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Context-sensitive Innermost Reachability is Decidable

for Linear Right-shallow Term Rewriting Systems
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The reachability problem for given an initial term, a goal term, and a term
rewriting system (TRS) is to decide whether the initial one is reachable to the
goal one by the TRS or not. A term is shallow if each variable in the term
occurs at depth 0 or 1. Innermost reduction is a strategy that rewrites inner-
most redexes, and context-sensitive reduction is a strategy in which rewritable
positions are indicated by specifying arguments of function symbols. In this pa-
per, we show that the reachability problem under context-sensitive innermost
reduction is decidable for linear right-shallow TRSs. Our approach is based on
the tree automata technique that is commonly used for analysis of reachability
and its related properties. We show a procedure to construct tree automata
accepting the sets of terms reachable from a given term by context-sensitive
innermost reduction of a given linear right-shallow TRS.

1. Introduction

The reachability problem for given two terms s, t, and a term rewriting system
(TRS) R is to decide whether s is reachable to t by R or not. Decision procedures
of the problem are applicable to security protocol verification and solving other
problems of TRSs. Since it is known that this problem is undecidable for general
TRSs, efforts have been made to find subclasses of TRSs in which the reachability
is decidable. Reachability properties for several subclasses of TRSs have been
proved to be decidable3),4),6),11)–16) as shown in Fig. 1.

Innermost reduction, a strategy that rewrites innermost redexes, is known as
call-by-value computation widely used in most programming languages. Context-
sensitive reduction9) is a strategy in which rewritable positions are indicated by
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Fig. 1 Major subclasses of TRS in which the reachability is decidable or undecidable.

specifying arguments of function symbols, and is used in evaluating if · · · then

· · · else · · · or case structures. Therefore, the languages that adopt call-by-
value computation and if · · · then · · · else · · · structure (e.g., C language)
have computation models defined by context-sensitive innermost reduction. For
innermost reduction and context-sensitive reduction, some decidable classes of
reachability are known5),8), but it is not known for context-sensitive innermost
reduction.

The reachability relation by context-sensitive innermost reduction is not equal
to the intersection of reachability relations for innermost reductions and context-
sensitive reduction, as shown in the following Example 1. Thus the decidability
of reachability by context-sensitive innermost reductions cannot be obtained by
the direct combination of the two existing results.
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21 Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

Example 1 Consider the following context-sensitive TRS:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if(true, x, y)→ x

if(false, x, y)→ y

a→ b

f(x)→ g(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

μ(if) = μ(g) = {1}
μ(f) = ∅

where reductions below f are inhibited. Then g(a) is reachable from
if(true, f(a), a) by context-sensitive innermost reduction, but not reachable by
innermost reduction. �

This paper shows a procedure to construct a tree automaton (TA) accepting the
set of terms reachable from a given term if a given TRS is linear and right-shallow,
which means that the reachability and the joinability are both decidable. The
procedure basically consists of both constructions8) for innermost reduction and
context-sensitive reduction. However, the natural merger of the two procedures
is not enough as shown later (Example 10).

2. Preliminary

We use usual notations of term rewriting system1) and tree automata2). Let
F be a set of function symbols with fixed arity and X be an enumerable set of
variables. The arity of function symbol f is denoted by ar(f). Function symbols
with ar(f) = 0 are constants. The set of terms, defined in the usual way, is
denoted by T (F,X). A term is linear if no variable occurs more than once in
the term. The set of variables occurring in t is denoted by Var(t). A term t is
ground if Var(t) = ∅. The set of ground terms is denoted by T (F ).

A position in a term t is defined, as usual, as a sequence of positive integers,
and the set of all positions in a term t is denoted by Pos(t), where the empty
sequence ε is used to denote root position. The depth of a position p is defined
as |p|. The height |t| of a term t is defined as max({|p| | p ∈ Pos(t)}). A term
t is shallow if depths of variable occurrences in t are all 0 or 1. The subterm of
t at position p is denoted by t|p, and t[t′]p represents the term obtained from t

by replacing the subterm t|p by t′. If a term s is a subterm of t and s �= t, s is a
proper subterm of t. We denote s � t that a term s is a subterm of t.

A substitution σ is a mapping from X to T (F,X) whose domain Dom(σ) =
{x ∈ X | x �= σ(x)} is finite. The term obtained by applying a substitution σ to
a term t is written as tσ. The term tσ is an instance of t.

A rewrite rule is an ordered pair of terms in T (F,X), written as l → r, such
that l �∈ X and Var(l) ⊇ Var(r). We say that variables in Var(l) \ Var(r) are
erasing. A term rewriting system (over F ) (TRS) is a finite set of rewrite rules.
Rewrite relation −→

R
induced by a TRS R is as follows: s −→

R
t if and only if

s = s[lσ]p, and t = s[rσ]p for some rule l → r ∈ R, with substitution σ and
position p ∈ Pos(s). We call lσ a redex. We sometimes write −→

R
p by presenting

the position p explicitly.
A rewrite rule l → r is left-linear (resp. right-linear, linear, right-shallow) if l

is linear (resp. r is linear, l and r are linear, r is shallow). A TRS R is left-linear
(resp. right-linear, linear, right-shallow) if every rule in R is left-linear (resp.
right-linear, linear, right-shallow).

Let → be a binary relation on a set T (F ). We say s ∈ T (F ) is a normal
form (with respect to →) if there exists no term t ∈ T (F ) such that s→ t. We
use ◦ to denote the composition of two relations. We write ∗−→ for the reflexive
and transitive closure of →. We also write n−→ for the relation → ◦ · · · ◦ →
composed of n →’s. The set of reachable terms from a term in T is defined by
→[T ] = {t | s ∈ T, s ∗−→ t}. The reachability problem (resp. joinability problem)
with respect to → is a problem that decides whether s ∗−→ s′ (resp. s ∗−→ ◦ ∗←− s′)
or not, for given terms s and s′.

A tree automaton (TA) is a quadruple A = (F,Q,Qf ,Δ) where Q is a finite
set of states, Qf (⊆ Q) is a set of final states, and Δ is a finite set of transition
rules of the forms f(q1, . . . , qn)→ q or q1 → q where f ∈ F with ar(f) = n, and
q1, . . . , qn, q ∈ Q. We can regard Δ as a (ground) TRS over F ∪Q. The rewrite
relation induced by Δ is called a transition relation denoted by −→

Δ
. We denote

|α| as the length of a transition sequence α (if α is s n−→ t, then |α| = n). We say
that a term s (∈ T (F )) is accepted by A if s ∗−→

Δ
q ∈ Qf . The set of all terms

accepted by A is denoted by L(A). We say A recognizes L(A). A set of terms
T is regular if there exists a TA that recognizes T . We use a notation L(A, q)
or L(Δ, q) to represent the set {s | s ∗−→

Δ
q}. A TA A is deterministic if s ∗−→

Δ
q
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22 Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

and s ∗−→
Δ

q′ implies q = q′ for any s ∈ T (F ). A TA A is complete if there exists
q ∈ Q such that s ∗−→

Δ
q for any s ∈ T (F ).

The following properties on TA are known2).

