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Clustering is a practical data analysis step in gene expression-based studies.
Model-based clusterings, which are based on probabilistic generative models,
have two advantages: the number of clusters can be determined based on statis-
tical criteria, and the clusters are robust against the observation noises in data.
Many existing approaches assume multi-variate Gaussian mixtures as genera-
tive models, which are analogous to the use of Euclidean or Mahalanobis type
distance as the similarity measure. However, these types of similarity measures
often fail to detect co-expressed gene groups. We propose a novel probabilistic
model for cluster analyses based on the correlation between gene expression
patterns. We also propose a “meta” cluster analysis method to eliminate the
dependence of the clustering result on initial values of the clustering algorithm.
In empirical studies with a time course gene expression dataset of Bacillus
subtilis during sporulation, our method acquires more stable and informative
results than the ordinary Gaussian mixture model-based clustering, k-means
clustering and hierarchical clustering algorithms, which are widely used in this
field. In addition, with the meta-cluster analysis, biologically-meaningful ex-
pression patterns are extracted from a set of clustering results. The constraints
in our model worked more efficiently than those in the previous studies. In
our experiment, such constraints contributed to the stability of the clustering
results. Moreover, the clustering based on the Bayesian inference was found to
be more stable than those by the conventional maximum likelihood estimation.

1. Introduction

Genome-wide gene expression profiling by microarrays provide quantitative
transcriptional activation levels of thousands of genes at once. The measure-
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ments in multiple biological conditions or the time-course during various biolog-
ical processes help us to reveal the corresponding genomic activities. Based on
the primitive assumption that functionally related genes exhibit similar expres-
sion patterns, various cluster analysis (or simply clustering) methods have been
developed and applied for microarray data.

Clustering algorithms can be roughly classified into two major categories:
discriminative (or similarity-based) approaches and generative (or probabilistic
model-based) approaches 1). The former includes popular hierarchical cluster-
ings 2),3), self-organizing maps (SOMs) 4)–6), k-means 7), fuzzy C-means 8), and
Fuzzy ART 9). The latter type of method is referred to as “model-based clus-
tering”, which is based on a particular probabilistic generative model, i.e., a
parametric family of probabilistic distributions, including multi-variate Gaussian
mixture 10)–12), mixture of t-distributions, mixtures of factor analyzers 13), and
von Mises-Fisher (vMF) mixtures 14). In addition to these approaches, stabiliz-
ing algorithms for arbitrary clustering methods have also been proposed 15)–17).

In order to obtain biologically meaningful results from microarray datasets
with a clustering method, it is desirable that the clustering method provides
i) an appropriate similarity measure or the corresponding generative model for
identifying co-regulated gene groups, ii) a determination method for the number
of clusters by an objective criterion, and iii) robustness and stability against
measurement noise that is inevitably contained in gene expression data. Most
of the discriminative approaches above have the first property, since they can
easily incorporate an arbitrary similarity measure. Meanwhile, the generative
approaches often miss this property but have the second and the third properties.

A recent evaluation study of several popular gene clustering methods, includ-
ing hierarchical clustering, k-means, k-medoids 18), SOMs, multi-variate Gaussian
mixture model-based clustering, and tight clustering 17), showed that model-based
clustering and tight clustering performed overall better than the other meth-
ods 19). This result suggests the importance of the second and third properties.
However, similarity measures are still important because they not only have a
direct effect on clustering outcomes but also define implicitly how the expressions
of functionally-related genes behave.

In gene expression analyses, correlation-based similarity is more appropriate
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than the Euclidean distance for extracting co-regulated genes because it is sensi-
tive to relative variations of expression patterns rather than their magnitudes 14),
but generative model-based clustering suitable to deal with such similarity has
not been well studied.

In this study, we propose a cluster analysis procedure for gene expression data,
based on the above background. For satisfying the first property, we introduce
a probabilistic mixture model referred to as the constrained Gaussian mixture
(CGM) model, which enables us to perform a correlation-based cluster analysis.
A representative expression pattern within a cluster is incorporated as one of the
model’s parameters. The magnitude of each expression pattern is treated as a
hidden variable. For the second property, we take an alternative approach to
conventional maximum likelihood estimation or maximum a posteriori (MAP)
estimation; parameters and hidden variables of the model are estimated by a
variational Bayes (VB) method 20),21), which approximately conducts a Bayesian
inference and is effective in obtaining a statistically appropriate number of clus-
ters. Furthermore, for removing the initial-condition problem and enhancing the
stability of the clustering method, we propose a meta-cluster analysis algorithm
that integrates the clustering results obtained in the previous (clustering) step.

The proposed method is applied to a time-course gene expression dataset of
Bacillus subtilis during sporulation. In our experiment, the proposed probabilis-
tic model and meta-cluster analysis produce clustering results that exhibit higher
qualities than those by k-means and hierarchical clustering.

2. A Generative Approach for Correlation-Based Clustering

2.1 Constrained Gaussian Mixture Model
When gene expression levels are measured at D time points (or in D differ-

ent conditions), the expression pattern of a single gene is represented by a D-
dimensional vector. Suppose that the expression pattern y(i) of the i-th gene is
generated by a noisy linear transformation:

y(i) = wx(i) + ε(i), (1)
where w is a D-dimensional vector. ε(i) is a random vector that obeys a D-
dimensional normal distribution, N (ε(i)|0, σID), whose mean and covariance are
0 and σ−1ID, respectively. ID denotes a D-by-D unit matrix. x(i) is a random

scalar that obeys a normal distribution, N (x(i)|μ, 1), and is treated as a hidden
variable. w and x(i) are regarded as the representative expression pattern and
the magnitude of the i-th gene expression pattern, respectively. When there are
genes whose expression patterns are generated from Eq. (1), those patterns are
correlated with the common representative expression pattern w. It is found that
y(i) obeys the following normal distribution:

P (y(i)|θ) = N (y(i)|μw, (σ−1ID + ww′)−1), (2)
where θ ≡ {w, σ, μ} denotes the set of model parameters.

