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Recently, a large number of candidates of non-coding RNAs (ncRNAs) has
been predicted by experimental or computational approaches. Moreover, in
genomic sequences, there are still many interesting regions whose functions are
unknown (e.g., indel conserved regions, human accelerated regions, ultracon-
served elements and transposon free regions) and some of those regions may
be ncRNAs. On the other hand, it is known that many ncRNAs have char-
acteristic secondary structures which are strongly related to their functions.
Therefore, detecting clusters which have mutually similar secondary structures
is important for revealing new ncRNA families. In this paper, we describe a
novel method, called RNAclique, which is able to search for clusters containing
mutually similar and locally stable secondary structures among a large number
of unaligned RNA sequences. Our problem is formulated as a constraint quasi-
clique search problem, and we use an approximate combinatorial optimization
method, called GRASP, for solving the problem. Several computational ex-
periments show that our method is useful and scalable for detecting ncRNA
families from large sequences. We also present two examples of large scale
sequence analysis using RNAclique.

1. Introduction

Recent research has revealed a number of RNAs which are not translated
into protein but nevertheless play an important role in cells. These RNAs are
called non-coding RNAs (ncRNAs for short) or functional RNAs and have at-
tracted much attention 4)–6),10),15),21),22),26),30),34). Computational or experimental
approaches predict a huge number of ncRNA candidates in the human genome.
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Using computational screening, Washietl, et al. 31) predicted about 35,000 ncRNA
candidates which are structurally conserved and thermodynamically stable RNA
secondary structures in a multiple sequence alignment, and Pedersen, et al. 26)

found about 40,000 candidates using phylogenetic stochastic context-free gram-
mars (phylo-SCFGs), which are combined probabilistic models of RNA secondary
structure and primary sequence evolution. Experimentally, Nakaya, et al. 24) have
reported 55,139 totally intronic noncoding (TIN) RNAs transcribed from the in-
trons and 12,592 partially intronic noncoding (PIN) Expressed Tag Sequencing
(EST) contigs. More recently Kapranov, et al. 16) used a tiling array and reported
more than 1 million transcriptional fragments. Moreover, there are still many in-
teresting regions in (human) genomes, such as ultraconserved elements 2), human
accelerated regions 28), indel-conserved regions 20), and transposon free regions 29).
The functions of most of these sequences or regions are not yet known, and those
regions may include novel ncRNAs or ncRNA families. In this paper, we focus
on detecting ncRNA families from those regions.

It is well known that the function of most ncRNAs is strongly related not only
to their sequences, but also to their secondary structures, which are sets of base
pairs that occur in its three-dimensional structure. (We consider only canonical
(A-U and G-C) and wobble (G-U) base pairs in this paper.) There exists a
number of functional families which have similar secondary structures, such as
tRNA, snoRNA, and 7SK RNA. In the Rfam database 8) various ncRNA families
are classified according to their secondary structures. Hence, it is important to
detect a set of RNAs which have mutually similar secondary structures, because
these clusters are candidates for a new ncRNA family.

We have developed a novel method which enables us to extract functional RNA
clusters which have similar secondary structures from a huge set of candidates.
Figure 1 shows an outline of our method: we calculate the similarities of can-
didate locally stable secondary structures, construct a special graph (called a
constraint graph) and employ a constrained pseudo-clique search algorithm. The
method allows us to treat several overlapping candidates for locally stable sec-
ondary structures and this seems to be important for practical usage, because
accurate prediction of RNA secondary structures using only sequences is rela-
tively difficult 7).
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37 Large Scale Similarity Search for Locally Stable Secondary Structures

Fig. 1 Each line with left and right arrows shows a region of locally stable secondary structures
in an RNA sequence. Two clusters including similar secondary structures are shown in
this figure.

This paper is organized as follows. In Section 2, we describe our methods for
searching for clusters which have similar secondary structures. Our problem is
formulated as a kind of combinatorial optimization problem called a “constraint
quasi-clique search problem” and the algorithm to solve the problem is described
in Section 3. Some experimental results are reported in Section 4 and two exam-
ples of large scale sequence analysis using RNAclique are presented in Section 5.
In Section 6, we discuss our results and indicate future directions for research.

