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Iterative refinement algorithm is a useful method to improve the align-
ment results. In this paper, we evaluated different iterative refinement algo-
rithms statistically. There are four iterative refinement algorithms: remove
first (RF), bestfirst (BF), random (RD), and tree-based (Tb) iterative refine-
ment algorithm. And there are two scoring functions for measuring the iter-
ation judgment step: log expectation (LE) and weighted sum-of-pairs (SP)
scores. There are two sequence clustering methods: neighbor-joining (NJ)
method and unweighted pair-group method with arithmetic mean (UPGMA).
We performed comprehensive analyses of these alignment strategies and com-
pared these strategies using BAliBASE SP (BSP) score. We observed the be-
havior of scores from the view point of cumulative frequency (CF) and other
basic statistical parameters. Ultimately, we tested the statistical significance
of all alignment results by using Friedman nonparametric analysis of variance
(ANOVA) test for ranks and Scheffé multiple comparison test.

1. Introduction

Multiple sequence alignment has become an essential method in molecular bi-
ology such as phylogenetic analysis and protein structure prediction. Many dif-
ferent techniques have been developed. For example, ProbCons 1) uses Bayesian
consistency and fills the primary library using the posterior decoding of a pair
hidden Markov model. MAFFT 2) uses fast Fourier transform technique, and
SAGA 3) uses a genetic algorithm to try and optimize a multiple sequence align-
ment given an objective function. Progressive alignment 4) is the most widely used
heuristic approach for aligning a large number of sequences. Multiple sequence

†1 Information Engineering Course, Graduate School of Engineering and Science, University
of the Ryukyus

†2 Department of Information Engineering, Faculty of Engineering, University of the Ryukyus

alignment is performed by progressively aligning pairs of sequences followed by
pairs of alignments/profiles. The guide tree determines the order in which these
pairs are aligned. This technique is used in many different multiple sequence
alignment programs such as ClustalW 5), T-COFFEE 6), and MUSCLE 7). How-
ever, failures occurrence in the alignment process can never be corrected in the
progressive alignment technique. The iterative refinement algorithm solves this
problem. By applying dynamic programming to partially aligned sequences iter-
atively, their alignment quality can be improved. Such an iterative strategy em-
ploys heuristic search methods to solve practical alignment problems. Many dif-
ferent iterative refinement techniques have been proposed; MUSCLE uses a tree-
dependent restricted partitioning technique for the iterations. PRRP/PRRN 8)

uses a best-first iterative refinement strategy with tree-dependent partitioning.
Most multiple sequence alignment programs were reviewed by Thompson, et al. 9),
Notredame, et al. 10),11), Wallace 12), and Pirovano 13).

Hirosawa, et al. 14) investigated the performance of different iterative refine-
ment algorithms. They tested the effectiveness of each algorithm by using the
sum-of-pairs score in order to improve the alignment results. They used a group
of 30 protein kinase sequences for evaluating the effectiveness of the algorithms.
Wallace, et al. 15) systematically tested different iterative refinement algorithms
by using HOMSTRAD, which is a database of structure-based alignments for ho-
mologous protein families 16). They showed that iterative refinement algorithms
could be used to effectively improve the performance of progressive alignment
by using existing alignment software programs. Iterative refinement algorithms
were found to be very effective when they were directly incorporated into the
progressive alignment scheme. For example, direct incorporation of remove first
iterative refinement algorithm into ClustalW improved its average accuracy by
6% 15).