We consider a mixture model whose components are each defined by the prob-
abilistic distribution (2) with different parameters. Let M be the number of
components. The generative process of the mixture model begins by selecting a
component. Then, an expression pattern is generated from the selected compo-
nent. For convenience in explanation, we define an M -dimensional binary vec-
tor z(i) ≡ (z1(i), . . . , zM (i)) that satisfies zm(i) ∈ {0, 1} and

∑M
m=1 zm(i) = 1.

zm(i) = 1 signifies that the m-th component is selected for the i-th gene. Since
we do not know the correct answer to the clustering problem, z(i) is a hidden
variable. We also use the notation x(i) ≡ (x1(i), . . . , xM (i)). Using these nota-
tions, the probabilistic distribution of a complete datum (y(i),x(i),z(i)) is given
by

P (y(i),x(i),z(i)|Θ) =
M∏

m=1

{P (y(i), xm(i)|m, θm)gm}zm(i)
, (3)

where P (y(i), xm(i)|m, θm) and θm denote the probabilistic distribution based
on Eq. (2) and the set of parameters, respectively, of the m-th component.
g ≡ (g1, . . . , gM ) denotes the mixing rate parameter that satisfies gm ≥ 0 (m =
1, . . . ,M) and

∑M
m=1 gm = 1. Θ ≡ {{θm}M

m=1, g} is the set of the mixture model’s
parameters.

The probabilistic distribution (2) is a normal (Gaussian) distribution that has
constraints on its mean and covariance. Thus, the mixture model (Eq. (38))
is called a constrained Gaussian mixture (CGM) model. Figure 1 shows the
difference between a CGM model and a conventional Gaussian mixture model.
If expression patterns are highly correlated with each other, those patterns are
assigned to the same cluster regardless of their magnitude. On the other hand,

IPSJ Transactions on Bioinformatics Vol. 2 47–62 (May 2009) c© 2009 Information Processing Society of Japan



49 A Constrained Gaussian Mixture Model for Correlation-Based Cluster Analysis of Gene Expression Data

Fig. 1 CGM model and Gaussian mixture model. Conceptual illustration of (a) the proposed
constrained Gaussian mixture (CGM) model and (b) the ordinary Gaussian mixture
model. Ellipses represent covariances of clusters. The arrows in (a) represent the w
vectors of the clusters, which are constrained to go through the origin.

a conventional Gaussian mixture model can divide such expression patterns into
different clusters due to the large representation ability of the model (i.e., too
many parameters).

The CGM model is a special case of the sparse coding methods 22)–24), which
is motivated from independent component analysis (ICA). In the formulation of
ICA, an expression pattern y is represented by a linear mixture of unobservable
sources x: y = Wx, where W is the mixing matrix. The number of columns of
W corresponds to the number of sources. Sparse coding means that only a few
components of x take non-zero values. The CGM model can be regarded as the
simplest case of “noisy” sparse coding: only one component in x takes a non-zero
value, assuming the noise (see Eq. (1)). Thus, the CGM model is appropriate for
clustering highly noisy data but is not adequate for problems like blind source
separation, in which two or more sources are mixed.

The noise level often depends on the absolute expression level of genes 25),26).
Such dependence should be incorporated into the probabilistic model when deal-
ing with expression data consisting of absolute expression levels: ε should depend
on x in such a case. On the other hand, the dependence can be regarded as weak

for data consisting of relative expression levels. The noise level for the relative
expression value of a gene can be estimated in the preprocessing step, where
the absolute expression values are used for calculating the relative expression
value 27). Although we assume the normal distribution for noise ε for simplicity,
a priori knowledge about the noise level can be incorporated as a prior distribu-
tion within the Bayesian framework.

2.2 Parameter Estimation and Model Selection
Given expression patterns of N genes Y ≡ {y(i)}N

i=1, the likelihood for a CGM
model with M clusters is calculated by

L(Θ|Y ;M) ≡ P (Y |Θ,M)

=
∫
P (Y,X,Z|Θ,M)dXdZ, (4)

where P (Y,X,Z|Θ) is the probability that the complete dataset {Y,X ≡
{x(i)}N

i=1, Z ≡ {z(i)}N
i=1} is generated, which is given by Eq. (38). A maxi-

mum likelihood (ML) estimation obtains the parameter set that maximizes the
likelihood Eq. (4). An ML estimation for models with hidden variables can be
performed by the expectation-maximization (EM) algorithm 28).

The likelihood can be used for obtaining the most probable parameters for a
given model, while the Bayesian inference allows us to obtain the most prob-
able model structure 29),30). Namely, we can determine an appropriate number
of clusters within a Bayesian inference instead of the ML approaches which use
some statistical criteria such as the Akaike information criterion (AIC) 31) and
the Bayesian information criterion (BIC) 32). The joint posterior distribution of
unknown variables, model parameters and hidden variables, is considered in a
Bayesian inference. According to the Bayes theorem, the joint posterior distri-
bution of unknown variables in the CGM is given by

P (Θ,X, Z|Y,M) =
P (Y,X,Z|Θ,M)P0(Θ|M)

P (Y |M)
(5)

P (Y |M) =
∫
P (Y,X,Z|Θ,M)P0(Θ|M)dΘdXdZ, (6)

where P0(Θ|M) is the prior distribution of the parameters, which represents a
priori knowledge of the parameters. The normalization factor P (Y |M), called
the marginal likelihood, represents the likelihood of the model (structure) with
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M clusters. Thus, an ML estimation for the cluster number can be performed by
the maximization of this marginal likelihood. For description simplicity, however,
the cluster number M is omitted below.

The posterior distribution of Z is obtained by integrating out X and Θ from
the joint posterior distribution P (Θ,X, Z|Y ):

P (Z|Y ) =
∫
P (Θ,X, Z|Y )dΘdX. (7)

If the marginalized posterior distribution (7) is obtained, the cluster index to
which the i-th gene belongs is determined by argmaxmP (zm(i) = 1|y(i)).

Since analytical calculation of the posterior distribution (5) is intractable for
the CGM model, an approximate inference method, such as the Markov Chain
Monte Carlo 33) (MCMC) or Laplace approximation 34), is needed. In this study,
we use the variational Bayes (VB) method 20),21).