2. Methods

The input of the proposed method is a set of unaligned RNA sequences {Si}N
i=1.

In realistic situations, the sequences may include several functional families
(whose secondary structures are similar to each other) among many unrelated
(noise) sequences. Algorithm 1 gives a high-level view of our method. The de-
tails of each step in Algorithm 1 are described in the section indicated after the
symbol “�”.

2.1 Calculate a Set of Candidates of Locally Stable Secondary Struc-
tures

First we calculate a set of candidates of locally stable secondary structures

Algorithm 1 RNAclique ({Si}Ni=1, maxitr, γ)

Input: {Si}Ni=1, a set of RNA sequences; maxitr, maximum iteration of clique search;
γ, minimum cluster coefficient.
1: Calculate a set of candidates of locally stable secondary structures {si} � 2.1
2: Sequence-based filtering for {seq(si)} � 2.2
3: Calculate similarities of secondary structures of (si, sj) for all pairs
passing the filter � 2.3
4: Construct a constraint graph G = (V, E, c) � 2.4
5: CS ← constraint quasi clique search (G, maxitr, γ) � 2.5
6: CS ← post process cluster(CS) � 2.6
return CS

from input sequences {Si}N
i=1. The candidates calculated in this step may not

be mutually exclusive structures (regions) in an RNA sequence. In other words,
a structure may overlap another structure in the same sequence. Research has
shown that there is a performance limitation for predicting a secondary structure
from a single sequence 7),9), because the secondary structure is formed in a com-
plex way related to free energy, interactions with other molecules and so forth.
To overcome this limitation, a comparative approach (i.e., to predict secondary
structure from a set of homologous RNA sequences which form similar secondary
structure to each other 9),13)) is often used. This approach can not be used in
this research because we are not able to prepare homologous RNA sequences.
Instead, we provide several candidates for the secondary structure in each region
using RNALfold 14), which is an algorithm for computing locally stable RNA sec-
ondary structures with a maximal base pair span. Of course, we can also use
candidates derived by other algorithms (e.g., the Rfold algorithm developed by
Kiryu, et al. 18)). In order to avoid redundant clusters and reduce computational
cost, we remove similar structures in the same region from the candidate set. We
do this by choosing the lower energy one, when the Matthews Correlation Coeffi-
cient (MCC) between two secondary structures is more than a given threshold α

(we use α = 0.7 in this paper). We denote by {si}M
i=1 the candidates for locally

stable secondary structures obtained in this step. For a secondary structure si,
seq(si) means the nucleotide sequence of the secondary structure and seqid(si)
means the sequence ID (a unique ID given to each sequence) which contains the
secondary structure.
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38 Large Scale Similarity Search for Locally Stable Secondary Structures

2.2 Sequence-based Filtering
We would like to compute the similarities of all pairs (si, sj) of locally stable

secondary structures calculated in Section 2.1, but we would have to calculate the
similarities of O(M2) pairs and this would entail a huge computational cost. So
sequence-based filtering is conducted before calculating the similarities. A wu-
blast �1 search is performed for a database {seq(si)}N

i=1 using word size W and
a threshold E-value E �2 and we calculate the similarities (see the next section)
only for the pairs which are found in this search.

2.3 Calculate Similarities between Locally Stable Structures
We calculate the similarity sim(si, sj) of a pair (si, sj) which passes

the sequenced-based filtering using the RNAforester algorithm 11) with the
RIBOSUM80-65 matrix 19). RNAforester is a tool that aligns the secondary struc-
ture (and sequence) of RNA molecules, and reports a score.

