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This paper presents a performance evaluation of large-scale parallel image
compositing on a T2K Open Supercomputer. Traditional image compositing
algorithms were not primarily designed for exploiting the combined message
passing and the shared address space parallelism provided by systems such
as T2K Open Supercomputer. In this study, we investigate the Binary-Swap
image compositing method because of its promising potential for scalability.
We propose some improvements to the Binary-Swap method aiming to fully
exploit the hybrid programming model. We obtained encouraging results from
the performance evaluation conducted on Todai Combined Cluster, a T2K Open
Supercomputer at the University of Tokyo. The proposed improvements have
also shown a high potential to tackle the large-scale image compositing problem
on leading-edge HPC systems where an ever increasing number of processing
cores is involved.

1. Introduction

Scientific computing and visualization have played an important role in
computer-aided scientific discovery using high performance computing (HPC)
capabilities. The size and complexity of data sets generated from numerical
simulations have increased at a rate comparable to that of the computational
power and the network bandwidth of leading-edge HPC systems. Sort-last paral-
lel rendering 1) has proven effective when executing large-scale data visualization
on such systems since it avoids costly and sometimes prohibitive data transfer
between HPC and visualization oriented systems 2)–6).

Recent trends in modern high performance computing (HPC) system architec-
tures show an increasing use of high speed, high bandwidth interconnect allied
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with a huge number of computation nodes with multiple processing cores. This
trend can be verified in the T2K Open Supercomputer 7) specification which is
employed in three of the most powerful supercomputers in Japan 8).

In the sort-last method, full resolution images generated from each rendering
node are composited together using a parallel image compositing algorithm. Sev-
eral compositing algorithms have been proposed so far, and are currently grouped
into three main categories: Direct Send 9),10), Parallel Pipeline 11), and Binary-
Tree which includes Binary-Swap 12). These methods have widely been utilized
on small and medium size parallel computing systems where they have proven
efficient. However, a straightforward application to T2K Open Supercomputer
systems might produce non optimized results.

Traditional parallel image compositing algorithms were not designed with a hy-
brid programming model in mind. Most of them are designed for pure distributed
or pure shared-memory parallel computing systems. Although distributed mem-
ory applications can work on systems with full or partial shared-memory address
space, a loss in performance might occur when the hybrid programming model
is not exploited. In addition, a special attention to the communication cost is
required when targeting large-scale computational systems such as T2K Open
Supercomputer systems. This is because the communication time usually domi-
nates the overall parallel image compositing time.

In this study, we focused on the Binary-Swap image compositing method
which has an O(n.log2n) communication cost compared to O(n.n1/3), or even
O(n.(n − 1)), of other image compositing methods. A Flat MPI version was
implemented and a performance analysis was carried out on a T2K Open Super-
computer installed at the University of Tokyo also known as Todai Combined
Cluster (hereafter called Todai T2K ). On this system, the performance degra-
dation was verified when the number of compositing nodes reaches the order of
thousands. In order to minimize this performance degradation, we investigated
some improvements to the Binary-Swap method to fully exploit the hybrid pro-
gramming model on Todai T2K. The improvements include the combination of
different parallel image compositing methods.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the sort-last image compositing with special attention to the Binary-Swap
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method. In Section 3, we present some improvements to Binary-Swap in order
to exploit the hybrid programming model. Experimental results and discussions
are presented in Section 4, and we conclude by presenting some future works in
Section 5.

2. Sort-Last Image Compositing

The sort-last image compositing method is responsible for the final stage of the
rendering pipeline. That is, the full size images generated by the rendering pro-
cess are composited, or merged, by using alpha blending or z-buffer techniques,
in order to produce the final image. In this study, we focused on alpha blend-
ing which is more complex than the z-buffer method since it requires a correct
ordering of the entire set of images during the compositing process. In addition,
since it handles semi-transparent images we can apply it to volume-rendered im-
ages. Figures 1 and 2 show some examples of the image compositing methods
investigated in this study.

Direct Send and Binary-Swap methods have proven effective on small and
medium size parallel systems in the order of tens and sometimes hundreds of
compositing nodes 12)–18). The Parallel Pipeline method has proven suitable for
small size parallel systems. In fact, this method has been used on commercial
parallel visualization applications such as AVS/Express PST (Parallel Support
Toolkit) 19) and CEI Ensight DR (Distributed Rendering) 20).