In this paper, we revisited important studies on iterative refinement algorithms.
There are several types of iterative refinement algorithms, scoring functions for
measuring the iteration steps, and sequence clustering methods. We carried
out comprehensive analyses of these alignment strategies. Hirosawa, et al. did
not consider the various types of scoring functions and clustering methods in
their study. Wallace, et al. did not consider the sequence clustering method in
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their study. Hirosawa, et al. evaluated the alignment strategies by the mean
value of the alignment scores (sum-of-pairs scores) and the execution time. On
the other hand, Wallace, et al. evaluated the alignment strategies by using the
mean value of column score. The column score was calculated by the number
of identical columns in the reference alignment and the alignment to be tested
as a percentage of the number of columns in the reference. Hirosawa, et al. and
Wallace, et al. did not consider the statistical evaluation enough, they only used
mean value. In this study, we evaluated alignment strategies more statistically.
For this purpose, we considered the distribution of scores and other statistical
values and tested the statistical significance of all the alignment strategies by
using the Friedman ANOVA test 17). When significant differences were found
among the alignment strategies by using the Friedman test, appropriate post-hoc
tests for multiple comparisons were performed. To determine the significance of
specific combinations of strategies, we used a Scheffé multiple comparison test 18)

by all-pair comparisons. Moreover, we studied the characteristics of different
types of data sets and evaluated the performance of all alignment strategies on
the basis of the sequence types. We identified the best and worst alignment
strategies for each type of data set on the basis of the statistical significance of
the strategies.

2. Benchmark Data Set

BAliBASE 3.0 a benchmark alignment database 19) is used to compare the per-
formances of different alignment algorithms. BAliBASE contains 218 reference
alignments and is divided into six different reference sets, each having different
characteristics (Table 1).

Reference 1-1 provides the alignments of equi-distant, very divergent sequences

Table 1 BAliBASE reference alignments.

References Sets Contents
1-1 38 equi-distant sequence (very divergent sequences)
1-2 44 equi-distant sequence (medium to very divergent sequences)
2 41 families aligned with a highly divergent “orphan” sequence
3 30 subgroups with a residue identity of <25% between groups
4 49 sequences with N/C-terminal extensions
5 16 sequences with internal insertions

(identity: <20%) divided into 38 alignment sets. Reference 1-2 provides the align-
ments of equi-distant, medium to very divergent sequences divided into 44 align-
ment sets. Reference 2 reports families aligned with highly divergent “orphan”
sequences divided into 41 alignment sets. Reference 3 reports subgroups with a
residual identity of <25% between groups divided into 30 alignment sets. Refer-
ence 4 reports sequences with N/C-terminal extensions divided into 49 alignment
sets. Reference 5 reports sequences with large internal insertions grouped into
16 alignment sets.

3. Multiple Sequence Alignment Algorithm

Seven multiple sequence alignment algorithms were selected for comparison.
The progressive alignment (PA) algorithm performs multiple sequence align-

ment by successively aligning pairs of sequences/profiles. The guide tree deter-
mines the order in which the sequences/profiles are to be aligned. Initially, two
sequences are chosen by the guide tree and aligned by standard pairwise align-
ment using the Needleman-Wunsch 20) algorithm. In the alignment process, a
new sequence is added to an existing alignment and certain rules are used to
determine the order in which the sequences are aligned.

The remove first iterative refinement (RF) algorithm has a simple iterative
strategy. In each iteration step, one sequence is removed from the alignment
and realigned to the remaining alignment. If the alignment result is better than
the previous one, it is retained and used as the input for the next iteration.
The iteration cycle is terminated if the alignment score converges or when 2N2

iterations are completed. N is the number of sequences.
In the random iterative refinement (RD) algorithm, the alignment is split ran-

domly into two sets of sequences, which are then realigned. If the score improves,
the alignment result is retained. The iteration cycle is terminated if the limit of
2N2 splits are carried out.

In the bestfirst iterative refinement (BF) algorithm, in each iteration cycle,
every sequence is removed from the alignment and realigned to the rest. The
alignment with the best score is used as the input for the next iteration. The
iteration cycle is terminated if the alignment score converges or if the limit of
2N2 profile-profile alignment is reached.
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Fig. 1 Tree-based iterative refinement algorithm.

In the tree-based iterative refinement (Tb) algorithm, the alignment improve-
ment algorithms are incorporated into a progressive alignment strategy as shown
in Fig. 1. Whenever two profiles are combined, the resultant alignment is refined
using one of the other iterative refinement algorithms described above. There-
fore, the Tb algorithm have three types, Tb using RF (TbRF), Tb using RD
(TbRD), and Tb using BF (TbBF).