2.4 Construct a Constraint Graph
In this step, a special graph, called a constraint graph, is constructed.
Definition 1 (Constraint graph) A constraint graph G is an undirected

graph represented as G = (V,E, c) where V is a set of vertices, E(⊂ V × V ) is a
set of edges and c : {S|subset of V } → {0, 1} is a map.
The map c generally indicates whether a subset of vertices satisfies a given con-
dition or not. The constraint graph is a graph with constraints with respect
to a subset of vertices (these conditions are described later). We construct a
constraint graph whose vertex set V is given by the locally stable secondary
structures calculated the method given in Section 2.1 and whose edges join two
vertices whose similarity (see Section 2.3) is greater than or equal to a threshold
T . We also define two types of constraint c for the graph: for S ⊂ V ,
(1) c(S) = 0 if and only if ∃v1, v2 ∈ S s.t. v1 and v2 belong to the same

sequence (i.e., seqid(v1) = seqid(v2)).
(2) c(S) = 0 if and only if ∃v1, v2 ∈ S s.t. the region of v1 overlaps with that

of v2 in a sequence.
Constraint (1) is stronger than constraint (2) since C(S) = 1 in (1) implies

�1 http://blast.wustl.edu/
�2 We use E = 10 and W = 4 in our experiments.

C(S) = 1 in (2). Constraint (1) is used when searching for clusters in sequences
whose length is relatively small (when we can assume there is at most one struc-
ture in one sequence), and constraint (2) is used when searching for clusters in
long sequence(s) (e.g., clusters from an intronic sequence or an intergenic se-
quence).

2.5 Constraint Quasi-clique Search Problem
In order to detect clusters which have similar secondary structures, we would

like to search a dense subgraph in G in this step. In order to formulate this
rigorously, we make the following definitions.

Definition 2 (c-vertex set) A c-vertex set of a constraint graph G =
(V,E, c) is a subset S ⊂ V which satisfies c(S) = 1.

Definition 3 (induced graph) For a graph G = (V,E) and a subset of
vertices S ⊂ V , we use GS to denote the induced subgraph of G whose vertex
set is S and whose edge set is given by {(v1, v2) ∈ S × S|(v1, v2) ∈ E}.

Definition 4 (cluster coefficient) For a graph G = (V,E), the cluster co-
efficient of G denoted by cc(G) is defined as 2|E|

|V |(|V |−1) .
Definition 5 (γ-clique) For a graph G = (V,E) and a real number γ ∈

[0, 1], a subgraph G′ = (V ′, E′) of G is γ-clique �3 if and only if G′ is a connected
graph and cc(G′) ≥ γ.
In order to detect clusters, we would like to find c-vertex sets from a constraint
graph G whose induced graphs satisfy the γ-clique condition. Thus our problem
can be formulated as follows.

Problem 1 Given a constraint graph G = (V,E, c) and cluster coefficient γ,
find c-vertices S as large as possible such that cluster coefficient of GS is greater
than or equal to γ.
This is a kind of combinatorial problem and we use the GRASP (Greedy Ran-
domized Adaptive Search Procedure) algorithm to solve this problem by slightly
modifying some previous research 1). The algorithm is described in the next
section.

For each cluster (c-vertex set) given by this step, we assign a score of multiple
sequence alignment, which is calculated by the RNAforester algorithm 12).

�3 Some say quasi-clique or pseudo-clique instead of γ-clique.
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2.6 Post Processing for Clusters
After conducting constraint clique search we obtain a number of similar clus-

ters. We reduce the number of results by post processing conducted in a greedy
manner, that is, (1) order the clusters by the score, (2) select clusters one by
one starting with the cluster of top rank and if the cluster overlaps another
already-selected cluster and the overlap ratio is greater than δ, we discard that
cluster.

3. Constraint Quasi-clique Search Algorithm

We use an approximate algorithm proposed by Abello 1), which can extract
dense subgraphs from a large graph using greedy randomized adaptive search
procedures (GRASP) 1). GRASP is a general framework for solving combinato-
rial optimization problems 27). In this research we modify Abello’s algorithm to
perform constraint clique search. Before describing our algorithm, we prepare
some notation.

