < c)
in line 3 must be in O((1/v/m)?) = O(1/m).
Therefore the expected number of RMSD com-
putations in line 4 should be in only O(N/m),
and consequently the expected time complex-
ity spent in the lines 4-6 of the above algo-
rithm is O(N). Thus, the total expected time
complexity of the algorithm 2 is O(N) under
the random-walk assumption. Note that the
worst-case time complexity is still O(Nm), but
it should be very rare under the random-walk
assumption.

5 Faster Queries After Pre-

processing
5.1 Preprocessing for Queries of a
Fixed Length

In this section, we consider the case where each
query has the same length m. According to
section 3.1, we can compute F(P[i..i + w — 1])
for all 7 in O(NN) time for a fixed value of w. Let
Ly, be the sorted list of 7 according to the value
of F(P[i..i +w — 1]), which can be obtained in
O(Nlog N) time. By doing a binary search
on L,, we can find all the 7 such that z <
F(Pli.i+w —1]) <y in O(log N + occ) time
for any = and y, where occ is the number of
the outputs. Hence, we can list all the 7 such
that D(S,P[i..i+w—1]) < ¢ in O(log N + occ)
time for any structure S of length w by utilizing
Ly, where c¢ is some constant and occ is the
number of outputs, as F(S) — ¢ < F(P[i..i +
w—1]) < F(S)+cif D(S,Pi.i +w—1]) <
c¢. Our preprocessing algorithm in this section
computes F(P[i..i +m’ —1]) for all ¢ and sorts
them to obtain L, , where m’ = |m/3], which
can be done in O(Nlog N) time in total.

Now we consider yet another lower bound
for the RMSD, as follows:

RMSD(P[i..i +m — 1],Q)

12 3
> |2 (RMSD(Pli+(j— 1) - m'.
j=1
i+g5-m —1],
QL+ (j —1)-m'.j-m)*}/?
, 3
> %-{Z(D(P[i+(j—1)~m’..
j=1

{ +.7 ' ml - 1]7
QL+ (j—1)-m'.j-m)2}/2  (9)

Let D! be the lower bound given in expres-
sion (9). Notice that D(P[i + (j — 1) -m/..i +
jom = 1QML+ (= 1) - mj e m]) < ofZ
for any j, if D] < c. Let X; be the set of all
positions ¢ such that D(P[i+ (j —1)-m'..i+3-
m' 1, QML+ (j — 1) m!.j - m]) < ¢/ (for
1 < j < 3). According to the previous discus-
sions, by using Ly, we can find all i € Xj in
O(log N + | X|) time for any of j = 1,2, 3 after
we have computed F(Q[1+ (5 —1)-m/..j-m/]).
Note that F(Q[1+ (j —1)-m/'..j-m/]) for all of
j =1,2,3 can be computed in O(m) time. Let
X be the set of common integers of the three
sets X1, X2, and X3. X can be obtained in
expected O(|X 1|+ |X2|+|X3|) time by using a
hashing technique. Notice that the positions 7
such that RMSD(P[i..i +m — 1], Q) < ¢ must
be included in X. For substructures at the po-
sitions ¢ € X, we finally have to compute the
RMSD to check whether the actual RMSD is
at most ¢, if D} < c¢. It can be done in at most
O(m - |X]) time.

(IX;|) is in O(N/4/m) under the assump-
tion that P follows the random-walk model,
according to the discussion in section 3.1.
Moreover, as the structures P[i + (5 — 1) -
m'.i + j-m' — 1] with different j are inde-
pendent random walks, (|X|) is estimated as
O(N/(v/m)?) = O(N/m!5). Thus the total
expected query time complexity utilizing L,
is O(m + N/y/m + m - N/m'® + logN) =
O(m + N//m), as we can ignore the term
‘log N
5.2 Preprocessing for Queries of Ar-

bitrary Lengths
We next consider queries of arbitrary lengths.
For such queries, consider computing L, for all
w such that w is a power of 2, i.e., representable
as 2¢ for some integer d. They can be obtained
in O(N log? N) time, as the number of different
w is in O(log N).