Theorem 2 ( 1 ) For a given regular set T ∈ T (F ), there exists a deterministic
complete TA A = (F,Q,Qf ,Δ) that recognizes T and has no needless
states:
∀q ∈ Q.L(Δ, q) �= ∅.

( 2 ) The class of regular sets on T (F ) is closed under union, intersection, and
complementation.

( 3 ) The membership problem and the emptiness problem are decidable.

3. Context-sensitive Innermost Reduction

We follow usual definitions of context-sensitivity9). A context-sensitive rewrite
relation is a subrelation of the ordinary rewrite relation in which rewritable posi-
tions are indicated by specifying arguments of function symbols. A mapping μ :
F → P(N) is said to be a replacement map (or F -map) if μ(f) ⊆ {1, . . . , ar(f)}
for all f ∈ F . A context-sensitive term rewriting system (CS-TRS) is a pair
R = (R,μ) of a TRS and a replacement map. The set of μ-replacing positions
Posμ(t) (⊆ Pos(t)) is recursively defined: Posμ(t) = {ε} if t is a constant or a
variable, otherwise Posμ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ μ(f), p ∈ Posμ(ti)}. The
rewrite relation induced by a CS-TRS R is defined: s ↪−→R t if and only if s −→

R
p t

for some p ∈ Posμ(t). We call a normal form for CS-TRS R context-sensitive
normal form and we denote the set of context-sensitive normal forms by CS-NFR.

A rewrite step s −→
R

p t is innermost if all proper subterms of s|p are nor-
mal forms. If every proper subterm is context-sensitive normal forms or not
in posμ(s), we say that the step is context-sensitive innermost, and we denote
context-sensitive innermost reduction by ↪−→

R in. A context-sensitive innermost
rewrite relation is a subrelation of a context-sensitive rewrite relation, but it is
not a subrelation of a innermost rewrite relation as shown in Example 1.

4. Tree Automaton Accepting Context-sensitive Normal Forms

In this section, we give a procedure to construct a deterministic complete TA
ANF that recognizes the set of context-sensitive normal forms over F for left-
linear CS-TRS R. This procedure is similar to ones for TRSs2).

The steps of the procedure to construct TA ANF is as follows:
( 1 ) Construct TA Al that recognizes the set of terms having a redex lσ at

μ-replacing position for each l→ r ∈ R.
( 2 ) Construct the union of all Al’s and take the complementation.
( 3 ) Convert the TA constructed in the step (2) into a deterministic and com-

plete TA having no needless states. We output the TA as ANF.
The step (2) and (3) are obviously possible from Theorem 2. Now we show the
detail of the step (1). We use s⊥ to denote the term obtained from a term s by
replacing every variable with ⊥.

Each component of Al is as follows:
• Ql = {u◦} ∪ {ut⊥ | t � l}
• Qf

l = {u◦}
• Δl consists of following transition rules:
(i) f(u⊥, . . . , u⊥)→ u⊥ for each f ∈ F ,
(ii) f(ut⊥1

, . . . , ut⊥n )→ uf(t1,...,tn)⊥ for each f ∈ F and state uf(t1,...,tn)⊥ ,
(iii) ul⊥ → u◦,
(iv) f(u1, . . . , un) → u◦ for each f ∈ F if exactly one uj such that j ∈ μ(f)

is u◦ and the other ui’s are u⊥.
Note that transition rules (i), (ii), (iii) are the same in the case of TRSs.
We obtain the following lemmas for Al.

Lemma 3 If l is linear then L(Al, ul⊥) is equal to the set of all ground instances
of l, (that is, L(Al, ul⊥) = {lσ ∈ T (F )}.)

Proof:
(⊇) By induction on height |t| of t, we show the claim that tσ ∗−−→

Δl
ut⊥ for every

substitution σ and subterm t of l such that tσ is ground.
( 1 ) In the case that t is a variable, we have t⊥ = ⊥. Since transition rules
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23 Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

(i) guarantee that s ∗−−→
Δl

u⊥ for any ground term s, the claim follows.
( 2 ) Otherwise, we can write t = f(t1, . . . , tn) for n = ar(f) ≥ 0. Since

tiσ
∗−−→
Δl

ut⊥
i

by the induction hypothesis, we have tσ = f(t1, . . . , tn)σ ∗−−→
Δl

f(ut⊥1
, . . . , ut⊥n ) −−→

Δl
ut⊥ from (ii) of the construction of Δl.

(⊆) We show by induction on length |α| that for subterm t of l, if α : s ∗−−→
Δl

ut⊥

then there exists a substitution σ such that s = tσ. If t is a variable x, we
can take σ so that xσ = s. Otherwise, since the transition rule used at the
last step of α is constructed by (ii), we can write α as s = f(s1, . . . , sn) ∗−−→

Δl

f(ut⊥1
, . . . , ut⊥n ) −−→

Δl
ut⊥ . Since si

∗−−→
Δl

ut⊥
i
, there exists σi such that si =

tiσi by the induction hypothesis. Since l is linear, there exists a σ such that
f(t1, . . . , tn)σ = f(t1σ1, . . . , tnσn) and hence we have s = f(s1, . . . , sn) =
f(t1, . . . , tn)σ = tσ. �

Lemma 4 If l is linear then L(Al) = {t[s]p | t ∈ T (F ), s is a ground instance
of l, p ∈ Posμ(t)}.

Proof:
(⊇) From Lemma 3 and (iii) of the construction of Δl, we have t[s]p ∗−−→

Δl

t[ul⊥ ]p −−→Δl
t[u◦]p. Since p ∈ Posμ(t), we have t[u◦]p ∗−−→

Δl
u◦ from the defi-

nition of Posμ and (i) and (iv) of the construction of Δl.
(⊆) Let t ∗−−→

Δl
u◦, then we have t ∗−−→

Δl
t[ul⊥ ]p −−→Δl

t[u◦]p ∗−−→
Δl

u◦ for some
p ∈Posμ(t) from (iii) and (iv) of the construction of Δl. Hence we have t = t[s]p
for some ground instance s of l from Lemma 3. �
As shown by the Lemma 4, the TA Al recognizes the set of terms having a

redex lσ at a μ-replacing position. Now we obtain the following lemma.

Lemma 5 For a left-linear CS-TRS R, we can construct a deterministic com-
plete TA ANF that recognizes CS-NFR and has no needless states.

Proof: By the step (1) and (2) of the proceeding procedure, we obtain a TA A′

that recognizes the complementation of the following set:⋃
l→r∈R

L(Al).

From Lemma 4 and (2) of Theorem 2, L(A′) is the set of context-sensitive

normal forms. The TA ANF obtained by the step (3) of the procedure is a
deterministic and complete TA that recognizes CS-NFR and having no needless
states from (1) of Theorem 2. �

We show an example of ANF.

Example 6 Consider the following R = (R,μ):

R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(g(x)) → x

g(b) → f(e)
g(c) → e

a → b

c → e

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

μ(f) = {1}, μ(g) = ∅.