Definition 6 (Neighborhood of c-constraint vertices) Given a constraint
graph (G,E, c) and c-constraint vertices S, we define a neighborhood of S by

N (S) = {y ∈ V \ S : ∃x ∈ S s.t. (x, y) ∈ E and c (S ∪ {y}) = 1} (1)
Definition 7 (γ-Neighborhood of c-constraint vertices) Given a con-

straint graph (G,E, c) and c-constraint vertices S, we define a γ-neighborhood
of S by

Nγ(S) = {y ∈ N (S) : S ∪ {y} is γ-clique} . (2)
The vertex in Nγ(S) is called the γ-vertex of S.

Definition 8 Let G = (V,E, c) be a constraint graph and γ ∈ [0, 1] is given.
(1) We define the degree of x by deg(x) = |N ({x})| for x ∈ V . We also define

degS(x) = |N ({x}) ∩ S| for x ∈ V and S ⊂ V .
(2) We define a potential of S by φ(S) = |E(GS)| − γ

(|S|
2

)
for S ⊂ V , where

|E(GS)| is the number of the edges in GS .
(3) For S and R with S ∩R = ∅, we define φS(R) = φ(S ∪R). For x, y ∈ V \S

s.t. c(S ∪ {x, y}) = 1, we define δS,x(y) = φS∪{x}({y}) − φS({y}).
(4) The total effect on the potentials, caused by the selection of x is defined by

Algorithm 2 constraint pseudo clique search (G, maxitr, γ)

Input: G, a constraint graph; maxitr, maximum number of iterations;
γ, minimum cluster coefficient.
1: CS ← ∅ // Initialize a set of clusters
2: for k = 1 to maxitr
3: S ← ∅ // Initialize set of vertices
4: construct (S, G, γ, p1, p2, p3) // construct initial vertex set
5: localSearch (S, G, γ) // improve vertex set
6: CS ← CS ∪ {S}
7: endfor
8: remove duplicate clusters from CS
9: return CS

ΔS(x) =
∑

y∈{y′∈Nγ(S):c(S∪{x,y})=1}
δS,x(y)

= |Nγ ({x})| + |Nγ (S)| (degS(x) − γ (|S| + 1)) .

A high level description of the iterative search for γ-cliques is given as Algo-
rithm 2. In the first step, we construct γ-cliques in a greedy manner (line 4)
and improve the γ-clique by a kind of local search technique (line 5). The result
is that we obtain one cluster at each iteration and get at most maxitr clusters
(because we may get the same cluster).

In the construction step (see Algorithm 3), we greedily select vertices from the
neighborhood (see Definition 6 and Definition 7) in line 6 and line 8. The greedy
selection in Algorithm 3 is described as Algorithm 4. In each loop, starting at
line 3 in Algorithm 3, one vertex is added to the current vertex set. We select
the vertex which has a high potential as defined in Definition 8 part (4). Note
that the parameter p in Algorithm 4 indicates the randomness of the selection:
we randomly select the vertex if p = 0.

In the local search step (see Algorithm 5), we improve the γ-clique obtained
by the construction step. In this local search, our search space is limited to the
graphs given by deleting one vertex and adding two vertices to the current graph
(line 5).

4. Experiments

In this section, we confirm the effectiveness of the proposed method by com-
putational experiments. All experiments in this and the next section were con-
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40 Large Scale Similarity Search for Locally Stable Secondary Structures

Algorithm 3 construct (S, G, γ, p1, p2, p3)

Input: G, constraint graph; γ, threshold of cluster coefficient; pk ∈ [0, 1](k = 1, 2, 3).
1: γ∗ ← 1
2: S∗ ← getGRASPSelection (deg, p1)
3: while γ∗ ≥ γ
4: S ← S∗
5: if Nγ∗ (S) �= ∅ then
6: x← getGRASPSelection (Nγ∗(S), ΔS , p2)
7: elseif N (S) �= ∅ then
8: x← getGRASPSelection (N (S), degS , p3)
9: else
10: return S
11: endif
12: S∗ ← S ∪ {x}
13: γ∗ ← |E(GS∗ )| /(|S∗|

2

)

14: endwhile
15: return S

Algorithm 4 getGRASPSelection (C, f, p)

