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A Stabilizing Device for Unstable Numerical Solutions of
Ordinary Differential Equations —Design Principle
and Application of a “ Filter”

MAsao IRr1*

Introduction

Numerical instability has been counted as a great disadvantage of
those numerical methods of solution of ordinary differential equations
which are of high precision in spite of their simplicity [1]. Among them
we find the midpoint rule and Milne’s method. A number of methods
have been proposed which are free from numerical instability [2], and
for Milne’s method, in particular, a device to suppress the instability was
designed by W. E. Milne himself and R. R. Reynolds [3]. Meanwhile,
detailed analysis of errors of various kinds included in numerical solutions
by linear multistep methods was published in the form of a monograph
by P. Henrici [4]. Professor S. Moriguti of the University of Tokyo
suggested the idea of removing the extraneous error components causing
numerical instability by the help of a kind of averaging operation.

In this paper, calling such an averaging operator a “filter”, we shall
show the existence of a filter of arbitrary precision for any multistep
method, formulate the design procedure and illustrate the efficacy of a
filter by examples.

1. Linear Multistep Methods

The results known about linear multistep methods for ordinary differen-
tial equations may be summarized as follows [4].
In solving the initial value problem of the system of equations

dy'(x) = fi(z, yi(x)) (i, =1, -, m), (1)
dx
(@) =7’ (=1, -, m) (2)

by means of a linear k-step method defined by the formula

akyn+ki+alc—1yn+k—li+ cre +a1yn+li+a0yni
:k(lgkfn+ki+lek—1fn+lc—1i+ v +ﬁ1fn+1i+‘30fni
(?::1’°",m; 7&:0, 172)"'> (3)
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where
x,=a-+nh (n=0,1,2,--), (4)

y'(x) is the exact solution, y,' is the value at z=z, of the numerical
solution and

Fl =1, v.7) - (5)
We denote the error included in ¥,’ by
e, =y, —y'(x,) (6)

and put
p(QO)=a, Ha, L+ Fal+ta,
(=B 4Bl e+ BB }
Then, for (3) to be an approximation to (1), p and ¢ in (7) must satisfy
o1)=0,  pL)=0(1)%0. (8)
If we regard { as the operator of increasing the value of the suffix n by
one, then (8) can be rewritten as

p(Qy,' =ha(0) 1" - (9)

The general solution of (8) in the vicinity of (%, ¥.") may be written as
follows under appropriate conditions.

Yngrn' ~La0' +a (mh)+a' (nh)* + - - ],
+Zz CF"[b#Oi—|-b,,17’(nh)—{-b#2i(nh)2+ ° ':|<11>
(t=1,---,m; n=--+,—-2,-1,0,1,2,--+), (10)

(7)

where , (z=1,2,--+,s) is the root of multiplicity p, (#=1) of o()=0
and we put, in particular,

=1 (p,=1) a1)
in view of (8). Hence

}:5 p.=k—1. 12)
[-o00 7l is the principal component approximating the solution of the
problem, while {,"[----- Jw's (#=F1) are extraneous error components.

Furthermore, the respective components of (10) have the following
asymptotic expressions.

) [ """ :|(1)_zi(xno+n)~hpeli(x"°+”) ’ (13)
@) i, ), )=t

: (14)
def(x) _ & iy —cf &\

where g,(x) (function of ), C (real constant) and p (positive integer) are
defined by
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yon_| 0fx, 2Y)
g; ()= [__azj lz=z1;x) ’ ] a 5)
{o(e)—ho(e")} o) =Cho*1+ O(ho~?)..
[ """ ](#) ~ eﬂi(xno + n) ’
(LY ei@=0 =0,
(16)

where {, is assumed to be a root of multiplicity », (=1) of p({)=0 and,
at the same time, a root of multiplicity ¢, (=0) of ¢()=0 (¢.=p.—1),
and 2, is the “growth parameter” associated with ,:

™

g(qﬂ)(c‘u)/qﬁl (
S A DL P a— 17)
Lo anp@(C,) [ p,!

As the origin of the extraneous error components corresponding to the
roots {, (#==1) the following facts are to be considered.
1° the starting values of numerical solution ¥, (n=0,1,2,.--, k—1)
have already such components.
2° Round-off errors or the effect of interaction among different com-
ponents which are neglected in the approximation of (13)~(16)
arouse them.