Final states and transition rules of a deterministic complete TA ANF that is
minimized are as follows:

Qf
NF = {ub, ug, u⊥}

ΔNF =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a→ u⊥, b→ ub, c→ uc, e→ u⊥,

g(u⊥)→ ug, g(u⊥)→ ug, g(ub)→ ug,

g(uc)→ ug, g(ug)→ ug, h(ug)→ ug,

f(u⊥)→ u⊥, f(u⊥)→ u⊥, f(ub)→ u⊥,

f(uc)→ u⊥, f(ug)→ u⊥, f(ug)→ u⊥

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�
For the constructed TA ANF, the following proposition holds from Lemma 5.

Proposition 7 If f(u1, . . . , un)→ u ∈ ΔNF and u ∈ Qf
NF, then i ∈ μ(f) implies

ui ∈ Qf
NF.

Proof: Let f(u1, . . . , un)→ u ∈ ΔNF, u ∈ Qf
NF, and assume ui �∈ Qf

NF for some
i ∈ μ(f). Since ANF has no needless states by Lemma 5, there exists a terms
t1, . . . , tn such that tj

∗−−−→
ΔNF

uj for each j (1 ≤ j ≤ n). Hence f(t1, . . . , tn) ∗−−−→
ΔNF

f(u1, . . . , un) −−−→
ΔNF

u. Here that f(t1, . . . , tn) ∈ CS-NFR and ti �∈ CS-NFR
from Lemma 5. Since ti is not a context-sensitive normal form and i ∈ μ(f),
the term f(t1, . . . , tn) is not a context-sensitive normal form, which contradicts
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24 Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

f(t1, . . . , tn) ∈ CS-NFR. �

5. Procedure to Construct the Set of Reachable Terms by Context-
sensitive Innermost Reduction

In this section, we give a procedure to construct a tree automaton that rec-
ognizes the set of reachable terms by context-sensitive innermost reduction of a
linear right-shallow TRS. Procedures to construct a tree automaton that recog-
nizes the set of reachable terms from a given set of terms by innermost (resp.
context-sensitive) reduction have already shown for linear right-shallow TRSs8).
One may think that we can construct a tree automaton that recognizes the set of
reachable terms by context-sensitive innermost reduction, by natural merger of
these two procedures and by introducing context-sensitive normal form. However,
it appears that this is not true and we need some more modification.

Before giving the procedure, we define RS(R) and ARS, which are necessary to
describe the procedure.

Definition 8 RS(R) is the set of all non-variable direct subterms of the right-
hand sides of rules in TRS R: RS(R) = {ri �∈ X | l→ f(r1, . . . , rm) ∈ R}.

Note that RS(R) is a set of ground terms if R is right-shallow.

Definition 9 ARS = 〈F,QRS, Qf
RS,ΔRS〉 is a TA that accepts RS(R) and satis-

fied with the following conditions:
• Qf

RS = {qt | t ∈ RS(R)} and
• L(ARS, qt) = {t}.

Now we give the procedure Pcsin that constructs a TA recognizing a set of
reachable terms by context-sensitive innermost reduction. The procedure design
is based on merging the procedures for innermost case and context-sensitive case.
More precisely, each state of resulting TA consists of three components; the first
component originates in the input automata, the second one indicates whether
we can add the transition rules in order to transit to this state or not, The third
one remembers whether the corresponding terms are context-sensitive normal
forms or not.

Procedure Pcsin :
Input A TA A = 〈F,Q,Qf ,Δ〉 such that w1 → q ∈ Δ and w2 → q ∈ Δ imply
w1 = w2, and a left-linear right-shallow CS-TRS R over F of A.
Output A TA A∗ = 〈F,Q∗, Q

f
∗ ,Δ∗〉 such that L(A∗) = ↪−→R in[L(A)] if R is

right-linear.
Step 1 (initialize) ( 1 ) Prepare ARS and ANF.
( 2 ) Let
• k := 0,
• Q∗ = (Q �QRS)× {a, i} ×QNF,
• Qf

∗ = Qf × {a} ×QNF, and
• Δ0 as follows:
( a ) 〈q′, x, u〉 → 〈q, x, u〉 ∈ Δ0 for x ∈ {a, i} where q′ → q ∈ Δ and u ∈ QNF,
( b ) f(〈q1, i, u1〉, . . . , 〈qn, i, un〉) → 〈q, i, u〉 ∈ Δ0 where f(q1, . . . , qn) →

q ∈ Δ ∪ΔRS and f(u1, . . . , un)→ u ∈ ΔNF, and
( c ) f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) → 〈q, a, u〉 ∈ Δ0 where f(q1, . . . , qn) →

q ∈ Δ ∪ ΔRS, f(u1, . . . , un) → u ∈ ΔNF, and if i ∈ μ(f) then xi = a,
otherwise xi = i.

Step 2 Let Δk+1 be the set of transition rules produced by augmenting transi-
tion rules of Δk by the following inference rules:

( 1 ) Produce the transition rule g(〈q′1, x′1, u′
1〉, . . . , 〈q′m, x′m, u′

m〉)→ 〈q, a, u′〉 ∈
Δk+1 from f(l1, ..., ln)→ g(r1, ..., rm) ∈ R and f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉)→
〈q, a, u〉 ∈ Δk where ui ∈ Qf

NF or xi = i for all 1 ≤ i ≤ n if there exists
θ : X → (Q �QRS)× {a, i} ×Qf

NF such that
• L(Δk, xθ) �= ∅ for all x ∈ Var(f(l1, . . . , ln)),
• liθ

∗−−→
Δk
〈qi, xi, ui〉,

where
• let rjθ = 〈q′′j , x′′

j , u′′
j 〉 for each rj ∈ X then

– q′j =

{
q′′j · · · if rj ∈ X

qrj · · · if rj �∈ X

– x′j =

⎧⎪⎨
⎪⎩

x′′j · · · if j �∈ μ(g), rj ∈ X

i · · · if j �∈ μ(g), rj �∈ X

a · · · otherwise
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25 Context-sensitive Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Systems

– u′
j =

{
u′′

j · · · if rj ∈ X, j �∈ μ(g) ∨ (j ∈ μ(g) ∧ x′′
j = a)

v ∈ QNF · · · otherwise

for all 1 ≤ j ≤ m, and
• g(u′

1, . . . , u
′
m) −−−→

ΔNF
u′.

( 2 ) Produce 〈q′, a, u′〉 → 〈q, a, u′〉 ∈ Δk+1 from f(l1, ..., ln) → x ∈ R and
f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉)→ 〈q, a, u〉 ∈ Δk where ui ∈ Qf

NF or xi = i for all
1 ≤ i ≤ n if there exists θ : X → (Q �QRS)× {a, i} ×Qf

NF such that
• L(Δk, xθ) �= ∅ for all x ∈ Var(f(l1, . . . , ln)),
• liθ

∗−−→
Δk
〈qi, xi, ui〉,

where let 〈q′′, x′′, u′′〉 = xθ then
• q′ = q′′ and

• u′ =

{
u′′ · · · if x′′ = a

v ∈ QNF · · · otherwise

Step 3 If Δk+1 = Δk then stop and set Δ∗ = Δk. Otherwise, k := k + 1, and
go to step 2.