Input: C. candidate set; f , score function; p, parameter that determines search space.
1: m← min {f(t)|t ∈ C}
2: M ← max {f(t)|t ∈ C}
3: RCL← {y ∈ C|f(y) ≥ m + p(M −m)}
4: Select s at random from RCL
5: return s

Algorithm 5 localSearch (S, G, γ)

Input: S, current c-vertex set; G, constraint graph; γ, minimum cluster coefficient.
1: N ← {S′ : S′ = (S \ {x}) ∪ {y} ∪ {z} and GS′ is connected and cc(GS′ ) ≥ γ}
2: while |N | > 0
3: select S′ ∈ N (S)
4: S ← S′
5: N ← {S′ : S′ = (S \ {x}) ∪ {y} ∪ {z} and GS′ is connected and cc(GS′ ) ≥ γ}
6: endwhile
7: return S

ducted using cluster machines, each of which has two 2 GHz processors (AMD
Opteron(tm) Processor 246) and 4 Gbyte memory.

4.1 Experiments Using Our Own Datasets
In this section, we present the experiments using datasets selected by us from

Table 1 ncRNA families in our dataset. “#seqs” means the number of sequences in a family,
“ave len” means the average length of sequence and “ident” means the averaged
pairwise identities.

Family #seqs ave len ident
Flavi CRE 20 96 59
Flavivirus DB 20 72.1 71
Hammerhead 1 20 64.1 61
Hammerhead 3 20 55.8 69
Purine 20 99.6 54
S-element 12 68.2 76
SNORD113 20 75.3 70
SRP bact 20 92.9 50
Tombus 3 III 20 69.9 80
Trp leader 11 98 61
UnaL2 20 54 78
Vimentin3 19 68.9 72
Y 16 94.7 63
ctRNA p42d 14 76.5 67
ctRNA pGA1 15 77.7 66
ctRNA pT181 16 96.2 77
tRNA 20 72.6 42

the Rfam database.
4.1.1 Datasets
From Rfam version 8.0 (February 2007, 574 families) �1 we choose 17 families

that satisfy all of the following conditions: (1) the common secondary structure
is confirmed by previous papers, (2) the number of sequences in the family is
≥ 10, (3) the average length is < 100 and > 50, (4) the average pairwise identity
is < 80% and (5) they do not contain pseudoknotted structures. If a selected
family contains more than 20 sequences, we randomly choose 20 sequences from
the family. Table 1 shows the details of selected families. From those families,
we created two datasets, Dataset1 and Dataset2. Each sequence in Dataset1
is created by putting a sequence in Table 1 between two random sequences of
length 500. Dataset2 contains one long sequence constructed by connecting
all sequences in Table 1 with random sequences of length 500. (See Fig. 2 for
schematic illustrations of the two datasets.) The details of the datasets are
described in Table 2.

�1 http://www.sanger.ac.uk/Software/Rfam/
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41 Large Scale Similarity Search for Locally Stable Secondary Structures

Dataset 1

Dataset 2

Fig. 2 Schematic views of Dataset1 and Dataset2. The red regions are RNA sequences in
Table 1 and the light blue regions are random sequences of 500 bases. Each dataset
contains all of RNA sequences in Table 1.

Table 2 Summary of the datasets using in our experiments. Each dataset includes all
sequences in Table 1. See also Fig. 2.

Dataset1 Dataset2

Number of sequences 303 1
Total # residues 326543 175543
Smallest 1043 175543
Largest 1118 175543
Average length 1078 175543

4.1.2 Performance Measures
For clustering a segmented dataset, Will, et al. 33) have proposed ROC evalua-

tion. However, this evaluation can not be applied here because our method does
not conduct clustering and does not produce mutually exclusive clusters. There-
fore, we consider several evaluation measures inspired by standard evaluation
measures using in bi-clustering experiments.