2. Imstability

The extraneous error component corresponding to , (#=1) causes the
instability phenomenon when

(a) [&|>1 (in this case the term (,'[----- J on the right-hand side
of (10) grows as fast as {,");

(b) |¢|=1and p,z2 (in this case |{,"[-----Jo|~]e,(x)| may con-
tain the term growing as fast as z”7);

or
(e) [¢.0=1, p,=1, ¢,=0 and the matrix [1,9,'(x)] has an eigenvalue
with positive real part (in this case |{,"[----].|~]e/(x)| grows so
as to satisfy
900 1 (S29,/@e@) ) (18
dx j=1

The instability of the case (a) or (b) appears independently of the
properties of the equation to be solved and is called “strong instability ”,
whereas the instability of the case (¢), dependent on the property of the
funections fi(x, ¥7), is called “numerical instability ”.
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3. Design Principle and Formulae of a Flilter
Let us consider how it is possible to apply a linear operator
Y: {v.'} — {v."*} (19)
to the sequence {y,’} expressed as in (10) in order to obtain the new
sequence {y,*} in which the extraneous error components are as suffi-
ciently suppressed as we want while the principal component, ie. [+---- T
in (10), remains as less affected. We shall call the operator Y a “filter”.
Y may be put in the form
Y()=C*P©), (20)
where { is regarded as the operator of increasing % by one, K an integer
and P({) a polynomial. Next, we assume that,

(1> for each p(31), the extraneous component {,[----- T in {9’}
should be removed up to O(h*—Y), and in {y,**} only O(h¥*) should
remain ; :

(2> the principal component [---:- Ty in {%,°} should be preserved
unaffected up to O(h"), and the affected quantity should be
O

(3> integers K, N and M/s (#=2, ---, s) are preassigned.

Then, from (1> and the well-known theorems in calculus of difference, it
follows that Y({) should be factored as

Y(O)=C*(0w()),
(O=11(¢—5)", (21)
w(C):;_polynomial in .
Application of the Y of (21) to {y,’} yields
Y(QOUngsn' ~Y(QLe e e+ Jas

S [ Y ORI O], (22)
where
i 1 d \Me .
by, N’M('JJ) 0, (x). (23)

Similarly, from <2> it follows that Y({)—1 should contain the factor
(¢—1)¥+1, Hence Y({) obtains another expression

Y(O=1+*C=D" () (24)

with some rational function Y({) which is regular at {=1.
It is obvious that the simplest of the polynomials w({) that satisfy (21)
and (24) can be obtained by first expanding
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¢ _{1+(C=DF"
= 25
D A+HE—D) #)
in the power series in ({—1) and then truncating the terms beyond
(¢—1)". If we adopt the simplest polynomial as w({), denoting the co-
efficient of ({—1)"*! (i.e. of the first truncated term) in the expansion of
(25) by 7y.1/(N+1)!, we have
Y(OYnon'
~[ay'+a, (nh)+a (nh)+ - - - +ay'(nh)”
+ 1A+ gty () +ORY )]

3] [bpan G YA O] (26)
p©=2

The underlines in (26) indicate the leading parts, respectively, of the
“disturbance of the principal compnent” and the “residual extraneous
error components” after application of Y({).

Y(¢) thus determined consists of the terms from {™* to (V"2 z M=K and,
obviously, satisfies the conditions (1) and <{2).

In the following several examples of filters are shown which are for
the multistep methods with p({)=0*—1 ({;=1, {,=—1), where M stands
for M,.

OM=1, N=1:—
[r(c):c—cz=c+1=z+4:z(1+§> ,
[<(9)] 1__(1_4+42+ )
K=0:
Y(C)=%(3—C)(C+1)=4( 201 8)= 1__44f
K=1:

1 1 1
YO =—(C+1y==((+24+H)=1+-5%;
(9 C( 1) 4(C eh 45

K=2:

—il,# I ” :_l _1 N __[7_2

Y(©= @t DEHD = B4+ )=1-".
OM=2, N=2:—

r(z;)=(c—c2>2=<c+1>2=4<1+4+£),
{ Z

o L 5 gy,
[<] == (1 A—l— EA +16A+ >,

K=0:

1 1 3
Y(O)=— (30— 40— 62+ 1204+ 11) =14+ =4 +—-4*;
(@) 16( g . +12¢4-11) + 2 + 16
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K=1:

Y (=2 (3-0(C+1)= 6(—

16¢

K=2:

M. IRI

C+6L-+84-3071)

1<1 3 1 4>_
1Ll 1 g,
AVRIEET:

Y(C)———rr——( 401044 ) =1 5,

K=3:

Y(c>=%(3c+8+6:-1~c»3>=1+

K=4:

1
Y(Q)=-—-(11+12¢"
©=-4¢ ¢

OM=2, N=4, K=6:—

1
Y()=—(57-+30¢!
© 64( +30¢

4=[-1,

4. Application of a Filter

P=1-¢"

16
4A3 4
160 (447 4-84%) ;
—6ct—dr 3 y=1— L B e
2 16
— 450724200 1504 — 180 +50°9) . (28)

5:C%—C’§’ .