�

Example 10 Let us follow how procedure Pcsin works. Consider R in Ex-
ample 6, and let A be a TA that recognizes {f(g(a)), f(g(c))} defined by a
set {qfa, qfc} of final states and a set {a → qa, c → qc, g(qa) → qga, g(qc) →
qgc, f(qga) → qfa, f(qgc) → qfc} of transition rules. At the initializing, we have
ARS and ANF at (1). ARS is defined by a set {qe} of final state and a set of
{e→ qe} transition rules, and ANF is defined as Example 6. At (2) of initializing
step, we have the following:
• Q∗ = {〈qa, x, u〉, 〈qc, x, u〉, 〈qga, x, u〉, 〈qgc, x, u〉, 〈qfa, x, u〉, 〈qfc, x, u〉, 〈qe, x,

u〉} where u ∈ QNF and x ∈ {a, i}.
• Qf

∗ = {〈qfa, a, u〉, 〈qfc, a, u〉} where u ∈ QNF.
• Δ0 =⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a→ 〈qa, x, u⊥〉, c→ 〈qc, x, uc〉, e→ 〈qe, x, u⊥〉,
g(〈qa, i, u1〉)→ 〈qga, x, ug〉, g(〈qa, i, u2〉)→ 〈qga, x, ug〉,
g(〈qc, i, u1〉)→ 〈qgc, x, ug〉, g(〈qc, i, u2〉)→ 〈qgc, x, ug〉,

f(〈qga, x, u3〉)→ 〈qfa, x, u⊥〉, f(〈qga, x, u4〉)→ 〈qfa, x, u⊥〉,
f(〈qgc, x, u3〉)→ 〈qfc, x, u⊥〉, f(〈qgc, x, u4〉)→ 〈qfc, x, u⊥〉

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where x ∈ {a, i}, u1 ∈ {ub, uc}, u2 ∈ {u⊥, u⊥, ug, ug}, u3 ∈ {u⊥, uc, ug, ug},
and u4 ∈ {ub, u⊥}.

The saturation step stops at k = 1, and we have
• Δ1 = Δ0 ∪ {b → 〈qa, a, ub〉, e → 〈qc, a, u⊥〉, e → 〈qgc, a, u⊥〉, 〈qa, a, u〉 →
〈qfa, a, u〉} where u ∈ QNF,

Δ2 = Δ1, and Δ∗ = Δ1.
The output TA A∗ recognizes terms in {f(g(a)), f(g(c)), a, b, f(e)} =

↪−→R in [f(g(a)), f(g(c))]. �

This procedure Pcsin eventually terminates at some k, because the procedure
add transition rules in the repetition steps but it does not change states Q∗,
which guarantees that possible transitions rules are finite. Apparently Δ0 ⊂
· · · ⊂ Δk = Δk+1 = · · · .

Differences from natural merger of existing procedures are the following:
(i) a restriction that the input TA has no rules such that s → q and t → q

where s �= t,
(ii) the condition L(Δk, xθ) �= ∅ at Step 2 is added, and
(iii) in the third item of Step 2-(1), u′

j is an arbitrary state v ∈ QNF even if
j ∈ μ(g) ∧ x′′j = i, while u′

j = u′′
j in the naturally merged procedure.

Unless (ii), we produce a transition rule 〈qc, a, u⊥〉 → 〈qfc, a, u⊥〉 from f(g(x))→
x ∈ R, f(〈qgc, a, ug〉)→ 〈qfc, a, u⊥〉 ∈ Δ0, and xθ = 〈qc, i, u⊥〉. In this case, the
output TA accepts e, which is unreachable from f(g(a)) nor f(g(c)).

If we do not have the modification (iii), then u′
j is u′′

j of rjθ. Then a transition
rule b → 〈qa, a, ub〉 is not produced and hence the output TA does not accept b

which is reachable from f(g(a)). However, the extension (iii) causes a problem
that if the input TA A in Example 10 has set {a → qac, c → qac, g(qac) →
qg, f(qg)→ qf} of transition rules, and the output TA accepts c and e. To avoid
this problem, we introduce the restriction (i). Even if we have the restriction
(i), we can construct a TA accepting only one term and hence it suffices for the
reachability problem and joinability problem.

We show several propositions and lemmas to show L(A∗) = ↪−→
R in[L(A)] for the

input TA A and the output TA A∗ of the procedure Pcsin.
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Proposition 11 (a) Let s ∈ T (F ), then s ∗−→
Δ

q ∈ Q or s ∗−−−→
ΔRS

q ∈ QRS if
and only if s ∗−−→

Δ0
〈q, i, u〉 for some u ∈ QNF.

(b) f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) → 〈q, x, u〉 ∈ Δ∗ implies f(u1, . . . , un) →
u ∈ ΔNF.

Proof: The claim is a direct consequence of the construction of Δ0 and the
completeness of ANF. �

Proposition 12 If a rule f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) → 〈q, i, u〉 is in Δ∗,
then it is also in Δ0. Moreover, xi = i for all 1 ≤ i ≤ n.

Proof: Such rules are introduced at Step 1 and hence the claim follows from
construction of Δ0. �

Proposition 13 Let t ∈ T (F ), q ∈ Q �QRS, and u ∈ QNF, then t ∗−−→
Δk
〈q, i, u〉

implies t ∗−−→
Δ0
〈q, i, u〉.

Proof: The proposition follows from Proposition 12. �

Proposition 14 Let t ∈ T (F ), q ∈ Q�QRS, and u ∈ QNF. Then, t ∗−−→
Δ0
〈q, a, u〉

if and only if t ∗−−→
Δ0
〈q, i, u〉.

Proof: We present a proof for “only if” part, since the proof for the other
part is not only similar to this part but also simpler. We use induction on the
length of the former sequence. In the case of t ∗−−→

Δ0
〈q′, x, u′〉 −−→

Δ0
〈q, a, u〉,

the rule 〈q′, x, u′〉 −−→
Δ0
〈q, a, u〉 is introduced at (a) of Step 1 (2), and x = a.

Thus 〈q′, i, u′〉 → 〈q, i, u〉 is also in Δ0. Since t ∗−−→
Δ0
〈q′, i, u′〉 by the induction

hypothesis, the claim follows.
Otherwise, t ∗−−→

Δ0
〈q, a, u〉 can be represented as t = f(t1, . . . , tn) ∗−−→

Δ0

f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) −−→Δ0
〈q, a, u〉. The rule f(〈q1, x1, u1〉, . . . , 〈qn, xn,

un〉) −−→Δ0
〈q, a, u〉 is introduced at (c) of Step 1 (2), where xi ∈ {i, a},

f(q1, . . . , qn) → q ∈ Δ ∪ ΔRS, and f(u1, . . . , un) → u ∈ ΔNF. Thus we also
have f(〈q1, i, u1〉, . . . , 〈qn, i, un〉) −→ 〈q, i, u〉 ∈ Δ0 (by (b) of Step 1 (2)). Since
we have ti

∗−−→
Δ0
〈qi, i, ui〉 for each ti by the induction hypothesis, the claim follows.

�

Proposition 15 Let t ∈ T (F ), q ∈ Q�QRS, and u ∈ QNF. Then, t ∗−−→
Δk
〈q, i, u〉

implies t ∗−−→
Δk
〈q, a, u〉.