We consider a trial posterior distribution Q(Θ,X, Z) that approximates the
true posterior distribution P (Θ,X, Z|Y ), and the free energy is defined by

F [Q(Θ,X, Z)] ≡
∫
Q(Θ,X, Z) ln

P (Y,X,Z|Θ)P0(Θ)
Q(Θ,X, Z)

dΘdXdZ

= lnP (Y ) − KL {Q(Θ,X, Z) ‖ P (Θ,X, Z|Y )} , (8)
where KL{· ‖ ·} is the Kullback-Leibler (KL) divergence between two probability
distributions. The minimization of the KL-divergence is equivalent to the maxi-
mization of the free energy, since the first term of Eq. (8) does not depend on the
trial posterior distribution Q. When the trial posterior distribution is equivalent
to the true posterior distribution, the free energy is equivalent to the log marginal
likelihood, lnP (Y ).

In the VB method, we assume a factorized trial posterior distribution
Q(Θ,X, Z) = Q(Θ)Q(X,Z). Under this assumption, the maximization of the
free energy is implemented as an efficient iterative algorithm similar to the EM
algorithm. The details of the estimation algorithm for the CGM are provided in
Appendix. After the algorithm converges, the free energy, which approximates
the log marginal likelihood, can be used for determining the model structure, i.e.,
the cluster number M , because lnP (Y ) = lnP (Y |M) is the log likelihood of M .

3. Meta-Cluster Analysis

In many clustering methods, such as the k-means and model-based clustering
methods, clustering results depend on the initial condition of the algorithm. Our
clustering method based on the Bayes inference involves an integration over the
parameters, and the dependence on the parameter initialization is removed, in
principle. However, it still depends on the initial set-up for the parameters of
the trial posterior distribution in the VB method. In order to cope with this
problem, we propose a meta-cluster analysis procedure. First, we run a cluster-
ing algorithm many times with various initial conditions and take C good results
from them. The goodness of each result is evaluated by an appropriate criterion,
the log marginal likelihood lnP (Y ) in our method. Then, we calculate the aver-
aged similarity h(i, j) between the i-th and j-th expression patterns using the C
clustering results:

h(i, j) ≡ 1
C

C∑
c=1

Mc∑
m=1

Pc(zm(i) = 1|y(i))Pc(zm(j) = 1|y(j)), (9)

where c indexes a clustering result and Mc is the number of components in
the c-th clustering result. Pc(zm = 1|y(i)) denotes the marginalized posterior
distribution (Eq. (7)) of the c-th clustering result.

Our meta-cluster analysis is performed such that the following objective func-
tion is maximized:

E =
M̃∑

m̃=1

∑
i∈Im̃

∑
j∈Im̃

h(i, j) +
M̃∑

m̃1=1

M̃∑
m̃2 �=m̃1

∑
i∈Im̃1

∑
j∈Im̃2

(1 − h(i, j)), (10)

where M̃ is the number of meta clusters. Im denotes the index set of genes
in the m-th meta-cluster. Equation (10) is the sum of the internal similarity
within each meta cluster (the first term) and the external dissimilarity between
all meta cluster pairs (the second term). The validity of this objective function is
discussed in the Results section. We apply the k-means clustering method many
times for the set of N similarity vectors

hi = (h(i, 1), h(i, 2), . . . , h(i,N)) (i = 1, . . . , N), (11)
and choose a meta-clustering result that maximizes the objective function (10).

IPSJ Transactions on Bioinformatics Vol. 2 47–62 (May 2009) c© 2009 Information Processing Society of Japan



51 A Constrained Gaussian Mixture Model for Correlation-Based Cluster Analysis of Gene Expression Data

Because we do not have a priori information about the characters of the similarity
vectors (11), the non-parametric k-means clustering is sufficient in this meta-
clustering analysis.

4. Result

4.1 Data Description
Our clustering method was applied to a gene expression time-series dataset of

Bacillus subtilis during sporulation measured by cDNA microarray technology.
The expression levels of 4,010 genes of Bacillus subtilis were measured every
30 minutes (9 hours, 19 time points) during sporulation. We removed the first
and second time points from the original dataset, because we considered that
sporulation had not started at that time. Consequently, each gene expression
pattern is represented by a 17-dimensional vector. We used ‘GeneSpring’ (Silicon
Genetics), a software for analyzing gene expression data, in order to eliminate two
types of biases involved in the gene expression data; the intensity dependent bias
was removed by a nonlinear transformation, and the array dependent bias was
corrected by the median of the expression levels. After that, missing values in the
corrected expression patterns were imputed by the k-nearest neighbor method 35).
Expression patterns with four or more missing values were not used, because they
were harmful to the cluster analysis. Finally, we selected 617 expression patterns
whose average expression level over the 17 time points was greater than zero,
because these activated genes were expected to be related to sporulation.

The sporulation process can biologically be divided into five stages. At each
stage, some sigma-factors activate the expression of a specific set of genes 36).
On the basis of biological knowledge with regard to transcription factors, we
further divided the five stages into ten stages, and 89 genes (see Table 1) whose
each function during the sporulation is known were separated into ten groups
corresponding to the ten stages. Namely, each of the 89 genes out of 617 has
one of 10 labels. Each clustering was conducted by using the gene expression
dataset including all the 617 genes and the results were evaluated by comparison
with such biological partition with respect to the labeled 89 genes. We used the
adjusted Rand index (ARI; in Ref. 37)) to evaluate the similarity of two partitions,
i.e., a clustering result obtained by our method and the biological partition. A

high ARI value means that the corresponding clustering result agrees well with
the biological partition 10).

