A Systematic Code for Non-Independent Errors

TADAO KASAMI*

1. Abstract

A class of systematic codes is described; these codes are designed to
correct every burst of length no greater than 8. It is shown that the
codes considered are highly efficient. A pair of linear feedback shift
registers may be used for the purpose of constructing this class of codes.

Let the code length and the number of check digits be denoted by =
and m, respectively. Then for an even number m, the complete codes
are given whose parity-check matrices are formed by using two sequences
of the following type: the maximum-length sequence of period 3 and a
suitable maximum-length sequence of period 27-2—1. A simplified test
for determing whether a particular choice of the maximum-length sequence
is suitable or not is devised. Two examples of codes are illustrated.

For an odd number m, a similar method is proposed which permits the
systematic construction of codes. For example, this method yields a
(27, 20) code and a (121, 112) code, both of which are more efficient than
the respective Reiger code® and are as easily realized by electronic
devices.

2. Construction of the Complete Codes with Even m

Let us designate the codes which correct every burst of length no
greater than 3 as (n, k); code. Here & denotes the number of infor-
mation digits. In this section, for example, the double error in the
first and last positions will be regarded as a burst of length 2. For
such (», k); codes, the following relation is known:

Nt =gm-2 ] (1)

If the equality holds in (1), the code is called a complete (n, k); code.
Assume that m is an even integer, and we put

m=2p.
Since
2m-2_1=(27"141)(2"*—-1),
we have
2m-2_1=0 (mod. 3). (2)
Let (8o, By, +++, Bem—2_5) be a binary maximum-length sequence of period
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9m-2__1 which satisfies the recurrence relation,

m—2

jgo ¢,;8,-,=0.
Then the characteristic polynomial ¢é(x) is defined by

m—2

$o)= 2 pus

Now, let us write

; ﬁj
483'1»1 .

Bj= y .7:07 17 .._,zm—Z_z;
18j+m—3

B:(Bov Bl: "'7B2m'2—2)' (3)

As is well known, there exist the integers di;, dy;, dy;; such that
Bj+Bj+1:Bj+du ’
Bj+Bj+2:Bj+dml )
Bj+Bj+1‘|‘Bj+2:Bj+dm ’
0<j<n—1; 0<dy, diy, dy<n—1.
A simple consideration shows that
dyo1=2d, (mod. 2"72—1).
Now, from the maximum-length sequence of period 3, (1,1,0), with

the characteristic polynomial 1422, we shall form the 2x(2"%—1)
matrix such that

And let us write

Then, the following lemma is obtained.

Lemma 1: A code whose parity-check matrix has the from A is a

(2n-2—1, 2" *—m—1), code, if and only if
dy =2 (mod. 3).

For example, consider the maximum-length sequence (0,1,1,1,1,0,1,
0,1,1,0,0,1,0,0,) of period 15 with the characteristic polynomial 1428
+2* Then, we have

dy =12,

Hence, from Lemma 1 a (15, 9), code is obtained by using this maximum-
length sequence. Similarly, a (63, 57), code is derived from the maximum-
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length sequence of period 63 with the characteristic polynomial 1-fx-z°,
These codes have been found independently by Melas®.

3. Construction of the Codes with Odd m

Now, assume that m is an odd integer. Then, since Relation (2) does
not hold, the approach stated in Section 2 does not apply to this case.

Let B’ denote an (m—2)Xn minor matrix of B defined by (3), and let
C’ denote the 2X 7 matrix such that

010
( ..... >:C/,

’ B,
A:<O>‘
Then, » is determined by the following lemma.

Lemma 2: The necessary and sufficient condition that a code whose
parity-check matrix has the form A’ shall be an (n, n—m), code is as
follows :

If dy; 18 even,

Let us write

n<2m 4+ 1—d,y,,
and if d,;; is odd,
n < diyy .

By d/;;,, we shall mean d,;; of the reverse sequence with the charac-
teristic polynomial «™ *¢(x"). It is easily shown that if d,;;, is odd, d/,
is even.

Consequently, it is sufficient to consider only the case where d,,; is
even. Thus, from Lemma 2, it follows that ¢(x) is to be chosen so that
dy; is even and is as small as possible.

Since d;;;>m—2 and m is odd, we have

dlll Z m_l .

Hence, if dyy=m—1, n(=2""2+1-d,;,) takes the maximum value. If
the polynomial '

@)= '+ +x+1)(x+1)?

is a maximal-period polynomial, it follows immediately from the defini-
tion of d,;; that

d111 = m_l .
For examples, consider the polynomials

A+z+2*+25(1+2) '=1+2+ 2+t +2°,
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A+z+2*+2)A+x) =142+’ a2’ + ot 42" .

These are maximal-period polynomials. Consequently, from Lemma 2 we
obtain a (27, 20), code and a (121, 112), code, which are more efficient
than the respective Reiger code.

The codes stated in Sections 2 and 8 can be implemented easily by
employing linear feedback shift-registers and decoding operations are
straightforward.
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