Proof: Let t ∗−−→
Δk
〈q, i, u〉, then t ∗−−→

Δ0
〈q, i, u〉 by Proposition 13. The proposition

follows from Proposition 14 and Δ0 ⊆ Δk. �

Lemma 16 Let s, t ∈ T (F ), s ∗−−→
Δ0
〈q, x, u〉, and t ∗−−→

Δ0
〈q′, x′, u′〉. Then, q = q′

implies s = t.

Proof: First we have s ∗−−→
Δ0
〈q, i, u〉 and t ∗−−→

Δ0
〈q′, i, u′〉 from Proposition 14. If

q = q′, then we have either s ∗−→
Δ

q∧ t ∗−→
Δ

q or s ∗−−−→
ΔRS

qs = q∧ t ∗−−−→
ΔRS

qt = qs = q

from Proposition 11 (a) and the construction of ARS. In the case of s ∗−−−→
ΔRS

qs

and t ∗−−−→
ΔRS

qt, qs = qt implies s = t from the construction of ARS. We show the
case of α : s ∗−→

Δ
q and t ∗−→

Δ
q by induction on |α|(> 0).

( 1 ) In the case of |α| = 1, we have s −→
Δ

q. In this case, s is the only term to
transit to q from the restriction for Δ. Hence t −→

Δ
q implies s = t.

( 2 ) ( a ) In the case of |α| > 1, we consider that the last transition rule applied
in α is (in the form of) f(q1, . . . , qn) −→

Δ
q. Let s = f(s1, . . . , sn), then we

have the transition sequence s = f(s1, . . . , sn) ∗−→
Δ

f(q1, . . . , qn) −→
Δ

q. From
the restriction for Δ, f(q1, . . . , qn) is the only term to transit to q, and hence
we have t = f(t1, . . . , tn) ∗−→

Δ
f(q1, . . . , qn) −→

Δ
q by letting t = f(t1, . . . , tn).

Since we have si = ti for each i from the induction hypothesis, we also have
s = t.

( b ) In the case where |α| > 0 and the last transition rule applied in α is
(in the form of) q′′ −→

Δ
q, we can show the lemma similarly to the previous

case (a).
�

Lemma 17 Let α : s[〈q, a, u〉]p ∗−−→
Δ∗
〈q′, a, u′〉 and p ∈ Posμ(s). Then u′ ∈ Qf

NF

implies u ∈ Qf
NF.

Proof: We show this lemma by induction on |α|. In the case of |α| = 0, this
lemma trivially holds from s[〈q, a, u〉]p = 〈q, a, u〉 = 〈q′, a, u′〉. Hence we suppose
|α| > 0.
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( 1 ) Consider the case where the last transition rule applied in α is (in the
form of) g(〈q′1, x′1, u′

1〉, . . . , 〈q′m, x′m, u′
m〉) → 〈q′, a, u′〉 ∈ Δk. Then α can be

represented as s[〈q, a, u〉]p ∗−−→
Δ∗

g(〈q′1, x′1, u′
1〉, . . . , 〈q′m, x′m, u′

m〉) −−→Δk
〈q′, a, u′〉.

In this case, the position p can be represented as jp′ for 1 ≤ j ≤ m. From
j ∈ μ(g), Proposition 11 (b), and Proposition 7, we have u′

j ∈ Qf
NF and hence

we also have u ∈ Qf
NF by the induction hypothesis.

( 2 ) In the case where the last transition rule applied in α is (in the form of)
〈q′′, a, u′′〉 → 〈q′, a, u′〉 ∈ Δk, we have u′′ = u′ from the construction of Δ0 or
the second inference rule of Step 2. Hence this lemma holds by the induction
hypothesis.

�

Lemma 18 If j �∈ μ(g) and g(. . . , 〈q′j , x′j , u′
j〉, . . .) → 〈q, x′, u′〉 ∈ Δk, then

u′
j ∈ Qf

NF or x′j = i.

Proof:
( 1 ) If k = 0, then x′j = i from the construction of Δ0

( 2 ) Consider the case of k > 0. We can assume g(. . . , 〈q′j , x′j , u′
j〉, . . .) →

〈q, x′, u′〉 ∈ Δk\Δk−1 without loss of generality. Since this rule is intro-
duced by the first inference rule of Step 2, we have x′ = a, and there ex-
ist f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R and f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) →
〈q, a, u〉 ∈ Δk−1 where ui ∈ Qf

NF or xi = i for all 1 ≤ i ≤ n, and θ : X → Q∗
such that liθ

∗−−−→
Δk−1

〈qi, xi, ui〉. From j �∈ μ(g), we have either 〈q′j , x′j , u′
j〉 = rjθ

if rj ∈ X, or x′j = i if rj �∈ X. In the case rj ∈ X, since we have li|p = rj for
some i and p, we have liθ = li[〈q′j , x′j , u′

j〉]p
∗−−−→
Δk−1

〈qi, xi, ui〉. If x′j = a, then

we have xi = a by Proposition 12 and hence ui ∈ Qf
NF. Therefore, u′

j ∈ Qf
NF

follows from Lemma 17.
�

Lemma 19 Let α : s[〈q, x, u〉]p ∗−−→
Δk
〈q′, x′, u′〉. If k = 0 or u ∈ QNF \Qf

NF∧x =
x′ = a ∧ p ∈ Posμ(s), then there exists v′ ∈ QNF such that s[〈q, x, v〉]p ∗−−→

Δk

〈q′, x′, v′〉 for v ∈ QNF.

Proof: We prove the lemma by induction on |α|. In the case of |α| = 0, we have

s[〈q, x, u〉]p = 〈q, x, u〉 = 〈q′, x, u′〉. Hence this lemma holds from s[〈q, x, v〉]p =
〈q, x, v〉 = 〈q′, x, v′〉.

Following we suppose |α| > 0.
( 1 ) Consider the case where the last transition rule applied in α is (in the

form of) g(〈q′1, x′1, u′
1〉, . . . , 〈q′m, x′m, u′

m〉) → 〈q′, x′, u′〉 ∈ Δk. Then α can be
represented as s[〈q, x, u〉]p ∗−−→

Δk
g(〈q′1, x′1, u′

1〉, . . . , 〈q′m, x′m, u′
m〉) −−→Δk

〈q′, x′, u′〉.
Let p = jp′ for some j ∈ N.
If k = 0, then the rule g(〈q′1, x′1, u′

1〉, . . . , 〈q′m, x′m, u′
m〉)→ 〈q, x′, u〉 is introduced

at (b) or (c) of Step 1 (2). Thus for any u′′
j ∈ QNF, there exists u′′ ∈ QNF such

that g(〈q′1, x′1, u′
1〉, . . . , 〈q′j , x′j , u′′

j 〉, . . . , 〈q′n, x′n, u′
n〉) → 〈q, x, u′′〉 ∈ Δ0 by the

completeness of ANF. Hence this lemma holds by the induction hypothesis.
Consider the case of k �= 0 and u ∈ QNF \Qf

NF ∧ x = x′ = a ∧ p ∈ Posμ(s). In
this case, j is in μ(g) from p ∈ Posμ(s), and we have x′j = a from x′ = a

and Proposition 12. From αj : (s|j)[〈q, a, u〉]p′ ∗−−→
Δk

〈q′j , x′j , u′
j〉, we have

(s|j)[〈q, a, v〉]p′ ∗−−→
Δk
〈q′j , a, v′

j〉 for some v′
j ∈ QNF by the induction hypoth-

esis. Note that u′
j �∈ Qf

NF from u �∈ Qf
NF and Lemma 17. Thus we have

s[〈q, a, v〉]p ∗−−→
Δk

g(. . . , 〈q′j , a, v′
j〉, . . .).