The practical way of using a filter will be as follows.
To begin with, we proceed the integration of the equations (1) with
the initial values (2) by the method (8) with appropriate starting values

]

filter
y
"/-%
‘ filter
} X
o
1
) |
| o
f Ve
) |
f// T\w
1 r -
7 I
; : filter
o i
pny ey —

until as many y,”s are obtained as are suffi-
cient for the application of the filter. Then,
applying the filter to the sequence {y,’} to
get successive k—1 sets of values of w,'%,
we restart the integration by (8) with these
newly obtained values of %,'* as the starting
values. If the undesirable extraneous error
components have grown up, we use the filter
to remove them, restarting therefrom.

The above process is illustrated figuratively
in Fig. 1.

From our experience it is recommended to
choose N equal to the order p (defined in (15))
of the method concerned, M,=0 for |{,|<1
and M,=2 for [{,|=1. Furthermore, it is

convenient to choose K= N+LM,,, because
we then have Y({) which is express1b1e in

- terms of the backward dl_ﬁerence operators
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only so that we can obtain %,'* using the values ¥., ¥,.-.% ** ) Yo k'
only. (27) and (28) are the filters determined in this manner for the
midpoint rule and Milne’s method, respectively.

It can also be shown that, if the step size & is small enough, the
round-off error is small in comparison with # and the interval =, of two
successive filtering operations is chosen smaller than kg (where g is the
maximum of the moduli of the eigenvalues of the matrix [1,9,(x)] in
the relevant interval of ), then the growth of the extraneous error
components in one interval is sufficiently suppressed by one operation of
the filter.

5. FErxamples

Example 1:—Figs. 2 and 3 show the results of solving the initial value

problem

W e, y=1—y*,  y(0)=0
dx

by the midpoint rule
Yps1=Yn-1+2h [,

with 2=0.01. The exact solution of the problem is evidently y(x)=
tanhz. %, in Fig. 2 and ¢, in Fig. 8 are the values of the numerical
solution and the error which were obtained without using a filter, where
the graphs of y, and e, oscillate rapidly up and down within the hatched
region. ¥, and e, are the corresponding values obtained by using the
filter of (27) every 150 steps, where the numerical instability seen in y,
and e, is completely suppressed.

y
error e,
5 ep
1 1.0X10 2
€y
0 -
A
-1 s
—1.0Xx10°
e,
Fig. 2 Fig. 3

Example 2:—Figs. 4 and 5 are the results of solving the problem
2

SZ e 4y=0, ¥(0)=0, y'(0)=1
x x

or
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1
—ddyx—zfl(w, o )=y,  '(0)=0,
dyz_ 2 1,2\ 1 2 2/ —
W_f (=, v, v¥)=—y'"—2y*, ¥¥0)=1,

y@)=y'(x), Y@=y ()
by Milne’s method

yw..~17’=?/n_17‘+—§—(fn+1’:+4fn7’+fn-ﬁ) (i=1, 2)
with 2=0.1 (The predictor used is
Yo' = Un. ;+§h(2f: —fui 42,

The exact solution is

y(x)=exp (—é x“)fz exp <%t2>dt .

¥, (and ¥%) and e, are the values of the numerical solution and the error
obtained without using a filter, while v, (and ¥%) and e, are those ob-
tained by using the filter of (28) every 10 steps. The effect of the filter
seems too obvious to add any further comment.

Besides the above two examples, we have made a number of experi-

1.0
0.5
yA
5
0 ) AR Yg x
b N
s Ya
—0.5F
Fig. 4
errorty ox 10" i
0 /4\99\'% ) ép
- —1.0x10° en

Fig. 5
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mental computations for different problems by different methods. The
filters designed according to the principle of §3 and §4 worked success-
fully in all those experiments.
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