Let m' be the largest power of 2 such that
3m' < m. Then the inequality (9) also holds
for this case. The only difference is that m’
is some power of 2 that satisfies m/6 < m' <
m/3, while m' = |m/3] in the previous section.
Thus, according to the same discussion as in
the previous section, we obtain the same query
time complexity, i.e., O(m + N/ /m).

A problem is that the algorithm requires
O(Nlog N) space to store all the L, which
might be undesired for huge databases. In the
next section, we will propose another prepro-
cessing algorithm that uses only O(N) space
for queries of arbitrary lengths.

5.3 Preprocessing with Linear Space

for Queries of Arbitrary Lengths
Consider dividing P into substructures of
length 2¢ for each d such that 1 < d < log, N.
By doing so, we get substructures Pkd =
Pl(k—1)-2¢41..k-2% (1 < k < N/29) for each
d. There are only O(/N) number of substruc-
tures denoted as P*¢, even if we enumerate all
the possible k£ and d.

G(P*1) (see section 3 for its definition)
can be computed in constant time for each
k. Moreover, G(P*4) = {G(P%*~1d-1) 4
G(P?4-1)}/2. Thus, we can compute G (P*¢)
for all the possible k£ and d such that 1 < k <
N/2% and 1 < d < logy N in O(N) time by dy-
namic programming. Consequently, all of the
F(P*?) values can also be computed in O(N)
time. For each d (1 < d < logy N), let K4 be
the sorted list of integers k (1 < k < N/2%)
according to the F(P*49) values. K, can be
computed in O((N log N)/2%) time. Our pre-
processing -algorithm in this section computes
all these F(P*4) and Ky for all the k and d,
which can be done in O(N log N) time in total.

By doing a binary search on K, , we can
find all the k such that z < F(P*9) < y for
any z, y, and d, in O(log(N/2%) + occ) time,
where occ is the number of the outputs. Hence,
if we are given any structure S of length 2¢
and the value of F(S), we can list all the k
such that D(S, P*4) < ¢ in O(log(N/2%) + occ)
time, as F(S) — ¢ < F(P*4) < F(S) + ¢ iff
D(S,Pkd) < ¢c.

Let dq be the largest d such that, for any
i, there exists some k such that Pkd Ppk+ld
and P¥+24 are substructures of P[i..i +m —
1]. Explicitly, dq = [logy(m + 1)] — 2. Let
wq = |Pkde| = 29, Notice that wq > m/8.
Let IQ be a set of integers whose remainder is
p — 1 when divided by wq (1 < p < wq), i.e.,

integers representable as p 4+ j - wq + 1 with
some integer j.

Now consider comparing the query Q and
substructures P[i..t +m — 1] such that ¢ € I;,Q.
There are O(N/wq) = O(N/m) such substruc-
tures. Let kg = [(i — 1)/wq] + 1. Then,
Pkesde Pketlde and Pket2:4e are substruc-
tures of P[i..i+m—1]. Let Pq;; = Pketi~lda
for j=1,2,and 3. Let Qp; = Q[p+ (j — 1) -
wqQ..p+j-wq — 1] for j =1, 2, and 3. Then,
as wq > m/8, the following inequality holds:

RMSDP[i..i+m —1],Q)
1.3
> m{jgl(1%M91>(1°Q,i,]-,Qp,j))2}1/2

3
> 2—%{];1([)(1’(2,@3'7Qp,j))z}m- (10)

Let DY be the lower bound given in expres-
sion (10). Notice that D(Pq; j, Qpj) < 2v2c
for any j, if D} < ¢. Given the value of
F(Qp;), we can list all i € 119 such that
D(Pq,ij» Qp,;) < 2v2c in O(log(N/m) + occ)
time for any 7, by a binary search on the list
Kg,, where occ is the number of the i to be
listed. Let the list be Y; (j = 1,2,3). Note that
F(Qp ) foralljandp (1 <j <3,1<p<wq)
can be computed in O(m) time in total.

