Information Processing in Japan Vol. 3, 1963

On the Logical Schemes of Algorithms

SHIGERU IGARASHI*

We have Yu. I. Yanov’s study based on the concept of logical schemes
of algorithms [1] as a pioneering work in the theoretical approach to
computer programs. An improvement of Yanov’s formulation will be
intended in section 1, and the logical schemes will be redefined so that
the logical schemes in Yonov’s sense will be contained as a special case
of them.' In section 2, the equivalence problem of these schemes will be
shown reducible to that of finite automata, and then an algorithm to
discriminate the equivalence by a computer-oriented procedure will be
given,

1. Logical Schemes of Algm"it_kms with the Implicit and the Explicit
Operators

Let us base the following analysis on the matricial scheme for the con-
venience of description. Firstly we consider a finite set of points x,, - -,
%,, which will simplify the treatment of the multiple occurrence of an
operator in the same scheme. (See [1] for the terminology.)

With each point «; is associated one of the (¢mplicit) operator symbols
Ay, Ay, ---. Symbols or expressions associated with the point z, shall be
marked by the subscription x; hereafter, so that the operator correspond- -
ing to x, shall be denoted by 4.. A, and A,; may be the same. Secondly
we consider the external (logical) variables py, ---, p, and the internal
(logical) variables ¢, -+, q,.

The former are treated as the information source so that they are to
represent the indefinite changes of the information that will occur in
computer programs such as of the values of the logical, or Boolean,
variables and expressions, containing those in ALGOL’s sense induced by
arithmetic operations as well as by input-outputs. The latter are treated
as the logical variables or expressions which can be memorized and trans-
formed by the program so that it will represent Boolean variables and
expressions and switch variables in ALGOL’s sense.

Besides the implicit operator symbols, to each point is attached an ex-
plicit operator F, which can be written as

(qgr"ﬁ qg)zeL(pl,"', Dy QI""QS)° (1)

This paper first appeared in Japanese in Joho Shori (the Journal of the Information Process-
ing Society of Japan), Vol. 3, No. 2 (1962), pp. 66-72.
* Faculty of Engineering, University of Tokyo.

12

ON THE LOGICAL SCHEMES OF ALGORITHMS 13

Namely we assume that by the execution of F,, the values of the' in-
ternal variables change depending on both the external and the internal
variables. It must be noted that there remains the possibiliy of indef-
inite changes of the values of the internal variables because of the
indefiniteness of the values of the exteanal variables, though the map-
ping F,, is definite.

The matrixz representing the connective property represents the connec-
tion among the points so that it shall be denoted by (a..;, where a,.;
is a logical function depending at most on the internal variables ¢4, - - +¢,,
not on any of the external variables. The following relationship (2) is
supposed for the process of execution to be well-defied.

V Gy =1 (i=1, -+,),
J=1

The entrance and the exit of the scheme need not be defined separately,
because we have only to consider additional points representing them if
necessary.

Definition 1. By a logical scheme of algorithms with the implicit and
the explicit operators, or a logical scheme, for the simplicity, is meant
what is defined as the above. It must be mentioned that the concept of
shift distribution is not employed in our formulation because it can be
regarded as a special case of the explicit operators. (See [1].) In this
sense Yanov’s model and also his suggested model are contained in our
model. Therefore the equivalence of the schemes will be defined in such
a manner that Yanov’s formulation is extended, which will be done in
the following manner. (See the Introduction of [1].)

A sequence of assignments is an infinite sequence of assignments of
values to the external variables p,, - --, »,, corresponding to the thought
that the essential information given to the program is carried by them.
Before defining the process and the values of the scheme, we need some
consideration. Firstly, the process will depend not only on the beginning
point of the execution but also on the initial values of the internal
variables. Therefore we consider the pair (z, &) of a point and an
assignment of values to the internal variables, which shall be termed an
wnitial condition. Secondly, as regards the value of the scheme it is
not adequate to consider only the sequence of the operator symbols. For,
on one hand, the changes of values of the internal wvariables must be
considered as essential to our problem when the original program (before
abstraction) is to handle the logical or Boolean variables. On the other
hand, the values of the variable corresponding to the expessions associated
with the conditional branches (i.e. conditional go to statements) and of
-those variables which .are used only as the parameters of the program

14 S. IGARASHI

such as switch variables, working storages, and ete. will not be essential
to our problem. Thus we shall call some of the internal variables the
significant variables, whose values together with the sequence of the
operator symbols are to define the value of the scheme. We shall assume
that q,, -+ -, ¢, (0<h<s) are significant, hereater.