Recently, Direct Send has received an increasing attention and several opti-

Fig. 1 Direct-Send and Binary-Tree image compositing methods.

mizations have been proposed so far21)–23). Among them, the Scheduled Linear
Image Composition method, or SLIC 21) for short, emerged as the prime candi-
date for large-scale data visualization. SLIC generates an on-the-fly scheduling
aiming to minimize unnecessary data transmission. SLIC has a communication
cost in the order of O(n.n1/3) and this makes the number of required message
transmissions comparable to that of Binary-Swap, which has a cost in the or-
der of O(n.log2n), when up to 1,024 compositing nodes are used. However, in
the order of tens of thousands of compositing nodes, SLIC might require two
times more message transmissions than Binary-Swap. In addition, the on-the-fly
scheduling generation on such a number of compositing nodes might influence
the computational cost that reduces the gain obtained by the optimized data
transmission. The biggest advantage of SLIC is that it is not limited to using a
power of two compositing nodes as required by Binary-Swap. Recently, 2- 3 Swap
Image Compositing 18) has been proposed as a generalization of Binary-Swap to
an arbitrary number of compositing nodes. Although it does not suffer from any
limitation on the number of nodes, it is reported that a better performance is
always obtained when the number of compositing nodes is a power of two. That
is, when using the Binary-Swap algorithm.

2.1 Binary-Swap Image Compositing
Binary-Swap can be considered as a highly optimized binary-tree method where

the rendering nodes are kept busy as much as possible during the entire image
compositing stage. Binary-Swap is perhaps the most used, it has been widely

Fig. 2 Binary-Swap image compositing method.
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researched and extensive optimization techniques 13)–17) have been proposed so
far.

As shown in Fig. 2, during the Binary-Swap image compositing process, the
image is recursively divided into two parts. Half of them is exchanged between
pairs of compositing nodes. The other half is then composited with the received
image while taking into consideration the correct ordering. The communication
distance doubles at each stage, and this linear increase in distance greatly com-
promises the network traffic, which can generate network contention, when the
number of compositing nodes increases. Contrary to the communication distance,
the image size becomes smaller and smaller since it diminishes to a half at each
stage. At the end, each node possesses 1/n of the original image size as the final
composited image.

Binary-Swap requires a power of two number of compositing nodes n, and
the required number of stages for completion is log2n. At each stage i, each
compositing node will send, receive, and composite pxy/2i pixels, where pxy is
the total number of pixels in the image. Thus the total number of pixels (pxy) that
each compositing node needs to send, receive, and composite can be expressed
as shown in Eq. (1), where a formula for geometric series is used.

log2n∑
i=1

pxy

2i
= pxy

log2n∑
i=0

(
1
2

)i

− pxy

= pxy
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= pxy
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1 − 1

n

)
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The final composited image fragments distributed across the compositing nodes
have to be gathered and reconstructed at the main compositing node (root node).
Since the size of each image fragment is 1/n, the amount of data to be gathered
will be equivalent to the total image size, or pxy. A feasible approach for this
step is the use of available MPI collective functions such as MPI Gather. This
stage has been ignored for small size parallel systems since seldom influences the
compositing performance. However, when the number of nodes increases it has
a great potential to become a serious problem.

2.2 Theoretical Performance Analysis
There is a vast and rich literature on the sort-last image compositing method,

and a detailed theoretical performance analysis for both shared-memory 24), and
distributed memory 25),26), parallel computing systems can be found. The total
time required for the parallel image compositing can be represented as shown in
Eq. (2).

ttotal = tread + tcompose + tcollect + twrite (2)
In the pure software rendering context, the time for reading the image (tread )

usually can be ignored since the rendered image is already stored in the main
memory. The time for writing (twrite) the final image represents the time for
effectively flushing to a file or the time required for displaying onto a display
device. The time for compositing (tcompose) and collecting (tcollect) are usually
the most costly and define the upper bound of the achievable performance. Thus
in this study we focused on these two parameters.
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The Binary-Swap compositing time (tBS ) can be expressed as shown in Eq. (3).
In this equation, the term n corresponds to the number of compositing nodes.
The tcompose term includes the time for sending (tsend), receiving (trecv ) and al-
pha blending (tblend) at each image compositing stage. Since modern network
interconnects support full duplex communication, the time for sending and re-
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ceiving data between pairs of compositing nodes can be substituted by tcomm

(=max(tsend , trecv )). All these components are directly influenced by the image
size as well as the pixel size of the rendered image. In addition, tcomm is directly
influenced by the network bandwidth and latency. On the other hand, tblend is
directly influenced by the processor performance.

