Information Processing in Japan Vol. 3, 1963

Problems of Storage Allocation

AKIHIRO NOZAKI*

It is well known that ALGOL 60 language provides a number of new
programming techniques such as block nesting, dynamic declaration and
recursive calling.

These techniques, however, comprise new difficulties for the compilers,
especially for the storage allocating routine. In fact, no final solution
has been proposed till now. ,

In this paper the characteristic features of the above three techniques
are described. A new method is proposed for the allocation of the local
and static variables.

1. Terminology

In this paper the variables are defined to include:

(1) simple variables;
(2) arrays;
(8) control words associated with arrays.

We call the variables static when their “gizes” are not changed in the
computing stage. For instance, any simple variable is static. Non-static
variables are called to be dynamzic.

Strictly speaking, it is not at all easy to discriminate between static
and dynamic. It may possibly be one practical resolution to take the all
arrays as dynamic.

Own type variables are called to be global. Other variables are called
to be local. Control words associated with local arrays are also local.
Constant numbers can be regarded as static and global.

2. Block Nesting

Block nesting has evidently no influence on the global variables. On
the other hand, it is the question how to pack the local variables with
disjoint scopes into a limited memory area.

As for the local and static variables, the following method is well
known (cf. [5], [6]).

Let I, be a simple variable which belongs to the system program and
indicates the address of the first usable storage cell in the memory area

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Pro-
cessing Society of Japan), Vol. 8, No. 6 (1962), pp. 312-318.
* College of General Education, University of Tokyo.

44



PROBLEMS OF STORAGE ALLOCATION 45

reserved for the local and static variables.

Every local and static variable A is allocated between I, and I,+n—1
where n denotes the size of A. After this allocation the value of I, is
increased by #.

On entering to a block B in the compiling stage, the compiler stores
the value of I, in a push-down storage. This value is restored on the
exit from B so that the memory area allocated to the variables in B
might be released.

No additional operations are executed in the computing stage.

For the loecal and dynamic variables, a separate area should be re-
served. Allocation schemes will be discussed in the next section.

3. Dynamic Allocation

As for the local and dynamic variables, the allocotion can be executed
in the analogous way using a simple variable L, in the computing stage.

A serious problem, however, arises concerning to the restoring opera-
tion of L,. In the computing time, there are abnormal exits by GO TO
statements which may skip many END’s instantaneously. Therefore the
administration of GO TO statements has been proposed (ef. [4]), by which
the destination of every GO TO statement is examined in the computing
stage so as to restore the value of L, properly.

Unfortunately, such the administration can not help consuming very
much time. At this point, the following new method is preferable.

Predecessor method
Now let fix an arbitrary program /I and consider the blocks contained
in it.
Lemma 1. For any blocks B and B’:
B~B'x¢ == BDOB or BCDB.

Lemma 2. For every block B, a set of blocks
A(B)={D; DDOB, D= B}

forms a finite well-ordered set with respect to .
P(B)::=(the smallest block of A(B))
P(B) is called the predecessor of B.
Note that (I =¢. (P(IT) is undefined.)

Definition.
Now we can describe the principle of the Predecessor Method.

(1) To each block B, a simple variable L, is attached.
L, plays the same role as [, in allocating the variables declared in B.



46 A. NOZAKT

(2) On entering to a block B in the computing stage, the value of L,
is generally initialized as follows.
Ly=Lpg,.

If B=1II then Ly=L,,
where L, is a certain constant.

If the block B happens to be an entire procedure, then L, =L, where
B’ is the block which contains the procedure statement calling B at that
moment.

The value of Lz will be delivered to B as one of the program param-
eters.

(3) Every local and dynamic variable V declared in B is allocated be-
tween L, and L,+n—1, where % denotes the total size of V. After this
allocation, the value of L, is increased by .

No other operations are executed even on exits.

The wvalidity of this method is easily ascertained by the following
statements.

Lemma 3. Let B be a block which is now in execution. Then any
variable V declared in a block D is accessible if and only if D=B or
DeAB).

Theorem. All the accessible variables are allocated between L, and L,—1,
where B is the block now in execution.

The above area is completely occupied by only the accessible variables.
These statements are easily proved using the concept of the scopes (cf.
[1], 4. 3. 4).

Global and dynamic variables

The global and dynamic variables comprise a different kind of difficul-
ties. For example, they require rearrangements of their elements (cf.
[2]). Though such a rearrangement is very complicated, a precise de-
scription is shown in [3].

4. Recursive Calling

When a procedure P is called recursively, the variables in P should
be declared doubly and have more than two storage areas. Therefore it
is indispensable to discuss the address reference scheme as well as the
storage allocation scheme.

The allocation scheme is also affected. As a matter of fact, recursive
calling violates the concept of the scopes cooperating with the call-by-
name parameters. Therefore the main theorem in §8 does not hold any
more without relevant alternation.

Inevitably, discussion on these points will become delicate and com-



PROBLEMS OF STORAGE ALLOCATION 47

plicated. So we would like to note here only that the Predecessor
Method is still available in principle. Further discussion will be found
in a subsequent paper.

(1]
£zl

£3]
[4]

L5]
[6]

References

NAUR, P. (editor), Report on the algorithmic language ALGOL 60. Communications
of the Association for Computing Machinery, 8, 5 (1960), 299-314.

SATTLEY, K., Allocation of Storage for Arrays in ALGOL 60. Communications of
the Association for Computing Machinery, 4, 1 (1961), 60-65.

INGERMAN, P. Z., Dynamic Allocation. Ibid., 65-69.

JENSEN, J., et al.,, A Storage Allocation Scheme for ALGOL 60. Communications of
the Association for Computing Machinery, 4, 10 (1961), 441-445.

INoUE, K., et al., ALGOL Syntax and Array Declarations (in Japanese). Preprint for
the National Congress of Information Precessino Society of Japan, 1961,

Nozaxi, A., Automatic Programming, II (in Japanese). Electrical Communication
Laboratory Report, No. 1802 (1962).