4.2 Free Energy and ARI
We show the cluster analysis results based on the CGM estimated by the VB

method (VB-CGM). First, we examined the model’s dependence on the number
of clusters. We prepared CGM models with cluster numbers from 1 to 20. For
each cluster number, 50 kinds of initial set-ups were randomly prepared, and
the VB method was applied with each initial set-up. The free energy and ARI
were calculated for each of the results. Figure 2 (a-b) shows schematic plots
of the free energy and ARI, respectively, versus the number of clusters. The
median of the free energy is maximal at 7 clusters. On the other hand, the
ARI becomes almost flat, especially with more than 8 clusters. For comparison,
instead of the VB method, we used an ML estimation for the same GCM models
(ML-GCM). When evaluating models estimated by an ML estimation method,
the Bayesian information criterion (BIC) 32) is often used 11). The BIC is maximal
at 15 clusters, while the ARI is maximal at 9 clusters (Fig. 2 (c-d)). The ARI
decreases as the number of clusters increases. These results show that the free
energy in the VB method exhibits good agreement with the ARI, while in our
model’s case the BIC in the ML estimation behaves differently from the ARI.
Figure 3 shows schematic plots of the number of effective clusters in CGM
models, whose mixing rate gm exceeds 0.5/M , versus the number of clusters.
When the VB method is used (Fig. 3 (a)), the number of effective clusters is
consistently within the range of 5 to 7, implying that there are effective clusters
with such a number in the dataset. When the ML estimation is used (Fig. 3 (b)),
on the other hand, the number of effective clusters is proportional to the number
of clusters M in the model. This implies that the ML estimation divides a proper
cluster into small portions when M increases. Such division degrades the quality
of the clustering results. The VB method does not exhibit such an improper
cluster division. Accordingly, the VB-GCM is more robust than the ML-GCM
method against the increase in the cluster number; moreover, the free energy can
be a criterion to determine the appropriate number of effective clusters in the
dataset.
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Table 1 Partition of 89 known genes into 10 groups based on their known transcription factors. The numbers next to the gene
names denote the meta-cluster indices obtained by our method.

Transcription factor Gene

sigH spoVG(1) spoVS(1)

sigH & spo0A sigF(2) spo0A(1) spo0F(1) spoIIAA(2) spoIIAB(2)

sigA & spo0A sigE(2) spoIIB(2) spoIIE(2) spoIIGA(2)

sigE cwlJ(5) dacB(2) mmgA(4) mmgB(4) mmgC(5)
mmgD(4) mmgE(4) nucB(3) spoIIIAA(4) spoIIIAC(4)
spoIIIAE(4) spoIIIAG(3) spoIIIAH(4) spoIIIC(5) spoIIP(4)
spoIVA(4) spoIVCB(4) spoVID(4) spoVR(4) yisO(5)
yrbA(5) yrbB(5) ysxE(4)

sigE & spoIIID cotJA(5) cotJB(4) cotJC(4) spoIIID(5) spoIVCA(4)

sigF sigG(3) spoIIQ(4) sspF(6)

sigF & sigG dacF(5) gpr(4)

sigG gerBA(5) gerBC(4) sleB(5) splB(2) spoVAB(5)
spoVAC(5) spoVAD(6) spoVAE(6) spoVAF(5) sspB(5)
ycxE(5) ypeB(5)

sigK cotT(6) spoIVFA(4) spsA(7) spsB(7) spsC(7)
spsD(7) spsE(7) spsF(7) spsG(7) spsI(7)
spsJ(6) spsK(6) yisC(4) yisD(4) yisE(4)
yisF(3) yisG(5) yjmC(4) yjmD(4) yjmF(4)
yjmG(3)

sigK & gerE cgeB(7) cgeD(2) cgeE(2) cotC(6) cotD(7)
cotG(7) cotS(6) cotV(7) cotW(7) cotX(7)
cotY(6) cotZ(6)

4.3 Results of Meta-Cluster Analysis
Meta-cluster analysis tries to obtain a robust clustering result by integrating

various clustering results after changing the initial set-up of the target clustering
algorithm. In the meta-cluster analysis, we calculated h(i, j) for 50 CGM clus-
tering results, each of which has 7 clusters; this cluster number was determined
by the free energy criterion (see Fig. 2 (a)). Consistent with this setting, we also
set the number of meta clusters to 7. For comparison, we applied the same
meta-clustering procedure to the results obtained by the k-means clustering with

the Pearson’s correlation coefficient. The meta-cluster analysis is formulated as
optimization of the objective function (10).

The validity of this objective function (10) is checked here by comparing its
values with the ARI values for 1,000 meta-clustering results starting from ran-
dom initial conditions in the meta-clustering procedure. The objective function
exhibits positive correlation with the ARI in both cases, by the VB-CGM and by
the k-means clustering (Fig. 4). This implies that the objective function (10) can
be used for choosing good results from various meta-clustering results. Figure 4
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Fig. 2 Clustering results by the GCM model. (a) Schematic plot of the variational free energy
when applying the VB method to the CGM models (VB-CGM) with various numbers
of clusters. Horizontal and vertical axes denote the number of clusters and the free
energy, respectively. Bold lines in the schematic plots denote the median. (b) The
corresponding ARI. (c) Schematic plot of the BIC when applying an ML estimation to
the CGM models (ML-CGM) with various numbers of clusters. (d) The corresponding
ARI.

also shows that the meta-clustering results based on the VB-CGM have larger
ARI values than those based on the k-means clustering.

We further examined the meta-clustering result with the largest objective func-
tion value. In order to extract representative expression patterns from the meta-
clustering result, we applied the probabilistic model (2) to the expression patterns
in each of the meta clusters. The result is shown in Fig. 5. The representative
expression patterns indicate that genes in the seven meta clusters were activated
in turn during the sporulation process (right panels). It should be noted that the

Fig. 3 The number of effective clusters in the CGM models. (a) Schematic plot of the number
of effective clusters versus the number of all clusters by the VB-CGM. Note that the
vertical axis represents discrete values. (b) Schematic plot of the number of effective
clusters versus the number of all clusters by the ML-CGM.

Fig. 4 Objective function of meta-cluster analysis and ARI. Scatter plot of the ARI versus
the objective function (Eq. (10)), in the VB-CGM method (circles) and the k-means
clustering (crosses).

meta clusters, especially the second and fourth meta clusters, consist of expres-
sion patterns with various magnitudes (left panels).

Table 1 shows the partition of the 89 biologically known genes on the basis of
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Fig. 5 Gene expression patterns partitioned by meta-cluster analysis. Each row corresponds
to each of the seven meta clusters. The left and right panels represent expression
patterns of the constituent genes and the representative expression pattern, w in the
probabilistic model, respectively, in each of the seven meta clusters.

the meta-cluster analysis. The first and second meta clusters include genes that
are known to be activated in the early stages of the sporulation process (sigH;
sigH & spo0A; sigA & spo0A). In particular, the second meta cluster does not
include genes activated in the middle or later stages, though the meta cluster
consists of expression patterns of various magnitudes. The fourth and fifth meta
clusters correspond to the middle stages (sigE; sigE & spoIIID; sigF; sigF& sigG).
Genes in the sixth and seventh meta clusters were activated in the later stages
(sigG; sigK; sigK & gerE).