The term tcomm represents the time for exchanging messages between each pair
of compositing nodes. This term depends on the network latency (tnet latency)
and the network bandwidth (net bandwidth). The term tblend depends on
the computational overhead (tcpu overhead ) and the computational performance
(cpu bandwidth) itself. Here tnet latency represents the delay for effectively starting
the data transmission. For the sake of simplicity, we used hardware specification
values and ignored any other factors. However, for our purpose, we considered
the aforementioned setting sufficient for predicting the upper bound of the image
compositing performance. It is worth noting that in practice, the latency as well
as the sustained bandwidth usually differ from their respective theoretical values.

3. Hybrid Programming Model oriented Image Compositing

The Binary-Swap image compositing method as well as most of other image
compositing methods was not designed with the hybrid programming model in
mind. To take advantage of the shared-memory address space, it is possible
to simplify the data communication pattern and the final collecting process of
the Binary-Swap method. However, we investigated the use of another image
compositing method, named Shared-Memory Compositing (SMC), designed for
shared-memory environments.

3.1 Shared-Memory Compositing (SMC) + Binary-Swap (BS)
We have investigated the use of Shared Memory Compositing 24) (SMC) which

is directly derived from Direct-Send. The composited image generated from SMC
will then be composited via Binary-Swap (BS) as shown in Fig. 3. In this case,
we can expect a light-weight BS compositing because of the reduction in the
number of compositing nodes.

Considering that the total number of compositing nodes n can be decomposed
into m groups of p shared-memory compositing nodes, the required image com-
positing time (tSMC+BS ) for this approach will be as shown in Eq. (4). The tSMC

Fig. 3 Shared-Memory Compositing + Binary-Swap (SMC + BS).

will almost correspond to the time for alpha blending (tblend) images with a size
of 1/p. However, it should be taken into consideration that in NUMA systems,
such as Todai T2K, the performance can be affected when blending image data
stored in a non-local memory. Since SMC generates m partially composited im-
ages, a BS image compositing involving only m nodes will be necessary. This
SMC allied with light-weight BS compositing has a great potential to help alle-
viate the performance degradation in comparison to the traditional BS when a
large number of compositing nodes n is involved.

tSMC+BS = max
Blocks1:m

(
tSMCp

)
+

((
log2m∑
i=1

tcomposei

)
+ tcollectm

)

where
tSMCp

≈ tblend( 1
p ) (4)

3.2 Binary-Swap (BS) + Binary-Tree (BT)
Following the same methodology as before, we investigated the synergistic use

of different image compositing methods in order to attenuate the network traffic
in a large-scale Binary-Swap image compositing. As described in Section 2.1,
the communication distance, between the compositing pairs, doubles at each
stage. This peculiar communication pattern generates network-wide traffic across
the entire system at the final stages. In addition, the gathering process via
MPI Gather involving a large number of nodes has the potential to degrade the
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Fig. 4 Binary-Swap + (Binary-Tree or Binary-Swap) (BS + BT or BS + BS).

image compositing performance.
Although the aforementioned approach, which combines SMC and BS shows

promising to alleviate this problem, thousands of BS compositing nodes might
still be necessary. For instance, if we use 4 nodes SMC, it will still remain
2,048 BS nodes when using 512 nodes of Todai T2K (8,192 processing cores).
Considering that the message exchange pattern in BS is highly localized due to
the use of a hierarchical binary-tree configuration, we investigated the use of
subgroup partitioning aiming to reduce the impact of large-scale data gathering
and network-wide traffic in the final stages of BS.

As shown in Fig. 4, the compositing nodes can be grouped into subgroups in
order to concurrently perform BS compositing. In the next step, we will have
a reduced number of images to be composited. If the number of local root
nodes is small, for instance less than eight, we can also apply Binary-Tree (BT)
compositing to avoid the final image collecting process. For instance, 8,192 BS
nodes on Todai T2K can be decomposed into 8 groups of 1,024 BS nodes each
in the first step, and 8 BT nodes in the second step. Considering that the total
number of nodes n can be decomposed into m groups of p compositing nodes,
the required image compositing time for tBS+BT will be as shown in Eq. (5).