First, we determine whether a local predicted region matches a motif region or
not. For a motif region r′ and predicted region r in a sequence, TP is the number
of nucleotides which are in both the motif and the predicted region, FP is the
number of nucleotides which are in the predicted region but not in the reference

region, FN is the number of nucleotides which are in the reference region but
not in the predicted region and TN is the number of nucleotides which are not
in either the reference or the predicted region. Then we define the sensitivity
(Sen), specificity (Spe) and accuracy (Acc) of nucleotides as follows:

Sen(r, r′) =
TP

TP + FN
, Spe(r, r′) =

TP

TP + FP
,

Acc(r, r′) =
√

Sen(r, r′) × Spe(r, r′).
In this case, Acc(r, r′) is a good approximation of the Matthews correlation co-
efficient (MCC)

MCC(r, r′) =
(TP × TN) − (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

because TN >> TP,FP, TN . For a threshold β1, we say the predicted region
r matches to the motif region r′ if Acc(r, r′) ≥ β1 (we use β1 = 0.5 in our
experiments).

Next we define measures which check the quality of a predicted set of clusters.
(Note that our method produces a set of clusters in a single calculation.) Given
the optimal set of clusters Copt and a set of clusters C, we define two measures
for C:

Relevance(C) = S(C, Copt) and Recovery(C) = S(Copt, C)
where

S(C1, C2) =
1

|C1|
∑

C1∈C1

max
C2∈C2

|C1 ∩ C2|
|C1 ∪ C2| .

These two measures are often used for evaluating bi-clustering methods e.g.,25).
We define another relevance measure by

Relevance2(C) =
1
|C|

∑

C∈C
max

Copt∈Copt

|C ∩ Copt|
|C| .

Relevance2 reflects the average specificity of clusters. In other words, if each
predicted cluster has only a unique family, Relevance2 for predicted clusters is
near 1.
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Table 3 Results for dataset1 and dataset2. Method 1, Method 2 and Method 3 refer to the
modified methods described in Section 4.1.3. Rel and Rec means Relevance and
Recovery, respectively.

Proposed Method 1 Method 2 Method 3
Rel Rec Rel Rec Rel Rec Rel Rec

Dataset1 0.711 0.846 0.201 0.301 0.711 0.687 0.331 0.500
Dataset2 0.716 0.837 0.307 0.362 0.722 0.822 0.350 0.525

4.1.3 Comparison Methods
We now compare our method with three methods which are slight modifications

of the proposed method.
Modified method 1 Remove conflict structures greedily on step 1 in Algo-

rithm 1 (i.e., choose the lower energy structure if two structures overlap).
Modified method 2 Use a sequence similarity measure instead of a measure

which considers both sequence and secondary structures. We use a score of
clustalW for sequence similarity.

Modified method 3 We search for a clique subgraph (γ-clique for γ = 1)
instead of a quasi-clique subgraph.

4.1.4 Results
We used constraint (1) for Dataset1 and constraint (2) for Dataset2. The results

for using the four methods on Dataset1 and Dataset2 are shown in Table 3.
The performance of the proposed method is better than that of the modified
methods. In particular, the proposed method is much better than Method 1,
which means that it is important to allow overlapped secondary structures. The
proposed method is also much better than Method 3, which indicates that it
is useful to search quasi-cliques instead of cliques. Moreover, by comparing the
proposed method and Method 2, we see that using a similarity measure which
considers both sequence and secondary structure produces better Recovery than
using a similarity measure which only considers sequence.

4.2 Experiment Using Dataset of Will, et al.
In this experiment, we use the dataset from Will, et al. 33). Will, et al. con-

ducted a hierarchical clustering for seed sequences in the Rfam database 8). In
contrast to the datasets used in the previous experiment, each sequence is a
“segmented” sequence (i.e., each sequence is a complete segment of RNA genes).

Table 4 Results of proposed method (RNAclique) for the dataset of Will, et al. 33)

#clusters Relevance 2 Relevance Recovery
828 0.878 0.373 0.637

Fig. 3 Performance using LocARNA pipeline 33). The x-axis indicates a threshold for obtain-
ing a set of clusters from the dendrogram. The y-axis indicates Relevance, Recovery,
Sensitivity, Specificity or the number of clusters.