4.4 Performance Comparison of Clustering Methods
For comparing the performances between the proposed method and the con-

ventional clustering methods, we applied the ordinary Gaussian mixture (GM)

Table 2 Clustering method and the resulting ARI. Median of ARIs and the median absolute
deviation for the optimal cluster number are shown for the upper four methods;
maximal ARI is shown for three variations of hierarchical clustering.

Clustering method ARI Number of clusters (Selection criterion)

VB-CGM 0.206 ± 0.040 7 (free energy)
ML-CGM 0.172 ± 0.014 15 (BIC)
Meta-VB-CGM 0.225 ± 0.017 7 (free energy)
ML-GM 0.150 ± 0.018 10 (BIC)
k-means 0.167 ± 0.022 10 (best choice)
Hierarchical (Average linkage) 0.177 142 (best choice)
Hierarchical (Complete linkage) 0.207 244 (best choice)
Hierarchical (Single linkage) 0.072 58 (best choice)

model with the ML estimation (ML-GM), k-means clustering and hierarchical
clustering to the same dataset. Since the setting of full covariance makes the ML
estimation unstable, the diagonal covariance structure was employed in the GM
model. We used the Pearson’s correlation coefficient as the similarity measure in
the k-means and the hierarchical clustering.

Table 2 summarizes the performance measure (ARI) of the eight clustering
methods: VB-CGM, ML-CGM, meta-cluster analysis with VB-CGM (Meta-VB-
CGM), ML-GM, k-means, and three variations of hierarchical clustering (average
linkage, complete linkage, and single linkage). In VB-CGM, ML-CGM, Meta-VB-
CGM, and ML-GM, we selected the cluster number based on their own criteria
and calculated median and median absolute deviation of the ARIs. Meanwhile, in
other methods, we heuristically selected the cluster number so that the median
ARI (k-means) or ARI (hierarchical clusterings) show the best result. Note
that selecting the best result is not realistic in a typical unsupervised situation.
This result clearly shows that the VB-CGM enables us to automatically and
objectively obtain clustering results that are consistent with biological knowledge.
The result also indicates that the meta-cluster analysis (Meta-VB-CGM) can
enhance not only the stability but also the clustering performance of the VB-
CGM.

The performance of ML-GM was worse than those of ML-CGM and k-means.
This result represents that Euclidean or Mahalanobis type distance between gene
expression profiles is less accurate while correlation-based similarity measure can
more appropriately capture co-expressed structures in the dataset.
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Accordingly, our meta-cluster analysis incorporating the VB-CGM clustering
is effective in extracting characteristic time-series while appropriately being in-
sensitive to the magnitude, i.e., a robust correlation-based cluster analysis.

5. Discussion and Conclusions

Our newly-proposed CGM model assumes that genes in the same cluster are
activated simultaneously and that their magnitudes obey a normal distribution.
Observed expression patterns can be biased depending on the extent to which
the assumption is incorrect. Our assumption can be verified by means of the dis-
tribution of the bias, which can be estimated using the probabilistic model of the
observation noise process. Although the bias and the noise are not distinguished
in our probabilistic model, discrimination can be achieved by assuming a more
precise model.

The CGM model does not incorporate the time structure of the gene expression
datasets explicitly, but the performance is comparable or better than that of
recently proposed smooth spline clustering 16) which is a specialized method for
time-course gene expression datasets (data not shown).

There have been studies made to improve the ability of Gaussian mixture mod-
els by introducing appropriate constraints (e.g., Ref. 13), 38)). The constraints
in the CGM are stronger than those in the previous studies. The current results
suggested that such constraints contributed to the stability of the clustering re-
sults. Moreover, the clustering results by the Bayesian inference (VB-CGM) were
more stable than those by the ML estimation (ML-CGM).

Other approximation methods can be applied to the CGM model. The MCMC
is the most accurate method, but is computationally expensive, and moreover it
is difficult to check the convergence of the algorithm. On the other hand, the
convergence of the VB algorithm can be easily checked by monitoring the free
energy.

One of the simplest alternatives is the maximum a posteriori (MAP) estima-
tion, in which the posterior of the model parameters is maximized. The MAP
estimation works as a penalized maximum likelihood estimation 39) and is ex-
pected to avoid overfitting. Once the most probable parameters are obtained,
the marginal likelihood is approximated based on the Taylor expansion of the

posterior, i.e., Laplace approximation. The BIC is derived as the large sample
limit for this Laplace approximation.

The VB method and the Laplace approximation were formerly compared on
problems with low-dimensional parameter spaces 40). That study concluded that
the VB method is less accurate than the Laplace method. However, the VB
method can be more stable than the Laplace method for high-dimensional pa-
rameter spaces; the latter requires computation of the determinant of the Hessian
in the parameter space.

Another alternative is the evidence framework 30),41), which is the same, in prin-
ciple, as the model selection based on the marginal likelihood lnP (Y |M). The
relationship between the evidence framework and the VB method was discussed
in Ref. 41) for linear regression models. However, such a relationship has not
been discussed for mixture models.

The meta-cluster analysis we proposed can be applied to an arbitrary clustering
algorithm whose results are not unique due to the effects from initial set-up. Since
poor clustering results degrade the meta-clustering result, however, we need a
criterion to choose good clustering results that are appropriate the meta-cluster
analysis. The free energy in the VB-CGM can be used for such a criterion.