4. Scores

Two different types of scores were used for the multiple sequence alignment
and used in iterative refinement algorithms to measure the iteration judgment
steps.

The sum-of-pairs (SP) score is a well-known scoring function for the multiple
sequence alignment. To calculate the score of a multiple sequence alignment,
the scores of each pair of rows in the multiple sequence alignment are summed
to obtained the overall score. The SP score of a multiple sequence alignment A

of length l constructed from N nucleotide or amino acid sequences is defined as
follows:

SP(A) =
N∑

j=2

j−1∑

k=1

Sj,k, (1)

where Sj,k is the score associated with the pairwise alignment of the jth and
kth sequences within A. In this study, we use the weighted SP score, which is
used by ClustalW. When a set of weights, {wj,k}, is given to individual pairs of
sequences in A, the weighted SP score of A is analogously defined as follows:

weighted SP(A) =
N∑

j=2

j−1∑

k=1

wj,kSj,k (2)

The weights assigned to individual pairs of sequences are adjusted to compensate
for biased contributions.

The log expectation (LE) scoring function is used in MUSCLE.

LExy = (1 − fx
G) (1 − fy

G) log
∑

i

∑

j

fx
i fy

j pij

pipj
(3)

Here, pi is the background probability of amino acid i; pij , the joint probability
of i and j being aligned; fx

i the observed frequency of i(j) in column x; and fx
G,

the observed frequency of gaps in column x in the first profile.
The weighted SP and LE scoring functions are used for multiple sequence align-

ment and used in iterative refinement algorithms to measure iteration judgement
steps.

5. Statistical Method for Comparison

We examined 28 alignment strategies, which were combinations of seven mul-
tiple sequence alignment schemes (PA, RF, RD, BF, TbRF, TbRD, and TbBF),
two scoring functions (SP and LE score), and two sequence-clustering methods
(NJ and UPGMA).

To compare all the strategies statistically, we used basic statistical parameters
mean, maximum, minimum, median, and variance as a guide for the evaluation
measure. It is preferable that the mean, maximum, and minimum values are high
and that the variance is low.

In addition to using these index values, we employed another statistical view.
We regarded the distribution of scores as important. In order to estimate the
distribution function, we utilized the parameter cumulative frequency (CF). It is
preferable that the frequency is low for low scores and that it increases rapidly
for high scores. The distribution of the scores was determined by using CF.

Further, we determined the statistical significance of all alignment results. As
the significance of the results could not be evaluated using the above-mentioned
evaluation indices, a nonparametric ANOVA test by ranks was used. Consider-
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ing the characteristics of the data, we used the Friedman ANOVA test because
three or more paired groups were compared in this method and this test was a
nonparametric alternative to the two-way ANOVA for ranks. Because significant
differences were found among the alignment strategies by using the Friedman
ANOVA test, the multiple comparison test was performed for the post-hoc tests.
The significant nonparametric ANOVA results suggest that the global null hy-
pothesis H0: “The distributions of the ranks are identical” should be rejected.
Multiple comparison procedures were then used to identify the distributions that
were different from others. To determine the significance of a specific combina-
tion, we used a Scheffé multiple comparison test to perform all-pair comparison.
Ultimately, we identified the best and worst alignment strategies for characteris-
tics of different types of data sets.

6. Experimental Results

BioPerl (http://www.bioperl.org) modules was used to implement the iterative
refinement algorithms. The multiple sequence alignment program MUSCLE (v
3.7) generates alignments to be used as the progressive alignment and the profile-
profile alignment in the process of iterative refinement algorithms. We used the
amino acid scoring matrix VTML 240 21). In the iteration judgement step, we
used weighted SP (ClustalW’s sequence weighting) and LE scoring functions
to determine whether the score was improving. Furthermore, we employed the
NJ and UPGMA clustering methods. These scoring functions and clustering
methods were implemented by using MUSCLE. The PA results was used as
initial alignments in the iterative refinement algorithms.