Then the same discussion as in section 5.1
can be done. According to the discussions
in section 3.3, (|Yj|) is in O((N/m)/y/m) =
O(N/m!*®), under the random-walk assump-
tion on P. The set of the start positions i € IIQ
of similar (i.e., the corresponding RMSD is at
most ¢) substructures must be included in all
of the three lists: Y7, Y5 and Y3. Thus, the next
thing to do is to choose the common positions
from the three lists. By using a hashing tech-
nique, it can be done in O(|Y1| + |Y2| + |¥3])
time, which is O(IN/m!5) under the random-
walk assumption. Let Y denote the list of
the positions commonly listed in Y7, Y5 and
Y;. As Pqg;1, Pq,2 and Pq 3 are indepen-
dent random walks, (|Y|) is estimated to be
in O((N/m)/(v/m)3) = O(N/m?®). For sub-
structures at the positions i € Y, we finally
have to compute the RMSD to check whether
the actual RMSD is at most ¢, if DY < c. It
takes at most O(m - ([Y|)) = O(N/m!®) ex-
pected time under the random-walk assump-
tion. Thus the total computational time to
enumerate all the positions ¢ of similar sub-
structures such that i € Iﬁ is O(N/m!5 +

log(N/m)).



To enumerate all the positions of simi-
lar structures, we execute the above for all
p (1 £ p < wq). Thus the total expected
query time complexity is O(m+wq- (N/m!5+
log(N/m))) = O(N/+/m + mlog(N/m)) under
the random-walk assumption.

6 Computational Experi-
ments on the PDB Database

We did computational experiments using the
whole PDB database [3] of the date September
5th, 2008, to examine the performance of our
linear-time algorithm. The database contains
52,821 entries, which include 244,719 chains of
proteins. The total number of amino acids of
all the chains is 38,267,694. We used the C,
coordinates as the representative coordinates
of each amino acid. In the following experi-
ments, we used the SunFire 15K super com-
puter with 96 CPUs of 1200MHz UltraSPARC
ITT Cu and 288 GB memory. Note that we used
only 1 CPU for each experiment. In the exper-
iments, we searched for all the substructures
in the PDB database such that the RMSD to
the query is at most 1A, for queries of various
lengths.

The experiments show that our linear-
expected-time algorithm proposed in section 4
is actually linear-time algorithm on the PDB
database, i.e., the algorithm is not influenced
by the difference of query lengths. For ex-
ample, the average search time over the PDB
database for queries of length 40 is 58.86 sec-
onds. It is 36.25 seconds for queries of length
100, and is 25.71 seconds for queries of length
200, all of which are about 2 seconds per
1,000,000 substructures in the PDB database.
The fact that the query time is not influenced
by the query length means our random-walk
assumption is very reasonable for analyses of
protein structure databases.

Moreover, our linear-expected-time algo-
rithm proposed in section 4 is about 3.6 to
13.3 times faster than any of the previous al-
gorithms. For example, our algorithm can
search for queries of length 100 in 36.25 sec-
onds, which is 11.7 times faster than previous
algorithms: The naive O(Nm) algorithm can
do the same in 428.06 seconds, and the FFT-
based O(NN logm) algorithm can do the same
in 425.77 seconds. In cases that queries are
longer, our algorithm can be improved further
by using the lower bound D} proposed in sec-
tion 5.1 instead of D} used in the algorithm 2.

For example, we can search for structures sim-
ilar to queries of length 100 only in 20.46 sec-
onds, which is about 20 times faster than the
two previously known algorithms. If we choose
to use the lower bound D! when the query is
longer than 40, and choose D otherwise, we
achieve 3.6 to 28 times speed-up against any of
the previous algorithms for any-length queries.
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