In this study, we used the k-nearest neighbor method in order to estimate the
missing values in the dataset. Probabilistic models, such as the CGM, can be
extended to handle missing values 42). Moreover, labeled data can be used to
improve the quality of the clustering results 43), a technique that is termed semi-
supervised. For our future work, we plan to introduce the above extensions and
to assess the proposed method for various gene expression datasets.
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Appendix

A.1 Component Model
Let x(i) be a hidden random variable that obeys a normal distribution whose

mean and variance are μ and 1, respectively. A D-dimensional observation vector
y(i) for the i-th datum is given by a linear transformation of x(i) with an additive
noise:

y(i) = wx(i) + ε(i), (12)
where ε(i) is aD-dimensional noise vector that obeys N (ε(i)|0, σID). N (x|m,Σ)
denotes a multivariate normal distribution defined by

N (x|m,Σ) ≡ exp
[
−1

2
(x − m)′Σ(x − m) +

1
2

ln |Σ| − d

2
ln(2π)

]
, (13)

where m and Σ denote the mean and inverse covariance matrix, respectively. ID

denotes a D-by-D identity matrix. Let θ be the parameter set of the component
model, i.e., θ ≡ {w, μ, σ}. The complete data set consists of the observation
data Y ≡ {y(i)}N

i=1 and hidden variables X ≡ {x(i)}N
i=1. The likelihood of the

complete data set is

P (Y,X|θ) =
N∏

i=1

P (y(i)|x(i),w, σ)P (x(i)|μ). (14)

The likelihood of the observed data Y is given by integrating out the hidden
variables X in Eq. (14): P (Y |θ) =

∫
dXP (Y,X|θ).

A.2 Variational Bayes Method for the Component Model
A.2.1 General Theory
In the Bayesian framework, the posterior distribution of unknown variables,

hidden variables and model parameters, is obtained according to the Bayes the-
orem:

P (X, θ|Y ) =
P (Y,X|θ)P0(θ)

P (Y )
, (15)

where P0(θ) is the prior distribution of the model parameters and P (Y ) is the
marginal likelihood. We prepare a trial posterior distribution Q(X, θ) that ap-
proximates the true posterior distribution P (X, θ|Y ), and consider a (variational)
free energy function defined by

F ≡
∫
dXdθQ(X, θ) ln

P (Y,X|θ)P0(θ)
Q(X, θ)

= lnP (Y ) −KL [Q(X, θ) ‖ P (X, θ|Y )] , (16)
where

KL[Q(x) ‖ P (x)] =
∫
dxQ(x) ln

Q(x)
P (x)

(17)

is the Kullback-Leibler divergence. Equality (16) holds for an arbitrary trial
posterior Q, showing that the true posterior is obtained by maximizing the free
energy with respect to the trial posterior.

A variational Bayes method assumes a factorized trial posterior Q(X, θ) =
Q(X)Q(θ). Although this restriction introduces a bias in approximating the
true posterior in general, the maximization of the free energy becomes tractable,
as shown later. In order to maximize the free energy with respect to the trial
posterior Q(X), we consider a variational problem δF/δQ(X) = 0, which is
solved as

lnQ(X) = 〈lnP (Y,X, θ)〉θ + const., (18)
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where 〈f(X, θ)〉θ =
∫
dθQ(θ)f(X, θ). Similarly, δF/δQ(θ) = 0 is solved as

lnQ(θ) = 〈lnP (Y,X, θ)〉X + const.. (19)
The free energy is maximized by alternately updating trial posteriors, Q(X) and
Q(θ), which is similar to the EM algorithm in a maximum likelihood estimation.

A.2.2 Parameter Estimation for the Component Model
When the conjugate prior is introduced into the component model, the prob-

ability of the complete data set {Y,X} and the model parameters θ is given
by

P (Y,X|θ)P0(θ) = P (Y,X,w, σ, μ)

=
N∏

i=1

[P (y(i)|x(i),w, σ)P (x(i)|μ)]P0(w)P0(σ)P0(μ) (20)

P0(w) = N (w|w̄0, α0ID)
P0(σ) = G(σ|γσ0, σ̄0)
P0(μ) = N (μ|0, c0).

G(x|γ,m) denotes a gamma distribution

G(x|γ,m) ≡ exp
[−γm−1x+ (γ − 1) lnx+ γ ln(γm−1) − ln Γ(γ)

]
, (21)

whose mean and variance are m and γ−1m2, respectively. According to Eq. (18)
and (19), trial posterior distributions are obtained as follows:
Q(X)

lnQ(X) = 〈lnP (Y,X,w, σ, μ)〉w,σ,μ + const. (22)

=

〈
N∑

i=1

[
−σ

2
‖ y(i) − wx(i) ‖2 −1

2
(x(i) − μ)2

]〉
w,σ,μ

+ const.

=
N∑

i=1

[
−1

2
{
(σ̄〈‖ w ‖2〉 + 1)x2(i) − 2(y′(i)σ̄w̄ + μ̄)x(i)

}]
+ const.

=
N∑

i=1

lnN (x(i)|x̄(i), σx) + const.

Q(X) =
N∏

i=1

N (x(i)|x̄(i), σx), (23)

where σx = (σ̄〈‖ w ‖2〉+ 1) and x̄(i) = σ−1
x (σ̄w̄′y(i) + μ̄). The average sufficient

statistics are calculated as

E[xy] =
1
N

N∑
i=1

x̄(i)y(i) (24)

E[‖ y ‖2] =
1
N

N∑
i=1

‖ y(i) ‖2 (25)

E[x] =
1
N

N∑
i=1

x̄(i) (26)

E[x2] = σ−1
x +

1
N

N∑
i=1

x̄2(i). (27)

Q(w)

lnQ(w) = 〈lnP (Y,X,w, σ, μ)〉X,σ,μ + const.

=

〈
−σ

2

N∑
i=1

‖ y(i) − wx(i) ‖2

〉
X,σ

− α0

2
‖ w − w̄0 ‖2 +const.

= −1
2
[
(α0 + σ̄NE[x2]) ‖ w ‖2 −2w′(σ̄NE[xy] + α0w̄0)

]
+ const.

Q(w) = N (w|w̄, αID), (28)

where α = α0 + σ̄NE[x2] and w̄ = α−1(σ̄NE[xy] + α0w̄0).
Q(σ)

lnQ(σ) = 〈P (Y,X,w, σ, μ)〉X,w,μ + const.

=

〈
−σ

2

N∑
i=1

‖ y(i) − wx(i) ‖2 +
D

2
lnσ

〉
X,w

− γσ0σ̄
−1
0 σ + (γσ0 − 1) lnσ + const.