tBS+BT = max
Blocks1:m

((
log2p∑
i=1

tcomposei

)
+ tcollectp

)
+

(
log2m∑
i=1

tcomposei

)
(5)

4. Experimental Results

4.1 Experimental Setup
We implemented a parallel image compositing application using C program-

ming language together with the MPI communication library and OpenMP direc-
tives. This application generates 32-bit RGBA images on-the-fly, with traditional
size of 512 × 512 used for performance comparison. We opted for generating a
full colored image without any background pixel in order to force the execution
of alpha blending throughout the entire image. This therefore eliminates the
performance variation due to the different ratios of foreground and background
pixels in different images. We did not apply any acceleration technique, such as
bounding box or image compression, in order to verify the lower bound of the
image compositing performance. We measured the image compositing time using
the traditional MPI Wtime function.

On Todai T2K, we used up to 2,048 processing cores for performance evalu-
ation. Hitachi compiler (default) was used by applying “-Os” compiler option.
Memory-processor affinity using numactl was also explored. A loop of 10 image
compositing instances was executed for each measurement and the best com-
positing time was selected. The inverse function of the measured time gives us
the results in FPS (frames per second).

4.2 Theoretical Compositing Performance
Equation 3 was used for calculating the maximum obtainable BS image com-

positing frame rate on Todai T2K. For this purpose, we used some values avail-
able from the T2K Open Supercomputer specification. We considered that the
network can deliver data with the rate of 4 GB/s with a hardware latency of
8.5 µs. We also roughly considered that the 2.3 GHz AMD Opteron computa-
tional cores can deliver alpha blending operation in the same scale (that is, 2.3
Giga pixels/s). Ignoring any kind of computational overhead, the theoretically
maximum achievable image compositing performance for 512×512 32-bit RGBA
images will be as shown in Fig. 8, and this curve shows the theoretical scalability
behavior.

4.3 Measured BS Operation Performance
In order to analyze the performance behavior of BS operations on the target
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Fig. 5 BS message exchange time using MPI Isend
and MPI Recv.

Fig. 6 BS image gathering time using MPI Gatherv. Fig. 7 BS image blending time using alpha blend operation.

hardware, we executed some measurements using up to 1,024 compositing nodes
(10 BS compositing stages). We measured the image data exchanged between
pairs of compositing nodes (tcomm), the final image gathering (tgather ), and the
image blending process (tblend). As detailed in Section 2.1, as the Binary-Swap
image compositing stage advances the image data size required for sending, re-
ceiving, and blending is reduced by half. However, we can clearly verify that this
decrease in image size has little impact on tcomm (Fig. 5) and tgather (Fig. 6), in
contrast to tblend (Fig. 7) which does not require network communication. We
can also observe a substantial performance degradation of image gathering when
involving a large number of compositing nodes.

4.4 BS Compositing Performance
We measured the Flat MPI BS compositing performance using up to 2,048

compositing nodes. Figure 8 shows the results with and without applying the
final collecting process. We can observe that the final collecting process pro-
duces a considerable performance degradation when the number of compositing
nodes becomes large. This performance degradation can be explained in part by
the low image gathering and reconstruction performance on a large number of
compositing nodes as shown in Fig. 6.

4.5 SMC Compositing Performance
We measured the SMC compositing performance using 4 and 16 SMC nodes,

taking into consideration the hardware configuration of Todai T2K where a com-

putational node is composed by four Quad-core AMD Opteron processors. In
Fig. 9, “OpenMP SMC(16)” shows the measured image compositing perfor-
mance when using 16 SMC nodes, that is, 16 OpenMP threads. On the other
hand, “OpenMP SMC(4)” shows the performance when using 4 SMC nodes. As
expected, a similar performance is obtained with up to 4 compositing nodes.
However, from this point, on SMC(4) each remaining node will start the BS
compositing thus a drop in performance compared to SMC(16) occurs. Roughly
speaking, the expected image compositing time of SMC(4) when using 8 com-
positing nodes will be equivalent to the time of SMC(4) on 4 nodes added with
the time of BS on 2 nodes. However, it is worth noting that these 2 BS nodes
(inter-CPU) differ from those of Flat MPI BS involving 2 nodes (intra-CPU).

Comparing OpenMP SMC with Flat MPI BS, when using 4 compositing nodes,
a performance increase of 97.7% (136.1 FPS ⇒ 269.2 FPS) was obtained. When
using 16 compositing nodes on “OpenMP SMC(16)”, a performance increase of
20.9% (108.4 FPS ⇒ 131.1 FPS) was obtained.