To measure the performance of multiple alignment, we used BAliBASE SP
(BSP) scores. Given a true and estimated multiple sequence alignment, the
accuracy of the estimated alignment is usually computed using the BSP score.
The BSP score is the ratio of the number of correctly aligned pairs in the core
blocks of the test alignment to the number of aligned pairs in the reference
alignment. The core block is a region in which reliable alignments are known to
exist.

BSP =

∑
i<j Si,j

Sr
(4)

Table 2 Mean Values of BSP Scores. The highest value for each reference is highlighted in
bold with underline, the lowest value is highlighted in italic with underline.

PA RF
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 0.399 0.408 0.403 0.429 0.413 0.430 0.425 0.437
1-2 0.788 0.794 0.792 0.821 0.805 0.823 0.800 0.826

2 0.763 0.773 0.783 0.798 0.776 0.787 0.788 0.803
3 0.680 0.674 0.680 0.665 0.689 0.681 0.689 0.679
4 0.684 0.707 0.702 0.732 0.701 0.727 0.711 0.750
5 0.622 0.637 0.650 0.668 0.642 0.654 0.653 0.673

RD BF
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 0.404 0.413 0.410 0.431 0.419 0.428 0.429 0.442
1-2 0.788 0.807 0.795 0.824 0.805 0.823 0.809 0.827

2 0.760 0.770 0.780 0.794 0.773 0.789 0.788 0.803
3 0.677 0.669 0.678 0.662 0.689 0.682 0.687 0.676
4 0.682 0.703 0.701 0.729 0.697 0.730 0.711 0.746
5 0.619 0.630 0.649 0.665 0.647 0.659 0.654 0.679

TbRF TbRD
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 0.433 0.416 0.431 0.442 0.415 0.412 0.417 0.432
1-2 0.807 0.823 0.810 0.833 0.789 0.809 0.809 0.828
2 0.780 0.786 0.793 0.800 0.758 0.767 0.784 0.794

3 0.680 0.677 0.685 0.676 0.674 0.668 0.669 0.659
4 0.699 0.730 0.688 0.729 0.676 0.693 0.689 0.716

5 0.644 0.660 0.663 0.678 0.613 0.636 0.650 0.675
TbBF

NJ UPGMA
Reference LE SP LE SP

1-1 0.433 0.419 0.438 0.450
1-2 0.809 0.825 0.808 0.834
2 0.780 0.790 0.793 0.801
3 0.682 0.683 0.685 0.680
4 0.700 0.722 0.692 0.732
5 0.641 0.667 0.655 0.685

Si,j =
∑

P k
i,j (5)

Sr is the total number of residual pairs in a core block of the test alignment. If
the pair of residues i and j in column k of the test alignment exist in a core block
of the reference alignment, P k

i,j becomes 1, otherwise 0.
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Fig. 2 CF values of BSP scores.
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Table 3 Sum of CF values. The highest value for each reference is highlighted in bold with
underline, the lowest value is highlighted in italic with underline.

PA RF
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 477 469 472 452 467 451 456 445

1-2 210 201 207 183 193 176 200 175
2 216 207 199 185 205 195 197 182
3 206 211 205 218 202 207 202 209
4 315 293 293 275 297 276 289 254
5 129 124 119 115 121 120 118 111

RD BF
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 472 467 468 452 460 453 453 441
1-2 207 188 203 179 192 178 191 175
2 220 212 203 188 207 162 177 161
3 209 215 207 219 202 207 202 209
4 316 299 293 277 300 274 289 257
5 131 127 118 116 121 120 117 110

TbRF TbRD
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 451 466 453 445 466 466 463 452
1-2 191 177 191 172 209 192 191 173
2 174 161 177 158 221 213 196 188
3 206 209 205 209 210 215 213 220
4 298 272 312 271 318 306 309 282
5 122 117 115 111 134 124 120 111