( a ) If the transition rule in the last step of α 〈q′j , a, v′
j〉, . . .)→ 〈q′, a, v′〉 ∈ Δ0

from the construction, where v′ is determined by g(. . . , u′
i−1, v

′
j , u

′
i+1, . . .)→

v′ ∈ ΔNF.
( b ) Otherwise we assume that the transition rule in the last step of α is in Δk\

Δk−1 without loss of generality. It is known that the rule is produced by the
first inference rule of Step 2. Hence there exist f(l1, . . . , ln)→ g(r1, . . . , rm) ∈
R and f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) → 〈q′, a, u′′〉 ∈ Δk−1 where ui ∈ Qf

NF

or xi = i for all 1 ≤ i ≤ n, and θ : X → Q∗ such that liθ
∗−−→
Δk
〈qi, xi, ui〉 for

all 1 ≤ i ≤ n where rjθ = 〈q′′j , x′′
j , u′′

j 〉 for each rj ∈ X.
In the subcase rj �∈ X, we have g(. . . , 〈q′j , a, v′

j〉, . . .)→ 〈q′, a, v′〉 ∈ Δk\Δk−1

where q′j = qrj for some v′ ∈ QNF.
In the remaining subcase rj ∈ X, we have li|p′ = rj for some i and p′. In
this case, we have x′′j = i; otherwise we have u′

j = u′′
j from j ∈ μ(g) and

xi = a from liθ
∗−−→
Δk
〈qi, xi, ui〉 and Proposition 12. Hence we have ui ∈ Qf

NF.
Then we have u′′

j ∈ Qf
NF from Lemma 17. This contradicts u′

j = u′′
j and
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u′
j �∈ Qf

NF. Since rj ∈ X, j ∈ μ(g), and x′′j = i, we have g(. . . , 〈q′j , a, v′
j〉,

. . .)→ 〈q′, a, v′〉 ∈ Δk \Δk−1 for some v′ ∈ QNF from the construction.
( 2 ) In the case where the last transition rule applied in α is (in the form of)
〈q′, x′, u′〉 → 〈q, x, u〉 ∈ Δk, we have u′ = u from the construction of Δ0 or the
second inference rule of Step 2. Hence this lemma holds from the induction
hypothesis.

�

Lemma 20 If α : t[t′]p ∗−−→
Δk
〈q, a, u〉 and p ∈ Posμ(t), then there exists 〈q′, a, u′〉

such that t′ ∗−−→
Δk
〈q′, a, u′〉 and t[〈q′, a, u′〉]p ∗−−→

Δk
〈q, a, u〉.

Proof: We show the lemma by induction on |α|.
( 1 ) If |α| = 0, then we have p = ε and t = t′. Hence t′ ∗−−→

Δk
〈q, a, u〉.

( 2 ) In the case of |α| > 0, we have p = ip′ for some i ∈ N. Then α can
be represented as t[t′]p = f(. . . , ti[t′]p′ , . . .) |α|−1−−−−→

Δk

f(. . . , 〈qi, xi, ui〉, . . .) −−→
Δk

〈q, a, u〉. Since ip′ = p ∈ Posμ(t), we have i ∈ μ(f). Hence xi = a follows from
the construction of Δk.
By the induction hypothesis, there exists 〈q′, a, u′〉 such that t′ ∗−−→

Δk

〈q′, a, u′〉 and ti[〈q′, a, u′〉]p′ ∗−−→
Δk

〈qi, a, ui〉. Thus we have t[〈q′, a, u′〉]p =
f(. . . , ti[〈q′, a, u′〉]p′ , . . .) ∗−−→

Δk
f(. . . , 〈qi, a, ui〉, . . .) −−→

Δk
〈q, a, u〉.

�

Lemma 21 Let R be left-linear and right-shallow. Then s ∗−−→
Δ∗
〈q, a, u〉 and

s
∗↪−→R in t imply t ∗−−→

Δ∗
〈q, a, u′〉 for some u′ ∈ QNF.

Proof: We present the proof in the case where s ↪−→R in t, because the one in the
case of s = t is trivial, and the one in the case of s

n↪−→R in t for n > 1 is given by
applying the case of n = 1 repeatedly. Let s ∗−−→

Δk
〈q, a, u〉 and s = s[lσ]p ↪−→

R in

s[rσ]p = t for some rewrite rule l → r ∈ R, where p ∈ Posμ(s). Then we have
the transition sequence s ∗−−→

Δk
s[〈q′′, a, u′′〉]p ∗−−→

Δk
〈q, a, u〉 by Lemma 20.

( 1 ) Consider the case where the rewrite rule is in the form f(l1, . . . , ln) →
g(r1, . . . , rm). The diagram of this case is shown in Fig. 2. Then we have s =
s[f(l1, . . . , ln)σ]p ↪−→R in s[g(r1, . . . , rm)σ]p = t, and thus liσ is a context-sensitive
normal form for each i ∈ μ(f). Since this rewrite rule is left-linear, s ∗−−→

Δk

Fig. 2 The diagram of the proof of Lemma 21.

〈q, a, u〉 is represented as s = s[f(l1, . . . , ln)σ]p
∗−−→
Δk

s[f(l1, . . . , ln)θ]p
∗−−→
Δk

s[f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉)]p −−→Δk
s[〈q′′, a, u′′〉]p ∗−−→

Δk
〈q, a, u〉 for some

θ : X → Q∗ such that liσ
∗−−→
Δk

liθ
∗−−→
Δk
〈qi, xi, ui〉. Note that u′′ �∈ Qf

NF

since s|p is not a context-sensitive normal form.
For i ∈ μ(f), liσ is a context-sensitive normal form and hence we have uj ∈
Qf

NF. For i such that i �∈ μ(f), we have xi = i or uj ∈ Qf
NF from Lemma 18.

Let rjθ = 〈q′′j , x′′j , u′′
j 〉 for each rj ∈ X. Then, we have rjσ

∗−−→
Δk

rjθ if rj ∈ X.
Since f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R, f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) →
〈q′′, a, u′′〉 ∈ Δk where ui ∈ Qf

NF or xi = i, and θ such that liθ
∗−−→
Δk
〈qi, xi, ui〉,

there exist transition rules g(〈q′1, x′1, u′
1〉, . . . , 〈q′m, x′m, u′

m〉)→ 〈q′′, a, v′〉 ∈ Δk+1

where

• q′j =

{
q′′j · · · if rj ∈ X

qrj · · · if rj �∈ X

• x′j =

⎧⎪⎨
⎪⎩

x′′j · · · if j �∈ μ(g), rj ∈ X

i · · · if j �∈ μ(g), rj �∈ X

a · · · otherwise

• u′
j =

{
u′′

j · · · if rj ∈ X, j �∈ μ(g) ∨ (j ∈ μ(g) ∧ x′′
j = a)

v ∈ QNF · · · otherwise
• g(u′

i, . . . , u
′
m) −−−→

ΔNF
v′.