= −
[
N

2
(
E[‖ y ‖2] − 2w̄′E[xy] + E[x2]〈‖ w ‖2〉)+ γσ0σ̄

−1
0

]
σ

+
(
DN

2
+ γσ0 − 1

)
lnσ + const.

Q(σ) = G(σ|γσ, σ̄), (29)

where γσ = DN/2 + γσ0 and
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σ̄ = γσ

[
N

2
(
E[‖ y ‖2] − 2w̄′E[xy] +E[x2]〈‖ w ‖2〉)+ γσ0σ̄

−1
0

]−1

.

Q(μ)

lnQ(μ) = 〈lnP (Y,X,w, σ, μ)〉X,w,σ + const.

= −N
2

(E[x2] − 2E[x]μ+ μ2) − c0
2
μ2 + const.

= − c
2
(μ− μ̄)2 + const.

Q(μ) = N (μ|μ̄, c), (30)

where c = N + c0 and μ̄ = c−1NE[x].
A.2.3 Calculation of the Free Energy
The free energy function is decomposed as follows:
F = L+HX +Hw +Hσ +Hμ. (31)

L

L = 〈lnP (Y |X,w, σ)〉X,w,σ

=
〈
−Nσ

2
(
E[‖ y ‖2] − 2E[xy]′w + E[x2] ‖ w ‖2

)
+
ND

2
ln(σ/2π)

〉
w,σ

= −Nσ̄
2
(
E[‖ y ‖2] − 2E[xy]′w̄ + E[x2]〈‖ w̄ ‖2〉w

)
(32)

+
ND

2
(〈lnσ〉σ − ln 2π) ,

where 〈lnσ〉σ = ln σ̄ + ψ(γσ) − ln γσ. ψ(x) is a digamma function.
HX

HX = 〈ln[P (X|μ)/Q(X)]〉X,μ

= −N
2

(E[x2] − 2E[x]μ̄+ 〈μ2〉) +
N

2
ln(1/2π)

+
σx

2

N∑
i=1

(〈x2(i)〉x(i) − 2x̄2(i) + x̄2(i)) − N

2
ln(σx/2π)

= −N
2

(E[x2] − 2E[x]μ̄+ 〈μ2〉) − N

2
lnσx +

N

2
. (33)

Hw

Hw = 〈ln[P0(w)/Q(w)]〉w

= −1
2
[
D lnαα−1

0 +Dα−1α0 −D + α0 ‖ w̄ − w̄0 ‖2
]
. (34)

Hσ

Hσ = 〈ln[P0(σ)/Q(σ)]〉σ
= γσ0

[〈lnσ〉σ − ln σ̄0 − σ̄σ̄−1
0 + 1

]
+ Φ(γσ, γσ0), (35)

where Φ(γ, γ0) is defined by
Φ(γ, γ0) = [ln Γ(γ) − γψ(γ) + γ] − [ln γ(γ0) − γ0 ln γ0 + γ0]. (36)

Hμ

Hμ = 〈ln[P0(μ)/Q(μ)]〉μ
= −1

2
[
ln cc−1

0 + c−1c0 − 1 + c0μ̄
2
]
. (37)

A.3 Constrained Gaussian Mixture Model
We consider a mixture of the component models:

P (y(i),x(i),z(i)|Θ) =
M∏

m=1

[P (y(i), xm(i)|θm)gm]zm(i), (38)

where M is the number of components, x(i) ≡ (x1(i), . . . , xM (i)) is the set of
hidden variables, and z(i) ≡ (z1(i), . . . , zM (i)) is the set of indicator variables
that satisfy zm(i) ∈ {0, 1} and

∑M
m=1 zm(i) = 1. Θ ≡ {{θm}M

m=1, g} is the set of
model parameters. θm is the parameter set of the m-th component model and
g = (g1, . . . , gM ) is the set of the mixing rate parameters that satisfies gm ≥ 0
and

∑M
m=1 gm = 1. The mixture model (38) is called a constrained Gaussian

mixture (CGM) model.
For the CGM model, the complete data set is given by {Y,X,Z}, where

Y ≡ {y(i)}N
i=1, X ≡ {x(i)}N

i=1 and Z ≡ {z(i)}N
i=1. The joint probability of

all variables is given by

P (Y,X,Z,Θ) =
M∏

m=1

[
N∏

i=1

{P (y(i)|xm(i),wm, σm)P (xm(i)|μm)gm}zm(i)
P0(θm)

]
P0(g).

(39)

As in the general theory above, we assume a factorized trial posterior,
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Q(X,Z)Q(g)
∏M

m=1Q(θm), and a conjugate prior distribution

P0(Θ) = P0(g)
M∏

m=1

P0(θm)

P0(g) = D(g|γ0)
P0(θm) = P0(wm)P0(σm)P0(μm),

where γ0 = (γ1
0 , . . . , γ

M
0 ) and D(g|γ) denotes a Dirichlet distribution

D(g|γ)

≡ exp

[
M∑

m=1

{γm ln gm − ln Γ(γm + 1)} + ln Γ

(
M∑

n=1

γn +M

)]
. (40)

The free energy function for the CGM model is then given by

F =
M∑

m=1

[
N∑

i=1

zm(i) {〈lnP (y(i), xm(i)|θm) + ln gm − lnQ(xm(i), zm(i) = 1)〉}

+〈[lnP0(wm)/Q(wm)]〉 + 〈[lnP0(σm)/Q(σm)]〉 + 〈[lnP0(μm)/Q(μm)]〉
]

+〈ln[P0(g)/Q(g)]〉. (41)

A.3.1 Trial Distribution
The trial distribution that maximizes the free energy is obtained as follows.
Q(X,Z)

lnQ(X,Z) = 〈lnP (Y,X,Z,Θ)〉Θ + const.

=
N∑

i=1

M∑
m=1

zm(i) {〈lnP (y(i), xm(i)|wm, σm, μm)〉wm,σm,μm
+ 〈ln gm〉} + const.