The results of the proposed method for this dataset are shown in Table 4 and
the performance of the LocARNA pipeline 33) for obtaining clusters from the
dendrogram is shown in Fig. 3. It can be seen that the Relevance measures of
the two methods are not so good. However, Relevance2 for each cluster in the
set of predicted clusters is more than 0.85, and this means that most of the se-
quences in each cluster are contained in one family. In particular, the Recovery
of RNAclique is much better than that using the method of Will, et al.

5. Two Examples of Large Scale Sequence Analysis

In this section, we present two examples of large scale similarity search using
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RNAclique.
5.1 Detecting miRNA clusters in a long intergenic sequence
There are a number of RNA families which form a cluster at a narrow region in

a genomic sequence. For example, the region which starts at 58,861,740 and ends
at 58,957,496 of chromosome 19 in human genome (hg17) contains 43 miRNAs. In
this experiment, the input is the long sub-sequences of chromosome 19 (repeated
region is masked) and the constraint graph is constructed using constraint (2).

Using RNAclique, we detected 55 clusters and the rank 1 cluster of the results
contains 54 sequences including 43 miRNAs and 1 miRNA candidate predicted
by Berezikov, et al. 3), while there is no annotation related to miRNA for the
others. The calculation time was 951 seconds using 16CPUs (4.2 hours if we had
used one CPU).

5.2 Detecting Clusters in ncRNA Candidates Predicted by
Washietl, et al.

Washietl, et al. predicted about 35,000 ncRNA candidates from the human
genome 31) using RNAz 32). In this experiment, our input is all of those sequences
(including both plus and minus strands) and we use constraint (1) for construct-
ing the constraint graph from the dataset. The total number of sequences in
the input data is 71,970 and the average length of those is 152 bases (the small-
est is 51 bases and the largest is 1,320 bases). Using RNAclique, 492 clusters
were detected in this experiment. We collect the known RNA sequences in Rfam
database, which are mapped to the human genome and overlap with the region
predicted by Washietl, et al. 31) (the overlap ratio is at least 80%). Using these
data, we investigated how RNAclique recovers the known families, and the best
coverage of clusters for each family is shown in Table 5. The calculation time
was 64,708 seconds using 28CPUs (21 days if we had used 1 CPU). We find that
most of the top-ranked clusters contain sequences with no annotation.

6. Discussion and Future Directions

In this paper we have proposed a novel method which enables us to search
RNA sequences for clusters containing locally stable secondary structures which
are similar to each other. Using a constraint quasi-clique search algorithm, the
method allows us to treat several overlapped structures as candidates for sec-

Table 5 Coverage of known families in the predictions of RNAclique. “Coverage” means the
best coverage of cluster among all predictions.

Family Coverage
SECIS 0.14 (1 / 7)
U70 0.84 (16 / 19)
let-7 0.82 (9 / 11)
mir-10 0.80 (4 / 5)
tRNA 0.31 (13 / 42)

ondary structures, and we can also add candidate structures predicted by other
algorithms (e.g., Kiryu, et al. 18)) to our method. Note that each step of our
method can be easily parallelized, and this enables us to apply our method to a
dataset including a large number of sequences (we presented two examples of large
scale sequence analysis using RNAclique in Section 5). We are currently working
on applying our method to large scale sequence data. We will apply RNAclique
to each intron of protein-coding genes (in order to discover new ncRNA family
clusters in intron regions) and the set of continuous conserved regions in the
human genome.

One drawback of our method is in the detection of the number of clusters in
general. In order to obtain more confident clusters, we have developed a method
for finding clusters containing locally stable secondary structures that not only
have similar structures to each other but also have other features in common,
e.g., evidence of expression (a support of a tiling array or ESTs), or overlap with
an interesting region (ultraconserved elements 2), human accelerated regions 28),
indel-conserved regions 20), transposon free regions 29) and so forth). These useful
features are summarized in a database developed by Mituyama, et al. 17),23) (Also
see http://www.ncrna.org).
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