Now we show that rjσ
∗−−→
Δk
〈q′j , x′j , u′

j〉.
( a ) For j such that rj ∈ X, since we have q′j = q′′j and since we can take

u′
j = u′′

j , we have rjσ
∗−−→
Δk

rjθ = 〈q′j , x′′j , u′
j〉. If x′j �= x′′j then x′j = a and

x′′j = i. Thus we obtain rjσ
∗−−→
Δk
〈q′j , x′j , u′

j〉 by Proposition 15.
( b ) For j such that rj �∈ X, we have q′j = qrj and rjσ = rj since R is right-
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shallow. And then we can take arbitrary state in QNF as u′
j . Since rj

∗−−−→
ΔRS

qrj ,a we have rj
∗−−→
Δ0
〈qrj , i, v′′〉 for some v′′ ∈ QNF from Proposition 11

(a). Since we also have rj
∗−−→
Δ0
〈qrj , a, v′′〉 by Proposition 15, we obtain

rjσ = rj
∗−−→
Δk
〈qrj , x′j , v

′′〉 = 〈q′j , x′j , u′
j〉 where u′

j = v′′.
It follows from Lemma 19 and s[〈q′′, a, u′′〉]p ∗−−→

Δk
〈q, a, u〉 with u′′ �∈ Qf

NF

that s[〈q′′, a, v′〉]p ∗−−→
Δk

〈q, a, u′〉 for some u′ ∈ QNF. Therefore we
have t = s[g(r1, . . . , rm)σ]p ∗−−→

Δk
s[g(〈q′1, x′1, u′

1〉, . . . , 〈q′m, x′m, u′
m〉)]p −−−→Δk+1

s[
〈q′′, a, v′〉]p ∗−−→

Δk
〈q, a, u′〉.

( 2 ) In the case that the rewrite rule is in the form f(l1, . . . , ln) → x, we can
show the lemma similarly to the previous case (1). �

Lemma 22 Let R be left-linear and right-shallow. Then L(A∗) ⊇ ↪−→
R in[L(A)].

Proof: Let s
∗↪−→
R in t and s ∗−→

Δ
q ∈ Qf . Since s ∗−−→

Δ0
〈q, i, u〉 ∈ Qf

∗ from
Proposition 11 (a), we have s ∗−−→

Δ0
〈q, a, u〉 ∈ Qf

∗ by Proposition 15. Hence
t ∗−−→

Δ∗
〈q, a, u′〉 ∈ Qf

∗ for some u′ ∈ QNF by Lemma 21. �
Before proving soundness of the procedure Pcsin, we define a measurement of

transitions.
A measurement of transitions of Δ∗ is defined as ||s −−→

Δ0
t|| = 0 and ||s −−−−−−→

Δi+1\Δi

t|| = i + 1 for i ≥ 0. This is extended on transition sequences as a multiset:
||s0 −−→Δ∗

s1 −−→Δ∗
· · · −−→

Δ∗
sn+1|| = {||si −−→Δ∗

si+1|| | 0 ≤ i < n}.
Now we can define the following order � on transition sequences by Δ∗, which
is necessary in proofs:

α � β
def⇔ ||α|| >mul ||β||

where >mul is the multiset extension of > on N.

Lemma 23 Let Δ∗ be generated from a linear right-shallow CS-TRS R. Then
α : t ∗−−→

Δ∗
〈q, x, u′〉 implies s

∗↪−→R in t and β : s ∗−−→
Δ0
〈q, x, u〉 for some term s and

u ∈ QNF.

Proof: Let t = g(t1, . . . , tm). We show this lemma by induction on ||α|| with
respect to �.
( 1 ) Consider the case where the last transition rule applied in α is in the form
of g(〈q′1, x′1, u′

1〉, . . . , 〈q′m, x′m, u′
m〉)→ 〈q, x, u′〉 ∈ Δk. Let αj : tj

∗−−→
Δ∗
〈q′j , x′j , u′

j〉.

Fig. 3 The diagram of the proof of Lemma 23.

( a ) In the subcase k = 0, if x = i, then we have t ∗−−→
Δ0
〈q, x, u′〉 from Proposi-

tion 13. Hence this lemma holds by letting s = t. If x = a, then there exists sj

such that sj
∗↪−→R in tj and sj

∗−−→
Δ0
〈q′j , x′j , v′

j〉 for each j ∈ μ(g) from the induction
hypothesis and we take sj = tj and v′

j = u′
j for each j �∈ μ(g). Then we have

g(s1, . . . , sm) ∗−−→
Δ0

g(〈q′1, x′1, v′
1〉, . . . , 〈q′m, x′m, v′

m〉). We have no j that satisfies
both j �∈ μ(g) and x′j = a, since j ∈ μ(g) coincides with x′j = a from the con-
struction of Δ0. We also have sj

∗−−→
Δ0
〈q′j , x′j , v′

j〉 = 〈q′j , i, v′
j〉 for j �∈ μ(g) from

Proposition 13. Thus we have the transition g(〈q′1, x′1, v′
1〉, . . . , 〈q′m, x′m, v′

m〉)
−−→
Δ0
〈q, a, v〉 from the construction of Δ0. Therefore the claim holds by letting

s = g(s1, . . . , sm).
( b ) In the subcase k > 0, we assume that the transition rule in the last step of

α is in Δk\Δk−1 without loss of generality. The diagram of this case is shown
in Fig. 3. Since this rule is introduced at Step 2, there exist f(l1, . . . , ln) →
g(r1, . . . , rm) ∈ R, f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) → 〈q, a, v〉 ∈ Δk−1 where
ui ∈ Qf

NF or xi = i for all 1 ≤ i ≤ n, and θ : X → Q∗ such that
• L(Δk−1, xθ) �= ∅ for all x ∈ Var(f(l1, . . . , ln)),
• liθ

∗−−−→
Δk−1

〈qi, xi, ui〉,
• L(Δ0, xθ) �= ∅ for each erasing variable x,

and 〈q′j , x′j , u′
j〉 is given as follows:
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• q′j =

{
q′′j · · · if rj ∈ X

qrj · · · if rj �∈ X

• x′j =

⎧⎪⎨
⎪⎩

x′′j · · · if j �∈ μ(g), rj ∈ X

i · · · if j �∈ μ(g), rj �∈ X

a · · · otherwise

• u′
j =

{
u′′

j · · · if rj ∈ X, j �∈ μ(g) ∨ (j ∈ μ(g) ∧ x′′
j = a)

v ∈ QNF · · · otherwise

where rjθ = 〈q′′j , x′′
j , u′′

j 〉 for rj ∈ X.
The following (i) – (iv) show that for each j, there exists sj such that sj