=
N∑

i=1

lnQ(x(i),z(i)), (42)

where 〈ln gm〉 = (γm + 1)/(
∑M

n=1 γ
n + M). Q(x,z) can be decomposed as

Q(x,z) = Q(x|z)Q(z). If zm = 1 and zn = 0 for n �= m, Q(xm|z) is calcu-
lated by Eq. (23). Q(zm = 1) is obtained by integrating out xm:

Q(zm = 1) ∝
∫
dxm exp [〈lnP (y, xm|wm, σm, μm)〉wm,σm,μm

+ 〈ln gm〉]

≡ Um (43)

Um =
∫
dxm exp

[〈
−σm

2
‖ y − wmxm ‖2

〉
wm,σm

+
D

2
〈ln(σm/2π)〉 − 1

2
〈(xm − μm)2〉μm

+
1
2

ln(1/2π) + 〈ln gm〉
]

=
∫
dxm exp

[
− 1

2
{
(σ̄m〈‖ wm ‖2〉 + 1)x2

m − 2(σ̄my′w̄m + μ̄m)xm

}

−1
2
σ̄m ‖ y ‖2 −1

2
〈μ2

m〉 +
D

2
〈lnσm〉 − D + 1

2
ln(2π) + 〈ln gm〉

]

=
∫
dxm exp

[
− σxm

2
(xm − x̄m)2 +

σxm

2
x̄2

m − 1
2
σ̄m ‖ y ‖2 −1

2
〈μ2

m〉

+
D

2
〈lnσm〉 − D + 1

2
ln(2π) + 〈ln gm〉

]

= exp

[
1
2
{
lnσ−1

xm + σxmx̄
2
m − σ̄m ‖ y ‖2

−〈μ2
m〉 +D〈lnσm〉 −D ln(2π)

}
+ 〈ln gm〉

]
,

where σxm = (σ̄m〈‖ w ‖2〉 + 1) and x̄m = σ−1
xm(σ̄mw̄′

my + μ̄). Q(zm = 1) is
obtained by Q(zm = 1) = Um/

∑M
n=1 Un. The average sufficient statistics are

calculated by

Em[zxy] =
1
N

N∑
i=1

z̄m(i)x̄m(i)y(i)

Em[z ‖ y ‖2] =
1
N

N∑
i=1

z̄m(i) ‖ y(i) ‖2

Em[zx] =
1
N

N∑
i=1

z̄m(i)x̄m(i)
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Em[zx2] =
1
N

N∑
i=1

z̄m(i){σ−1
xm + x̄2

m(i)}

Em[z] =
1
N

N∑
i=1

zm(i).

Q(wm)

lnQ(wm) = −1
2
[
(αm0 + σ̄mNEm[zx2]) ‖ wm ‖2

−2w′(σ̄mNEm[zxy] + αm0w̄m0)] + const.

Q(wm) = N (wm|w̄m, αmID), (44)

where αm = αm0 + σ̄mNEm[zx2] and w̄m = α−1
m (σ̄mNEm[zxy] + ᾱm0w̄m0).

Q(σm)

lnQ(σm) = −
[
N

2
(
Em[z ‖ y ‖2] − 2w̄′Em[zxy]

+Em[zx2]〈‖ wm ‖2〉)+ γσm0σ̄
−1
m0

]
σ

+
(
DNEm[z]

2
+ γσm0 − 1

)
lnσm + const.

Q(σm) = G(σ|γσm, σ̄m), (45)

where γσ = DNEm[z]/2 + γσm0 and

σ̄m = γσm

[
N

2
(
Em[z ‖ y ‖2] − 2w̄′Em[zxy] + Em[zx2]〈‖ w ‖2〉)+ γσm0σ̄

−1
m0

]−1

.

Q(μm)

lnQ(μm) = −N
2

(Em[zx2] − 2Em[zx]μm + Em[z]μ2
m) − cm0

2
μ2

m + const.

= −cm
2

(μm − μ̄m)2 + const.

Q(μ) = N (μ|μ̄m, cm), (46)

where cm = NEm[z] + c0 and μ̄ = c−1
m NEm[zx].

Q(g)

lnQ(g) = 〈lnP (Y,X,Z,Θ)〉X,Z,{θm}M
m=1

+ const.

=
M∑

m=1

N(Em[z] + γm
0 ) ln gm + const.

Q(g) = D(g|γ), (47)

where γ = (γ1, . . . , γM ) and γm = γm
0 +NEm[z].

A.3.2 Calculation of the Free Energy
The free energy Eq. (41) is decomposed as

F = L̃+Hg +
M∑

m=1

{Hwm +Hσm +Hμm}, (48)

where

L̃ =
N∑

i=1

M∑
m=1

Um(i)∑M
n=1 Un(i)

〈[lnP (y(i),xm(i)|wm, σm, μm)

+ ln gm − lnQ(xm(i), zm(i) = 1)]〉

=
N∑

i=1

M∑
m=1

Um(i)∑M
n=1 Un(i)

ln
M∑

n=1

Un(i) =
N∑

i=1

ln
M∑

n=1

Un(i). (49)

Note that

Q(xm(i), zm(i) = 1) =
exp[〈lnP (y(i), xm(i)|θm)〉θm

+ 〈ln gm〉]∑M
n=1 Un(i)

,

then

lnQ(xm(i), zm(i) = 1) = 〈lnP (y(i), xm(i)|θm)〉θm
+ 〈ln gm〉 − ln

M∑
n=1

Un(i)

holds. Hwm, Hσm and Hμm have the same forms as Eq. (34), (35) and (37),
respectively.
Hg

Hg = 〈ln[P0(g)/Q(g)]〉

=
M∑

m=1

{(γm
0 − γm)〈ln gm〉 − ln Γ(γm

0 + 1) + ln Γ(γm + 1)}

IPSJ Transactions on Bioinformatics Vol. 2 47–62 (May 2009) c© 2009 Information Processing Society of Japan



62 A Constrained Gaussian Mixture Model for Correlation-Based Cluster Analysis of Gene Expression Data

+ ln Γ

[
M∑

m=1

γm
0 +M

]
− ln Γ

[
M∑

m=1

γm + 1

]
, (50)

where 〈ln gm〉 = ψ(γm + 1) − ψ
(∑M

n=1 γ
n +M

)
.
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