4.6 SMC + BS Compositing Performance
The measured performance of SMC allied with BS as well as of Flat MPI is

shown in Fig. 10. From 32 compositing nodes, only BS compositing will be
carried out. However, each of these compositing approaches will have a different
number of involved nodes and will be in different BS stages. “SMC(16)-BS” will
have 2 nodes and will be in the first BS stage, “SMC(4)-BS” will have 8 nodes and
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Fig. 8 Theoretical and measured BS image
compositing performance.

Fig. 9 SMC intra-node image
compositing performance.

Fig. 10 SMC + BS inter-node image
compositing performance.

Fig. 11 BS + BT image compositing
performance.

will be in the third BS stage, and “Flat MPI BS” will have 32 nodes and will be in
the fifth BS stage. Therefore, the amount of data (pxy/2stage per node) that they
will send, receive, and blend will differ from each other. This explains the lower
image compositing performance of “SMC(16)-BS” compared to “SMC(4)-BS”,
since the former one requires a higher amount of data to be processed between
the compositing pairs at each of the BS stages. The other fact is that the number
of nodes involved in the final image gathering will also be different in these
three approaches. This therefore might impact the performance when a large
number of compositing nodes is involved. For instance, even starting with 2,048
compositing nodes, only 512 nodes will remain for the final image gathering on
“SMC(4)-BS”. In addition, only 128 nodes will remain when applying “SMC(16)-
BS”. These aforementioned observations can help us understand the performance
of “SMC(16)-BS” compared to “Flat MPI BS”. After the inversion on 32 nodes
due to the higher amount of data to be processed between compositing pairs,
the network-wide traffic and the final image gathering process compromise the
performance of “Flat MPI BS” when a large number of nodes (over 1,024 nodes)
is involved.

Comparing “SMC(16)-BS” with “Flat MPI BS”, a performance increase of
101.0% (38.6 FPS ⇒ 77.6 FPS) was obtained when starting with 2,048 composit-
ing nodes. On the other hand, a performance increase of 126.9% (38.6 FPS ⇒
87.6 FPS) was obtained when applying “SMC(4)-BS”.

4.7 BS + BT Compositing Performance
We used subgroup sizes of 512 and 1,024 BS nodes in order to measure the

compositing performance when using 2,048 and 4,096 compositing nodes. In
the latter case, when using subgroup of 512 BS nodes, a total of 8 images will
result for the subsequent BT compositing. This is equivalent to executing 8
concurrent BS with 512 nodes, and then BT with 8 nodes. On the other hand,
four images will be generated when using subgroups of 1,024 BS nodes. This
is equivalent to executing 4 concurrent BS with 1,024 nodes, and then BT with
4 nodes. The obtained BS + BT compositing performance is shown in Fig. 11.
When using subgroups of 512 BS nodes in the case of 4,096 nodes, a performance
improvement of 128.3% (12.0 FPS ⇒ 27.4 FPS) was obtained. In addition, a
performance improvement of 244.1% (12.0 FPS ⇒ 41.3 FPS) was obtained when
using subgroups of 1,024 BS nodes. Although, BS with 512 nodes (80.5 FPS)
appears faster than with 1,024 nodes (67.0 FPS), the inversion in the performance
is due to the lower BT performance on a higher number of nodes. BT compositing
with 8 nodes becomes much slower than with 4 nodes since an additional full size
image data is required for processing (send, receive, and blend).

5. Conclusions

In this paper, we presented an image compositing performance evaluation on a
T2K Open Supercomputer (Todai T2K). We investigated the performance and
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the scalability of the Binary-Swap image compositing method focusing on large-
scale image compositing. We presented and evaluated a simple modification of
Binary-Swap, resulting in a combined image compositing method, in order to ex-
ploit the available hybrid programming model. We have also investigated the use
of subgroup partitioning aiming to alleviate the network-wide traffic and large-
scale data gathering in order to diminish the undesired performance degradation
when using a large number of compositing nodes. We obtained encouraging re-
sults when applying these improvements to the original Binary-Swap image com-
positing. Despite its simplicity, the approach of combining existing compositing
methods has shown a high potential in tackling the ever increasing number of pro-
cessing cores on leading-edge high-end HPC systems. The future work includes
the investigation of a semi-automatic method for selecting the best combination
of image compositing methods.
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