TbBF
NJ UPGMA

Reference LE SP LE SP
1-1 451 460 446 440
1-2 189 176 190 171
2 200 194 192 185
3 205 208 204 208
4 298 281 306 267
5 122 113 118 107

Table 2 shows the mean values of the BSP scores. One of the scoring functions
(LE or SP) and one of the sequence clustering methods (NJ of UPGMA) were
paired for each strategy. The best and worst scores for each reference have
been underlined in the table. Figure 2 shows the CFs for the BSP scores. It
is preferable that the frequency is low for low score and increases rapidly for

Table 4 Results of Friedman ANOVA test of BSP scores.

References P value
Reference 1-1 5.41.E-05
Reference 1-2 6.23.E-30
Reference 2 9.50.E-45
Reference 3 1.37.E-03
Reference 4 3.42.E-35
Reference 5 1.37.E-12

the high scores. Table 3 shows the sums of the CF values used to assess the
performance of the CF. It is preferable that the sums of the CF values are low.
The best and worst scores for each reference have been underlined in the table.

The statistical significance of the BSP scores was determined using rank statis-
tics. Table 4 shows the results of the Friedman ANOVA test on the BSP scores.
It was clear that there were significant differences among the alignment strategies
for each reference.

In the next step, the typical differences among the alignment strategies for
each reference have to be determined. Table 5 shows the rank sum value of
each alignment strategy. It is preferable that the rank sum value is high. The
best and worst scores for each reference have been underlined in the table. We
performed a post-hoc multiple comparison test, that was, the Scheffé multiple
comparison test for all-pair comparisons in order to determine the statistical
significance of the alignment strategies. Our results showed some significant
differences in Reference 1-2, 2, and 4. On the basis of rank sum order and the
significant difference, we identified efficient alignment strategies in Table 6. We
also identified some inefficient strategies in Table 7. The multiple comparison
test did not reveal any significant difference in Reference 1-1, 3, and 5.

The above-mentioned results indicate that the UPGMA clustering method pro-
vides better performance than NJ clustering method. NJ is known as the most
reliable method in predicting the correct phylogenetic tree, because the branch
lengths of trees are allowed to vary in a manner that simulates varying levels
of evolutionary change. UPGMA assumes the same evolutionary speed on all
lineages. It is generally not considered a suitable method for construction of
phylogenetic trees as it relies on the rates of evolution among different lineages
to be approximately equal. However, Hirosawa, et al. and Wallace, et al. used
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Table 5 Rank sum values of BSP scores. The highest value for each reference is highlighted
in bold with underline, the lowest value is highlighted in italic with underline.

PA RF
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 462.0 402.0 487.0 582.0 542.0 542.5 617.0 593.5

1-2 326.5 388.5 500.0 629.0 603.0 727.5 669.5 765.0
2 335.0 395.5 693.5 758.0 529.5 644.5 771.0 821.0
3 444.5 401.0 476.0 373.0 527.5 464.0 531.0 453.0
4 422.5 558.5 679.5 828.5 664.0 811.0 876.5 1030.0

5 133.5 160.5 238.5 297.5 198.0 200.0 250.5 323.0
RD BF

NJ UPGMA NJ UPGMA
Reference LE SP LE SP LE SP LE SP

1-1 468.5 440.0 498.0 597.0 574.5 535.0 632.5 638.5
1-2 364.0 454.0 564.5 684.0 645.5 736.5 704.0 801.5
2 256.0 331.0 577.0 634.0 537.5 645.0 754.0 788.5
3 388.0 333.5 421.5 312.0 525.5 469.0 531.0 445.0
4 380.0 528.5 635.0 766.5 658.5 822.5 863.5 961.0
5 110.5 135.0 233.0 275.0 211.0 226.5 263.0 326.0