Definition 2. The process of carrying out the scheme with the initial
condition (x, @) for the sequence of assignments &:

PL P ... Pl ... (3)

is defined by induction as follows.
First step: Let us write the pair (¢, @) and the pair (4,, @) as the
first elements of the two lines (4) and (5), where @ denotes the values

of the significant variables induced by Q. If the process has been done
up to the I-th step and as the consequence lines

(@', @), (% @), ---, (@', Q) (4)
and
(4,5, @Y, (A @), -+, (4,, @) (5)
have been written, then we compute
Q=F (P, @)

and determine «'*! by the relationship
amz$z+1(QH1)El .
(", Q) and (A4, Q") will be added to (4) and (5) respectively.

Definition 3. The sequence (5) shall be termed the value of the scheme
I with the initial condition (x, @) for the sequence of assignements &, and
be denoted by jw, (&), while the process of carrying out the scheme
shall be denoted by A, ¢,(¥).

In Yanov’s formulation the concept of permissible sequence was impor-
tant in the definition of the equivalence of the schemes. Therefore we
shall redefine it as follows. (See [1].)

Definition 4. A sequence of assignments (3) is termed a permissible
sequence if for any [, P! and P'*! coincide except for the values of those
external variables on which F'; depends actually.

Definition 5. Let .4 and B denote logical schemes of algorithms of »
external variabes and & significant variables (the number of the internal
variables may be different), and let ¢ denote a correspondence between
the sets of all the initial conditions of /4 and &%. Then 4 and B are
stated to be equivalent in ¢ if for any sequence of assignments & that
is permissible in 4 or B, g?w,Q)(.@) coincides with B, o(¥), where if

ON THE LOGICAL SCHEMES OF ALGORITHMS 15

é(x, Q) is many-valued we consider all the images to determine the equi-
valence. This definition comes from the following fact, though the word
“ permissible” becomes rather inadequate.

Proposition 1.* For any Yanov’s logical scheme of s logical variables
and any given sift distribution, we can construct a logical scheme of s
internal and s external variables that satisfies the condition: The per-
missible sequences for the former and for the latter are identical, and
the values of the both schemes coincide for each permissible sequence.

Proposition 2. Let 7 and $ denote logical schemes in Yanov’s sense,
and let 4* and B* denote the logical schemes constructed from ./ and
B respectively for a given shift distribution so as to satisfy the condi-
tion of proposition 1. Then .4 and 9 are equivalent in Yanov’s sense if
and only if 4* and $* are equivalent in ¢, which denotes the corres-
pondence of the beginning points of A* and B*.

The logical schemes of algorithms thus redefined are capable of de-
seribing the property of programs much better than Yanov’s schemes.
For example, the flow-diagram of 1(a) which can be represented by the
scheme graphically shown in Fig. 1(b), has a property that the loop

. g1 1220,
,[nter/orez‘az‘z‘on{

g2 y=0

Fig. 1 (a) Fig. 1 (b)
P uncerfaiﬂfg

g1 x=0,

Interp retalion {
g2 . y=0

-

1
gri QiAgV{giveIApy;
x=x+y (A) A

Is x20? 75—) ——

yes 96’5

Fig. 2 (a) Fig. 2 (b)

* The proofs of the propositions and also the detailed discussion will be found in [6].

16 S. IGARASHI

cannot be terminated unless it is not terminated after the first execution.
Fig. 2(a) is a flow-diagram containing an arithmetic operation whose
property can be represented by the scheme of Fig. 2(b). It must be
mentioned that any program that performs logical operations can com-
pletely be represented by our schemes.

2. Decision Procedure of the FEquivalence and the Reduction of the
Logical Schemes of Algorithms

It will be the first problem after formulating the model to find a pro-

cedure deciding, for given schemes ./ and & and a given correspondence

¢, whether] and & are equivalent in ¢ or are not. This problem can

be reduced to that of finite automata, which will be discussen in this
section. ‘

Definition 6. ([/] denotes a sequential machine that is constructed
from a logical scheme / as follows.

The set of states is the direct product of the set of points and the set
of assignments of values to the internal variables of .4 (thus the states
of JM[A] and the initial conditions of ./ are identical). The set of n-
puts is the set of assignments of values to the external variables of /.

With each state (, Q) is uniquely associated an output (4,, Q).

Proposition 3. The sequence of outputs of H[A] for the input se-
quence P starting from the state (z, Q) coincides with /., o,(P).

The above is obvious, but it is not apparent that the equivalence of ./
and B coincides with the equivalence of [] and M[B], because the
former depends only on those & that are permissible while the latter
depends on all . We proceed as follows.

Proposition 4. ‘For any scheme ./ and any initial condition (z, @), there
exists an equivalence relation ~ in the set of the sequence of assign-
ments satisfying the following relationships.