∗↪−→R in tj ,
sj

∗−−→
Δ∗

rjθ and α′
j : sj

∗−−→
Δ∗
〈q′j , x′j , v′

j〉 with αj � α′
j for some v′

j ∈ QNF.
( i ) For j such that rj ∈ X and j �∈ μ(g) ∨ (j ∈ μ(g) ∧ x′′j = a), we have

tj
∗−−→
Δ∗
〈q′j , x′j , u′

j〉 = 〈q′′j , x′′j , u′′
j 〉 = rjθ. We take tj as sj and v′

j as u′
j = u′′

j .
( ii ) For j ∈ μ(g) such that rj ∈ X and x′′j = i, we have sj

∗−−→
Δ0
〈q′j , x′j , v′

j〉 =
〈q′′j , a, v′

j〉 and sj
∗↪−→R in tj for some v′

j ∈ QNF from the induction hypothesis.
Since L(Δk−1, rjθ) �= ∅, we have a term s′′j such that s′′j

∗−−→
Δ∗
〈q′′j , i, u′′

j 〉 = rjθ.
Then we have s′′j

∗−−→
Δ0
〈q′′j , i, u′′

j 〉 from Proposition 13 and sj
∗−−→
Δ0
〈q′′j , i, v′

j〉
from Proposition 14. Hence we have sj = s′′j from Lemma 16 and u′′

j = v′
j

from determinacy of ΔNF. Thus we have sj
∗−−→
Δ∗

rjθ = 〈q′j , x′j , v′
j〉.

( iii ) For j �∈ μ(g) such that rj �∈ X, we have q′j = qrj and x′
j = i, and u′

j

is an arbitrary state in QNF. Since tj
∗−−→
Δ0
〈qrj , i, u′

j〉 by Proposition 13, we
have tj = rj from Proposition 11 (a) and the construction of ΔRS. Therefore
tj = rjθ follows from right-shallowness. We take sj as tj and v′

j as u′
j .

( iv ) For j ∈ μ(g) such that rj �∈ X, we have sj
∗↪−→R in tj and sj

∗−−→
Δ0

〈q′j , x′j , v′
j〉 = 〈qrj , a, v′

j〉 for some v′
j ∈ QNF from the induction hypothesis.

Since sj
∗−−→
Δ0
〈qrj , i, v′

j〉 by Proposition 14, we have sj = rj from Proposi-
tion 11 (a) and the construction of ΔRS. Therefore sj = rjθ follows from
right-shallowness.

Thus we have g(s1, . . . , sm) ∗↪−→R in g(t1, . . . , tm), α′ : g(s1, . . . , sm) ∗−−→
Δ∗

g(r1θ, . . . , rmθ) ∗−−→
Δ∗

g(〈q′1, x′1, v′
1〉, . . . , 〈q′m, x′m, v′

m〉) such that α � α′. From
the construction of Δ∗, we also have g(〈q′1, x′1, v′

1〉, . . . , 〈q′m, x′m, v′
m〉) ∗−−→

Δk

〈q, a, v′〉.

We define a substitution σ : Var(f(l1, . . . , ln)) → T (F ) as follows:

xσ =

{
sj · · · if there exists j such that rj = x

s′ · · · otherwise, choose an arbitrary t′ such that t′ ∗−−→
Δ0

xθ

where σ is well-defined from the right-linearity of rewrite rules.
We can construct β : f(l1, . . . , ln)σ ∗−−→

Δ∗
f(l1, . . . , ln)θ ∗−−−→

Δk−1

f(〈q1, x1, u1〉, . . . , 〈qn, xn, un〉) −−−→Δk−1
〈q, a, v〉.

Since ui ∈ Qf
NF or xi = i, liσ is a normal form or i �∈ μ(f) for each

i. Hence we have f(l1, . . . , ln)σ ↪−→R in g(r1, . . . , rm)σ = g(s1, . . . , sm). Here
α � α′ � β follows from the left-linearity of rewrite rules. Hence we
have s

∗↪−→R in f(l1, . . . , ln)σ ↪−→R in g(s1, . . . , sm) ∗↪−→R in g(t1, . . . , tm) = t and
s ∗−−→

Δ0
〈q, a, u〉 for some u by the induction hypothesis.

( 2 ) For the case where the transition rule applied last in α is (in the form of)
〈q′, x, u′′〉 → 〈q, x, u′〉 ∈ Δk \ Δk−1, the lemma can be shown similarly to the
previous case (1).

�

Lemma 24 If R be linear and right-shallow, then L(A∗) ⊆ ↪−→R in[L(A)].

Proof: Let t ∗−−→
Δ∗
〈q, x, u′〉 ∈ Qf

∗ then we have s
∗↪−→R in t and s ∗−−→

Δ0
〈q, x, u〉 ∈ Qf

∗
by Lemma 23. Since s ∗−−→

Δ0
〈q, i, u〉 by Proposition 14, we have s ∗−→

Δ
q ∈ Qf by

Proposition 11 (a) and the construction of Δ0. �

Lemma 25 If R is linear and right-shallow, then L(A∗) = ↪−→R in[A]

Proof: By Lemma 22 and Lemma 24. �
Finally we obtain the following theorems.

Theorem 26 Context-sensitive innermost reachability is decidable for linear
right-shallow TRSs.

Proof: Let ground terms t1, t2 and CS-TRS R be an instance of reachability
problem. We can construct a TA A such that L(A) = {t1} where t1 is ground
term and if t → q ∈ Δ and t′ → q ∈ Δ then t = t′. By Pcsin, we can construct
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a TA A∗ such that L(A∗) = ↪−→R in[{t1}] from Lemma 25. Since the problem
whether t2 ∈ L(A∗) or not is decidable from Theorem 2, whether t1 is reachable
to t2 by R or not is also decidable. �

Theorem 27 Context-sensitive innermost joinability is decidable for linear
right-shallow TRSs.

Proof: Let ground terms t1, t2 and CS-TRS R be an instance of joinabil-
ity problem. We can construct TAs A1 and A2 such that L(A1) = {t1} and
L(A2) = {t2}, and output A1

∗ and A2
∗ by Pcsin, such that L(A1

∗) = ↪−→R in[{t1}],
L(A2

∗) = ↪−→R in[{t2}] from Lemma 25. We can construct the TA A such that
L(A) = L(A1

∗) ∩ L(A2
∗), and it is decidable whether L(A) is empty or not from

Theorem 2 (3). �

6. Conclusion

In this paper, we proved that context-sensitive innermost reachability and
context-sensitive innermost joinability are decidable for linear right-shallow
TRSs.

One of the future works is to show regularity preservation that is more power-
ful property than reachability and joinability. We say the relation → preserves
regularity if we can construct a TA A∗ such that L(A∗) = →[L(A)] for any TA
A. To adjust Pcsin for regularity preservation, one of possible way is modifying
the third component of the states that occur in rj ∈ X such that rj ∈ Var(l),
rj �∈ Posμ(l), and rj ∈ Posμ(g(r1, . . . , rm)) for l → g(r1, . . . , rm) ∈ R. In this
paper, the third component of such states is arbitrary u ∈ QNF, but we must
have some restriction to u. We think it may be complex.

Another future work is to find other subclasses that context-sensitive inner-
most reachability is decidable. The class of non-linear shallow TRSs is one of
candidates, because reachability and joinability of that class are undecidable for
normal TRS7),10), while they are decidable in innermost case5).
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