TbRF TbRD
NJ UPGMA NJ UPGMA

Reference LE SP LE SP LE SP LE SP
1-1 586.0 449.0 614.5 660.5 516.5 409.5 539.0 592.0
1-2 650.0 700.5 847.0 842.5 389.5 468.0 669.0 715.5
2 626.5 549.0 714.5 760.5 263.0 279.5 614.5 627.5
3 435.5 402.5 503.0 438.0 389.0 326.5 374.5 345.0
4 640.0 844.5 718.0 831.5 352.5 514.0 673.5 701.5
5 200.0 212.0 308.5 303.0 112.0 142.5 241.5 289.0

TbBF
NJ UPGMA

Reference LE SP LE SP
1-1 628.0 489.5 671.0 660.5
1-2 666.0 722.5 800.5 830.0
2 632.0 631.0 766.0 711.0
3 436.0 457.0 506.0 471.5
4 645.5 844.5 739.5 903.0
5 209.0 266.0 276.5 354.5

not NJ but UPGMA without reason. Katoh, et al. 22) indicated that in the case
of construction of guide tree for the progressive alignment, UPGMA was more
efficient method than NJ. Our results matched to these indications.

Table 7 shows RD and TbRD algorithms gave inefficient performance in Ref-
erence 2 and 4. Also in the other references, RD and TbRD algorithms did not

Table 6 Efficient strategies (high score order).

Reference 1-2 Reference 2 Reference 4
TbRF using UPGMA and LE RF using UPGMA and SP RF using UPGMA and SP
TbRF using UPGMA and SP BF using UPGMA and SP BF using UPGMA and SP
TbBF using UPGMA and SP RF using UPGMA and LE TbBF using UPGMA and SP

TbBF using UPGMA and LE RF using UPGMA and LE
TbRF using UPGMA and SP
PA using UPGMA and SP
BF using UPGMA and LE

Table 7 Inefficient strategies.

Reference 1-2 Reference 2 Reference 4
PA using NJ and LE RD using NJ and LE TbRD using NJ and LE

TbRD using NJ and LE RD using NJ and LE
TbRD using NJ and SP PA using NJ and LE
RD using NJ and SP TbRD using NJ and SP
PA using NJ and LE

give good performance.
In previous studies, Hirosawa, et al. showed that PA algorithm gave the worst

mean scores. Hirosawa, et al. used 30 protein kinase data sets that were the
same characteristics test sequence sets. Reference 1-1 and 1-2 have the similar
characteristics to these. Table 2 shows PA algorithm gave the worst mean scores
in Reference 1-1 and 1-2, those were the same as Hirosawa, et al.’s results. And
Hirosawa, et al. showed that TbRF, TbRD, and TbBF algorithms had the same
performance. However in this study, TbBF showed good mean scores in Ref-
erence 1-1 and 1-2. The supposable reason might be the restrictive data sets.
Hirosawa, et al. used 30 data sets and the sequence length was limited to 80,
although we covered the sequences of various length. Wallace, et al. showed RD
and TbRD gave bad mean scores and TbBF gave the best mean scores, those
were the same as our results. On the other hand, Wallace, et al. showed the LE
scoring function provides better performance. However, the weighted SP scoring
function provided better performance than LE in this study. The possible reason
might be the difference of score in the iteration judgement step. We used LE scor-
ing function in the iteration judgement step, when LE were used as alignment
process, ditto with weighted SP scoring function. Generally the scoring func-
tion used in the alignment process should be used in the iteration judgment step.
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However, Wallace, et al. used the SP scoring function by multiple sequence align-
ment package SAGA in all iteration judgement steps. This difference of scoring
function for the iteration judgement step might have influenced the results.

7. Conclusion

We evaluated different iterative refinement algorithms statistically. In this
study, we performed a comprehensive analyses of alignment strategies computing
seven alignment algorithms, two scoring functions for the iteration judgement
step, and two sequence clustering methods. We considered the characteristics of
different types of data sets and evaluated the performance of all strategies on the
basis of sequence types on the BAliBASE benchmark database.

From the results of nonparametric statistical tests, we found that there were
significant statistical differences among the alignment strategies for all BAliBASE
references and identified efficient strategies for each reference.
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