1) P~P implies A, 0,(P)= A, 0(P).
2) For any B, there is exactly one permissible sequence &% such that
PP,
Proposition 5. For the schemes ./ and & to be equivalent in ¢ it is

necessary and sufficient that for any sequence of assignments &, jw,g)(g’)
=Bz, (P)

Definition 7. For the sequential machines ¥ and JI and for a corre-
spondence ¢ between the sets of states of them, we write I = Jl if for
é,ny t such that ¢(s)=t, the output sequence of ¥ starting from the
state s and that of J] starting from ¢ for any input sequence coincide

ON THE LOGICAL SCHEMES OF ALGORITHMS 17
with each other.

Proposition 6. Schemes ./ and % are equivalent in ¢ if and only if
ML ATz M[PB], so that it is effectively decidable.)

E. F. Moore’s well-known method of determining the equivalence [2]
can be applied in principle. His method needs, however, a very large
number of steps, because it is based on the assumption that the internal
structure of the machines are unknown. Therefore it will be useful to
find a method determining the equivalence with the assumption that the
structure is known, for we always know the structure of the logical
schemes and therefore that of the corresponding machines.

Definition 8. Let s and ¢ denote one of the states of sequential ma-
chines ¥ and JI, then the pair (s, t) is stated to be apparently incompat-
wble if the outputs corresponding to them are different. By C[.9H, 1] is
denoted the precedence matrix representing the precedence relation < in
the set of all the pairs of states that are mot apparently incompatible
and a special element “!””, such that (s, t)<(s/, t') either if s=s’ and
t=t" or if there exists at least one input by which s and ¢ change into
s’ and ¢’ respectively. If the pair (s, t') is apparently incompatible and
the latter condition is satisfied, then we write (s, t)<!.

Proposition 7. Let C* denote the limit of the sequence
C, C*, C4=(Cz)2, 682(64)2’ cen,
and let X denote the precedence relation represented C*. Then M= Tl if
and only if for any s and ¢(s) the relationship (s, #(s)) X! does not hold. For
the proof it will suffice to notice that (s, ¢(s)) <! if and only if there is
some sequence such as (s, ¢(s)) <. - - <!, by the well-known property of preced-
ence matrices [5], so that if (s, ¢#(s)) X! is not the case, then for any
input sequence the output sequences starting from s and ¢(s) coincide.

The procedure given by proposition 7 is rapid in convergence and the
necessary size of the storage is moderate. Moreover, precedence or Boolean
matrices can eagily be handled by computers. Therefore this method
might be said more computer-oriented than those of M. C. Paull and S.
H. Unger [4], and of 8. Ginsburg [3].

The problem of reducing or simplifying a given logical scheme] de-
pends on the criterion of the simplicity. A solution to this problem will
be obtained by reconstructing a scheme from the minimal state machine
reduced from H[A], for which we can use the above method again as
follows.

Proposition 8. Let C*[%, H] denote the precedence matrix satisfying
the condition of proposition 7 for the same machine .. Then the states

18 S. IGARASHI

s and t are equivalent if and oly if not (s, t) X!, where X denotes the
precedence relation represented by C*[M, H]. It is well-known that the
minimal state machine or canonical form of 9 can be obtained simply
by superposing each equivalent class of the states of # [2].

It will surely be one of the proper theoretical approach to computer
programs, for which we have only a few examples yet, to check and
simplify them by the help of the theory of the logical schemes of algo-
rithms. Though a sufficient improvement of this kind of theoretical
approach to computer programs seems not to be easy, the present writer
considers that it is important and promising.

Acknowledgement

The writer sincerely acknowledges Professor S. Moriguti, and Professor
M. Takata, of the University of Tokyo for their suggestions.

References

[1] Yanov, Y. I., O logicheskikh skhemakh algoritmov. Problemy Kibernetiki, 1 (1958).
English edition: The logical schemes of algorithms. Problems of Cybernetics, 1
(1960), 82-140.

[2] Moorg, E. F., Gedanken-Experiments of sequential machines. Awutomata Studies,
Annals of Mathematics Studies. No. 34, Princeton University Press (1956), 129-153.

[8] GINSBURG, S., A technique for the reduction of a given sequential machine to a
minimal-state machine. IRE Trans. on Electric Computers, EC-8, 8 (Sept. 1951),
346-355.

[47 PaurLr, M. C. anp S. H. UNGER, Minimizing the number of states in incompletely
specified sequential switching functions. IRE Trans. on Electric Computers, EC-8, 3
(Sept. 1959) 346-367.

[5] PROSSER, R. T., Applications of boolean matrices to the analysis of flow diagrams.
Proc. of EJCC, 1959, 133-138.

[6] Icarasui, S., Contributions to the theory of computer programs. Dissertation for
the Master’s Degree submitted to the University of Tokyo, 1962.

